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Abstract. It has been a long-standing problem posed by the first author in
a conference in Marseille in 1990 to characterize semitopological semigroups
which have common fixed point property when acting on a nonempty weak*
compact convex subset of a dual Banach space as weak* continuous and norm
nonexpansive mappings. Our investigation in the paper centers around this
problem. Our main results rely on the well-known Ky Fan’s inequality for
convex functions.

1. Introduction

A semitopological semigroup is a semigroup with a Hausdorff topology such
that the product is separately continuous. Let K be a Hausdorff topological space.
We say that S = {Ts : s ∈ S} is a representation of the semigroup S on K if for
each s ∈ S, Ts is a mapping from K into K and Tst(x) = Ts(Ttx) (s, t ∈ S, x ∈ K).
Sometimes we simply write sx for Ts(x) if there is no confusion in the context.
The representation S is continuous if each Ts : K → K (s ∈ S) is continuous.
We call the representation separately (resp. jointly) continuous if the mapping
(s, x) 7→ Ts(x) from S ×K to K is separately (resp. jointly) continuous. We say
that x ∈ C is a common fixed point of (the representation of) S if Ts(x) = x for
all s ∈ S.
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We are interested in the existence of common fixed points for representations
of S on a subset K of a Banach space. We call the representation of S on K norm
nonexpansive if ‖Ts(x) − Ts(y)‖ ≤ ‖x − y‖ for all s ∈ S and all x, y ∈ K. It has
been a long-standing open problem to characterize semitopological semigroups
which have common fixed points when acting on a nonempty weak* compact
convex subset of a dual Banach space as weak* continuous and norm nonexpansive
mappings. Our investigation in the paper centers around this problem.

The paper is organised as follows: In section 3 we investigate the notion of
invariant submeans. In section 4 we introduce the notion of average Chebyshev
centre associated to submeans. We use it to prove some results (Lemmas 4.12
and 4.13) concerning left subinvariant submeans on certain subsets of `∞(S) and
common fixed point property of S on convex subsets of a dual Banach space with
normal structure. This is then applied to prove our main results, Theorems 4.14
and 4.16, regarding a left reversible semigroup of norm nonexpansive mappings on
a weak* compact convex subset of a dual Banach space with normal structure. The
proof depends heavily on a Ky Fan’s inequality on convex functions established
in [6] and [5]. We refer the readers to [2], [19], [24] and [25] for related works on
common fixed point properties of semigroups of nonexpansive mappings.

2. Some preliminaries

Let S be a semigroup. Consider `∞(S), the Banach space of all real-valued
bounded functions on S with the supremum norm. For each s ∈ S and f ∈ `∞(S),
denote by lsf and rsf the left and right translates of f by s respectively, that is,
lsf, rsf ∈ `∞(S) with (lsf)(t) = f(st) and (rsf)(t) = f(ts) for all t ∈ S. Let X be
a closed subspace of `∞(S) containing the constant functions. A linear functional
m ∈ X∗ is called a mean if ‖m‖ = m(1) = 1; If in addition X is left (right)
translation invariant and m satisfies m(lsf) = m(f) (resp. m(rsf) = m(f) for all
s ∈ S and f ∈ X, then the mean m is a left (resp. right) invariant mean, denoted
by LIM (resp. RIM).

Let S be a semitopological semigroup. We denote by Cb(S) the space of all
bounded continuous real-valued functions on S. Clearly, as a subspace of `∞(S),
Cb(S) is both left and right (translation) invariant. A function f ∈ Cb(S) is
left (right) uniformly continuous if the mapping s 7→ ls(f) (resp. s 7→ rs(f))
from S into Cb(S) is continuous when Cb(S) is equipped with the uniform norm
topology. We denote by LUC(S) (resp. RUC(S)) the space of all left (resp. right)
uniformly continuous functions on S. Both LUC(S) and RUC(S) are left and
right invariant subspaces of Cb(S) and they both contain the constant functions.
When S is a topological group, then LUC(S) (resp. RUC(S)) is indeed the space
of bounded right (resp. left) uniformly continuous functions on S as defined in
[9, Vol 1]. If S is discrete, all these spaces are equal to `∞(S). In general they
are different. It is well-known that LUC(S) has a LIM if S is a commutative
semitopological semigroup or if it is a compact or a solvable group. But for the
free group (or free semigroup) F2 on two generators, LUC(F2) = `∞(F2) does not
have a left invariant mean. We call a semitopological semigroup S left amenable
if there is a left invariant mean on LUC(S).
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A semitopological semigroup S is left reversible if sS ∩ tS 6= ∅ for all s, t ∈ S.
Here and throughout the paper, for a subset A of a topological space, A always
denotes the closure of A. All groups and all commutative semigroups are left
reversible. For a discrete semigroup S, if LUC(S) (= `∞(S)) has a LIM then S
is left reversible. However, a general semitopological semigroup S may not be left
reversible even when Cb(S) has a LIM (see [10]).

Let S and H be two semitopological semigroups. It is well-known that if S
is left amenable and if there is a continuous semigroup homomorphism that maps
S onto T , then T is also left amenable. In fact, more is true as asserted in the
following proposition.

Proposition 2.1
Let S and H be semitopological semigroups and let σ : S → H be a continuous
semigroup homomorphism. If S is left amenable and the range σ(S) is dense in
H, then H is left amenable.

Proof. We give a detailed proof for the sake of completion, although it is standard.
Define T : LUC(H)→ LUC(S) by Tf(s) = f(σ(s)) (s ∈ S). Then T is norm

preserving Banach space homomorphism with T (1) = 1. Its conjugate operator
is T ∗ : LUC(S)∗ → LUC(H)∗. Let m be a LIM on LUC(S). Clearly, T ∗(m) is
a mean on LUC(H). For each h = σ(t) (t ∈ S) we have

〈lhf, T ∗(m)〉 = 〈T (lhf),m〉 = 〈lt(Tf),m〉
= 〈Tf,m〉 = 〈f, T ∗(m)〉.

By density of σ(S) and the continuity of lhf with respect to h ∈ H, the above
implies that the identity

〈lhf, T ∗(m)〉 = 〈f, T ∗(m)〉

holds for all h ∈ H when f ∈ LUC(H). Whence T ∗(m) is a left invariant mean
on LUC(H).

A subset K of a Banach space is said to have normal structure if, for each
bounded subset W of K that contains more than one point, there is w ∈ co(W )
such that

sup{‖x− w‖ : x ∈W} < sup{‖x− y‖ : x, y ∈W},

where co(W ) represents the convex hull of W . It is well-known that a compact
set always has normal structure. In a uniformly convex space (e.g. any Lp space
with p > 1) a bounded convex set always has normal structure. It was shown
in [20] that every weak* closed convex subset of `1 has weak* normal structure
(meaning that the above condition holds for each weak* compact convex subset
W ). However, a weakly compact convex subset of L1[0, 1] may not have normal
structure. Characterizations of normal structure may be seen in [21].
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The following fixed point theorems are well-known for even more general space
setting.

Theorem 2.2 ([20])
Let K be a nonempty, weakly compact convex subset of a Banach space, and let
S be a left reversible semitopological semigroup acting on K as separately contin-
uous, norm nonexpansive self mappings. If K has normal structure, then K has
a common fixed point for S.

Theorem 2.3 ([11])
Let K be a nonempty, weakly compact convex subset of a Banach space, and let S
be a discrete left reversible semigroup acting on K as weakly continuous and norm
nonexpansive self mappings. Then K has a common fixed point for S.

3. Subinvariant submeans

The notion of submean was first studied by Mizoguchi and Takahashi in [23].
Further investigations and applications can be seen in [1, 15, 16].

Given a set S, a nonempty subset X of `∞(S) is called positively semilinear if
f, g ∈ X implies αf + βg ∈ X for all α, β ∈ [0,∞). For any subset X0 of `∞(S),
the positively semilinear subset generated by X0 is precisely

X =
{ n∑

i

αifi : n ∈ N, fi ∈ X0 and αi ∈ [0,∞) for 1 ≤ i ≤ n
}
.

Let X be a positively semilinear subset of `∞(S) containing positive constants.
A function µ : X → R is called a submean on X if it satisfies the following condi-
tions.

1o If f, g1, g2 ∈ X and α, β ∈ [0, 1] such that f ≤ αg1 + βg2, then

µ(f) ≤ αµ(g1) + βµ(g2),

2o For every constant c > 0, µ(c) = c.

We often write µt(f(t)) for the action µ(f) to emphasize that the variable of the
function f is t, in particular when f contains other variables as parameters.

Note that our definition of a submean is slightly different from that given in
[15]. But it can be shown easily that both are indeed equivalent. It is also easily
seen that a submean is always continuous when X is equipped with the sup norm
topology of `∞(S).

A submean µ is also increasing, i.e. µ(f) ≥ µ(g) if f, g ∈ X and f ≥ g. We
call the submean µ strictly increasing if for each constant c > 0 there is δ(c) > 0
such that

µ(f + c) ≥ µ(f) + δ(c)

for all f ∈ X.
Now suppose further that S is a semigroup. A subset X of `∞(S) is left

invariant if lsf ∈ X for all s ∈ S and f ∈ X. A submean µ on a left invariant,
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positively semilinear subset X of `∞(S) containing non-negative constants is called
left subinvariant if

µ(lsf) ≥ µ(f) (s ∈ S, f ∈ X).

If the equality µ(lsf) = µ(f) holds for all s ∈ S and f ∈ X, then we call µ left
invariant.

Trivially, if X is a left invariant subspace of `∞(S) containing constants, then
any left invariant mean on X is a strictly increasing left invariant submean on X.
Some nonlinear examples are given as follows.

Example 1
Let S = G be a group. Then

µ(f) = sup
g∈G

f(g) (f ∈ `∞(G))

is a strictly increasing left invariant submean on `∞(G).

Example 2
If there is a nonempty S0 ⊂ S such that sS0 ⊃ S0 for each s ∈ S, then

µ0(f) = sup
s∈S0

f(s) (f ∈ `∞(S))

defines a strictly increasing left subinvariant submean on `∞(S). In particular, if
S has a right zero s0 so that ss0 = s0 for all s ∈ S, then µ0(f) = f(s0) is a strictly
increasing left invariant submean on `∞(S).

More generally, if S has a left ideal S0 = G0 which is a group, then µ0 defined
above is a strictly increasing left invariant submean on `∞(S).

For a left reversible semigroup S, `∞(S) may have no left invariant mean.
But it always has a strictly increasing left subinvariant submean as shown in the
following example.

Example 3
Let S be a left reversible semitopological semigroup and let Γ be the collection of
all closed right ideals of S. Given any submean ν on a left invariant, positively
semilinear subset X of `∞(S) that contains positive constants, we define

µ(f) = inf
J∈Γ

sup
s∈J

ν(lsf) (f ∈ X).

Then µ is a strictly increasing left subinvariant submean on X. Note that in
`∞(S), the semigroup S is regarded as a discrete semigroup. Clearly X ⊂ `∞(S)
if X ⊂ Cb(S) for a semitopological semigroup S.

As a special case, we can take the submean ν on `∞(S) defined by ν(f) =
sups∈S f(s). Then sups∈J ν(lsf) = sups∈J f(s), and so

µ(f) = inf
J∈Γ

sup
s∈J

f(s) (f ∈ `∞(S))

defines a strictly increasing left subinvariant submean on `∞(S).
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We note that left reversibility is crucial in Example 3 to show that µ satisfy
the sublinear condition 1o.

Let Y and X be two left invariant, positively semilinear subsets of `∞(S)
containing the positive constant functions such that Y ⊂ X. If µ is a strictly in-
creasing left subinvariant submean on X, then µ, restricting to Y , is also a strictly
increasing left subinvariant submean on Y . For the converse, we have the following
general observations.

Proposition 3.1
Let Y and X be left invariant, positively semilinear subsets of `∞(S) containing
positive constants, and assume that Y has a left subinvariant submean µ. Suppose
that there is a mapping T from X into Y such that T (lsf) ≥ ls(Tf) for f ∈ X
and s ∈ S, T (c) = c for c > 0, and

T (f) ≤
n∑
i

αiT (fi)

if n ∈ N, f, fi ∈ X and αi ≥ 0 (1 ≤ i ≤ n) satisfy f ≤
∑n
i αifi. Then µ ◦ T

is a left subinvariant submean on X. Moreover, if T is a projection onto Y , then
µ ◦ T extends µ.

Proof. Verification is straightforward.

As an example, we consider S = G to be a locally compact group. Take
a ϕ ∈ L1(G) with ‖ϕ‖1 = 1 and, in L∞(G), define T (f) = ϕ� f , where

ϕ� f(s) =
∫
G

ϕ(t)f(st)dt (s ∈ G).

Then T is a linear mapping from L∞(G) into LUC(G), satisfying T (lsf) = ls(Tf).
Through T any (strictly increasing) left subinvariant submean on LUC(G) deter-
mines a (strictly increasing) left subinvariant submean on L∞(G), and any left
invariant mean on LUC(G) determines a left invariant mean on L∞(G).

Proposition 3.2
Let S be a left reversible semitopological semigroup and let L be a left invariant
subspace of `∞(S) containing constants. Then any left invariant mean µ on L
extends to a strictly increasing left subinvariant submean on `∞(S).

Proof. First, by the Hahn-Banach theorem, we may extend µ to some µ̃ ∈ `∞(S)∗.
Regarding the dual space of `∞(S) as a measure space and using the Jordan
decomposition, we may assume that µ̃ is positive, i.e. µ̃(f) ≥ 0 if f ≥ 0. Then we
define

µ̂(f) := inf
J∈Γ

sup
s∈J

µ̃(lsf) (f ∈ `∞(S)),

where Γ is the collection of all closed right ideals of S. µ̂ is certainly an extension of
µ. As in example 3, one may check that µ̂ is a strictly increasing left subinvariant
submean on `∞(S).
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Proposition 3.3
Let S and H be two semigroups. Let X and Y be left invariant, positively semi-
linear subsets of, respectively, `∞(S) and `∞(H). Suppose that X has a (strictly
increasing) left subinvariant submean µ. If there is a semigroup epimorphism
σ : S → H such that T : f 7→ f ◦ σ maps Y into X, Then µ ◦ T is a (resp. strictly
increasing) left subinvariant submean on Y .

Proof. One only needs to notice that T (αf + βg) = αT (f) + βT (g), T (c) = c and
T (lσ(s)f) = ls(Tf) for f, g ∈ Y , α, β, c ∈ R+ and s ∈ S. Verification of conditions
for µ ◦ T is straightforward.

A submean µ on `∞(S) is called supremum admissible if for any bounded
family {fα : α ∈ ∆} ⊂ `∞(S)

µ(sup
α∈∆

fα) = sup
α∈∆

µ(fα),

where supα∈∆ fα ∈ `∞(S) is defined by (supα∈∆ fα)(s) = supα∈∆(fα(s)) (s ∈ S).
The submeans defined in Examples 1 and 2 are supremum admissible. If S is

a finite semigroup, then every submean on `∞(S) is supremum admissible.

4. The main result

Now let S be a semigroup. For convenience, we call a subset X of `∞(S)
positively semilinear lattice if it is positively semilinear, contains positive constant
functions and max{f, g} ∈ X whenever f, g ∈ X, where

max{f, g}(s) = max{f(s), g(s)} (s ∈ S).

For example, if S is a semitopological semigroup, then it is readily seen that
Cb(S), LUC(S), and RUC(S) are all (positively semilinear, left invariant) lattice
subspaces of `∞(S). So are AP (S) and WAP (S) since AP (S) = C(Sa) and
WAP (S) = C(Sw), where Sa is the spectrum of AP (S) and Sw is the spectrum
of WAP (S). Here we recall that AP (S) (resp. WAP (S)), the space of almost
periodic functions (resp. weakly almost periodic functions) on S, consists of all
functions f ∈ Cb(S) such that the left orbit {lsf : s ∈ S} of f is precompact in
the norm topology (resp. weak topology) of Cb(S). It is well known that both Sa
and Sw are compact semitopological semigroups [3].

If X is a positively semilinear lattice subset, it is readily seen that for any
finite set Λ ⊂ X we have max{f : f ∈ Λ} ∈ X, where

max{f : f ∈ Λ}(s) = max{f(s) : f ∈ Λ}.

Suppose that S = {Ts : s ∈ S} is a representation of S on a subset K of
a Banach space E. Denote the unit ball of the dual space E∗ by (E∗)1. Let ∆ be
a weak* dense subset of (E∗)1. Denote the collection of all finite subsets of ∆ by
Γ. For x, y ∈ K and φ ∈ ∆ we consider the function

ϕ(x,φ,y)(s) = |〈φ, Tsx− y〉| (s ∈ S).
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LetX be a positively semilinear lattice subset of `∞(S) with a submean µ. Suppose
that ϕ(x,φ,y) ∈ X for all φ ∈ ∆. We then can define ρx(y) by

ρx(y) = sup
Λ∈Γ

µ(max
φ∈Λ

ϕ(x,φ,y)) = sup
Λ∈Γ

µt(max
φ∈Λ
|〈φ, Ttx− y〉|).

If ϕ(x,φ,y) ∈ X for all φ ∈ ∆ and all y ∈ K, we define the µ-average Chebyshev
radius of K at x with respect to ∆ to be

ρx = inf
y∈K

ρx(y).

We call
Kx = {y ∈ K : ρx(y) ≤ ρx}

the µ-average Chebyshev center of K at x with respect to ∆.
For example, if S is a semitopological semigroup and if its representation S on

the set K is separately continuous and equicontinuous when K is equipped with
the σ(E,∆)-topology, then we may consider the subspace X = RUC(S) of `∞(S).
Let x ∈ K be such that Sx is bounded. Then each ϕ(x,φ,y) automatically belongs
to X; If K is σ(E,∆)-compact and the representation is jointly continuous when
K is equipped with the σ(E,∆)-topology, then ϕ(x,φ,y) ∈ LUC(S) for all x, y ∈ K
and φ ∈ ∆. So, we may consider X = LUC(S). If µ is a mean on X, then
µ-average Chebyshev radius ρx is well defined.

Remark 4.1
If X = `∞(S) and µ is supremum admissible, then one sees easily that ρx(y) =
µt(‖Ttx− y‖) for x, y ∈ K. But in general this is not true.

Let T be a self mapping on a subset K of a Banach space E, and Let ∆ be
a weak* dense subset of (E∗)1. We call T pseudo ∆-nonexpansive if, for each
φ ∈ ∆ and each ε > 0, there exists a finite set Λ ⊂ ∆ such that

|〈φ, Tx− Ty〉| ≤ max
φ′∈Λ

|〈φ′, x− y〉|+ ε

for all x, y ∈ K. In particular, a pseudo (E∗)1 nonexpansive mapping is called
a pseudo weakly nonexpansive mapping. If K is a subset of a dual Banach space E
and a predual space of E is E∗, then a pseudo (E∗)1 nonexpansive mapping is called
a pseudo weak* nonexpansive mapping. For example, if K is a left translation
invariant subset of E = `∞(S), where S is a semigroup, then for each s ∈ S
the translation operator ls on K is pseudo weakly nonexpansive, since the dual
operator l∗s maps (E∗)1 into itself. If K is a subset of the dual space E of a left
invariant subspace E∗ of `∞(S) such that l∗s(K) ⊂ K for all s ∈ S, then each l∗s is
a pseudo weak* nonexpansive self mapping on K because ls ((E∗)1) ⊂ (E∗)1.

We call a semigroup S acting on a subset K of a Banach space pseudo weakly
nonexpansive if each Ts (s ∈ S) is pseudo weakly nonexpansive on K. The notion
of a pseudo weak* nonexpancive S-action is defined similarly.

Proposition 4.2
Suppose that ∆1 and ∆2 be two weak* dense subsets of (E∗)1 and ∆1 ⊂ ∆2. Let
K 6= ∅ be a σ(E,∆2) compact subset of E. Then T : K → K is pseudo ∆2-
nonexpansive if and only if it is pseudo ∆1-nonexpansive.
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Proof. First we note that for each ψ ∈ ∆2 and each ε > 0 there is a finite set
Λψ ⊂ ∆1 such that

|〈ψ, x− y〉| ≤ max
φ∈Λψ

|〈φ, x− y〉|+ ε/2 (1)

for all x, y ∈ K. In fact, since ∆1 is weak* dense in ∆2, for each pair a, b ∈ K
there is φ ∈ ∆1 such that

|〈ψ, a− b〉| < |〈φ, a− b〉|+ ε/2.

The inequality holds also for (x, y) in a σ(E,∆2) neighbourhood of (a, b) in K×K.
Using finite covering argument we derive the wanted finite set Λψ ⊂ ∆1.

Now assume that T is pseudo ∆1-nonexpansive. Given ψ ∈ ∆2 and ε > 0, Let
Λψ ⊂ ∆1 be the finite set obtained above. For each φ ∈ Λψ there is a finite set Λφ
such that

|〈φ, Tx− Ty〉| ≤ max
φ′∈Λφ

|〈φ′, x− y〉|+ ε/2

for all x, y ∈ K. Denote Λ =
⋃
φ∈Λψ Λφ. Then

|〈ψ, Tx− Ty〉| ≤ max
φ∈Λψ

|〈φ, Tx− Ty〉|+ ε/2 ≤ max
φ′∈Λ

|〈φ′, x− y〉|+ ε

for all x, y ∈ K. So T is pseudo ∆2-nonexpansive.
Conversely, assume T is pseudo ∆2-nonexpansive. Then for φ ∈ ∆1 and ε > 0

there is a finite set Λφ ⊂ ∆2 such that

|〈φ, Tx− Ty〉| ≤ max
ψ∈Λφ

|〈ψ, x− y〉|+ ε/2

for all x, y ∈ K. For each ψ ∈ Λφ let Λψ ⊂ ∆1 be the set such that (1) holds for
all x, y ∈ K. Let Λ =

⋃
ψ∈Λφ Λψ. We then have

|〈φ, Tx− Ty〉| ≤ max
φ′∈Λ

|〈φ′, x− y〉|+ ε

for all x, y ∈ K. So, by definition, T is pseudo ∆1-nonexpansive.

If T is a pseudo ∆-nonexpansive mapping from K1 to K2, from definition it
is clear that, for any finite set Λ ⊂ ∆ and ε > 0, there is a finite set Λ′ ⊂ ∆ such
that

max
φ∈Λ
|〈φ, Tx− Ty〉| ≤ max

φ′∈Λ′
|〈φ′, x− y〉|+ ε

for all x, y ∈ K1. So a pseudo ∆-nonexpansive mapping from K1 to K2 is ∆-
uniformly continuous. It is also easily seen that a pseudo ∆-nonexpansive mapping
must be norm nonexpansive. The converse is not true. However, the converse is
true if K is compact in the σ(E,∆) topology and the mapping T is continuous
in this topology. Notice that the notions of ∆-nonexpansiveness and norm nonex-
pansiveness are still valid for a mapping T : K1 → K2, where K1 and K2 are any
two subsets of the Banach space E. We state and prove a more general result as
follows.
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Proposition 4.3
Let K1 and K2 be subsets of a Banach space E and ∆ be a weak* dense subset of
(E∗)1. Suppose that K1 is σ(E,∆) compact and that T : K1 → K2 is continuous
when both K1 and K2 are equipped with the σ(E,∆) topology. Then T is pseudo
∆-nonexpansive if and only if it is norm nonexpansive.

Proof. The necessity is trivial. So we only prove the sufficiency. Suppose that T
is norm nonexpansive. Given φ ∈ ∆ and ε > 0, for each pair a, b ∈ K1 there is
φ′ ∈ ∆ such that

|〈φ, Ta− Tb〉| ≤ ‖Ta− Tb‖ ≤ ‖a− b‖ < |〈φ′, a− b〉|+ ε.

Since T is σ(E,∆) continuous, there is a neighbourhood N(a,b) of the point (a, b)
in K1 ×K1 such that the inequality

|〈φ, Tx− Ty〉| < |〈φ′, x− y〉|+ ε

holds for all x, y ∈ N(a,b), where K1 is equipped with the σ(E,∆) topology. The
product space K1 × K1 is compact. Using the finite subcovering property, we
obtain finite set Λ ⊂ ∆ such that

|〈φ, Tx− Ty〉| ≤ max
φ′∈Λ

|〈φ′, x− y〉|+ ε

for all x, y ∈ K1. Therefore T is pseudo ∆-nonexpansive.

Remark 4.4
Let K1,K2 be sets as described in Proposition 4.3. Let Σ be a collection of norm
nonexpansive σ(E,∆)-continuous mappings from K1 to K2. We wonder whether
the mappings in Σ are σ(E,∆) equicontinuous. If the answer is affirmative, then
the weak* equicontinuity condition may be removed from Corollaries 4.18 and
4.21.

Proposition 4.3 allows us to use pseudo ∆-nonexpansiveness techniques to deal
with norm nonexpansive mappings.

Lemma 4.5
Let S be a semigroup acting on a subset K of a Banach space E as self mappings.
Let ∆ be a weak* dense subset of (E∗)1 and let X be a positively semilinear lattice
subset of `∞(S) with a submean µ. Suppose that for some b ∈ K, ϕ(b,φ,y) ∈ X
for all φ ∈ ∆ and all y ∈ K. Then the µ-average Chebyshev radius function
ρb(y) : K → R+ with respect to ∆ is lower semicontinuous when K is equipped
with the σ(E,∆)-topology.

Proof. For each y ∈ K and (yα) ⊂ K such that yα → y in σ(E,∆)-topology, we
show

lim inf
α

ρb(yα) ≥ ρb(y).

For each Λ ∈ Γ, from definition we have

ρb(yα) ≥ µt(max
φ∈Λ
|〈φ, Tt(b)− yα〉|).
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Since 〈φ, yα〉 → 〈φ, y〉 for each φ ∈ ∆, Λ is finite, and µ is continuous, we obtain

lim inf
α

ρb(yα) ≥ µt(max
φ∈Λ
|〈φ, Tt(b)− y〉|)

for each Λ ∈ Γ. So

lim inf
α

ρb(yα) ≥ sup
Λ∈Γ

µt(max
φ∈Λ
|〈φ, Tt(b)− y〉|) = ρb(y).

Therefore, ρb(y) is lower semicontinuous.

Assuming that the function s 7→ ‖Tsx − y‖ belongs to X for all y ∈ K, one
may consider %b(y) = µt(‖Ttb − y‖) for all y ∈ K. However, %b(y) may not be
lower semicontinuous in the σ(E,∆)-topology. So the above lemma is no longer
valid if ρb(y) is replaced by %b(y) .

Lemma 4.6
Let E be a Banach space and ∆ be a weak* dense subset of (E∗)1. Suppose that
K is a convex σ(E,∆) compact subset of E. Let S be a semigroup acting on
K as pseudo ∆ nonexpansive self mappings. Let X be a left invariant positively
semilinear lattice subset of `∞(S) that has a strictly increasing left subinvariant
submean µ. Suppose that b ∈ K such that the function ϕ(b,φ,y)(s) = |〈φ, Tsb− y〉|
belongs to X for all φ ∈ ∆ and all y ∈ K. Then the µ-average Chebyshev center
Kb of K at b with respect to ∆ is a nonempty σ(E,∆) compact convex S-invariant
subset of K.

Proof. Using the uniform boundedness principle, we have thatK is norm bounded.
So the µ-average Chebyshev radius of K at b, ρb, is finite. For each r > ρb, by
definition the set

Kr = {y ∈ K : ρb(y) ≤ r}
is nonempty. For y1, y2 ∈ Kr and α, β > 0 such that α+ β = 1, we have

ρb(αy1 + βy2) = sup
Λ∈Γ

µt(max
φ∈Λ
|〈φ, Tt(b)− (αy1 + βy2〉|)

≤ α sup
Λ∈Γ

µt(max
φ∈Λ
|〈φ, Tt(b)− y1〉|) + β sup

Λ∈Γ
µt(max

φ∈Λ
|〈φ, Tt(b)− y2〉|)

= αρb(y1) + βρb(y2) ≤ r.

So αy1 + βy2 ∈ Kr, showing that Kr is a convex subset of K. We show further
that Kr is indeed σ(E,∆) closed which then implies that it is σ(E,∆) compact.
In fact, by Lemma 4.5, ρb(y) is σ(E,∆) lower semicontinuous. If (yα) ⊂ Kr and
yα → y in the σ(E,∆) topology, we have y ∈ K and

ρb(y) ≤ lim inf
α

ρb(yα) ≤ r.

So y ∈ Kr, and hence Kr is σ(E,∆) closed.
Kr is also S-invariant. For y ∈ Kr s ∈ S and any finite set Λ ⊂ ∆, since µ is

left subinvariant we have

µt(max
φ∈Λ
|〈φ, Ttb− Tsy〉|) ≤ µt(max

φ∈Λ
|〈φ, Tstb− Tsy〉|).
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From hypothesis, Ts is pseudo ∆-nonexpansive. So for each ε > 0 there is another
finite set Λ′ ⊂ ∆ such that

max
φ∈Λ
|〈φ, Tstb− Tsy〉| ≤ max

φ′∈Λ′
|〈φ′, Ttb− y〉|+ ε

for all t ∈ S. This leads to

ρb(Tsy) ≤ ρb(y) + ε

for all ε > 0. Thus ρb(Tsy) ≤ ρb(y) ≤ r. Therefore Tsy ∈ Kr for each s ∈ S,
showing thatKr is S-invariant. By the finite intersection property, Kb =

⋂
r>ρb

Kr

is nonempty σ(E,∆) compact, convex and S-invariant.

If K is a subset of a dual Banach space E = (E∗)∗ and ∆ = (E∗)1, then the
σ(E,∆) (i.e. weak*) compactness assumption on K may be weakened in the above
result. Precisely, we have the following.

Lemma 4.7
Suppose that K is a weak* closed convex subset of a dual Banach space E = (E∗)∗.
Let S be a semigroup acting on K as pseudo weak* nonexpansive self mappings.
Let X be a left invariant positively semilinear lattice subset of `∞(S) that has
a strictly increasing left subinvariant submean µ. Suppose that b ∈ K such that Sb
is bounded and such that the function ϕ(b,φ,y)(s) = |〈φ, Tsb− y〉| belongs to X for
all φ ∈ (E∗)1 and y ∈ K. Then the µ-average Chebyshev center Kb of K at b with
respect to (E∗)1 is a nonempty weak* compact convex S-invariant subset of K.

Proof. Let ∆ = (E∗)1. Following the proof of Lemma 4.6, we have ρb < ∞ and
for each r > ρb the set Kr = {y ∈ K : ρb(y) ≤ r} is a nonempty, bounded,
and weak* closed subset of K. So Kr is weak* compact according to Alaoglu’s
Theorem. Also, as shown in the proof of Lemma 4.6, Kr is convex and S-invariant.
So Kb =

⋂
r>ρb

Kr is nonempty weak* compact convex and S-invariant.

Remark 4.8
The pseudo ∆-nonexpansive assumption in the above two lemmas is only used in
showing that ρb(Tsy) ≤ ρb(y) for the S-invariance of Kr. If X = `∞(S) and µ is
supremum admissible, then by Remark 4.1 this inequality holds if the representa-
tion S is norm nonexpansive. So for this case Lemmas 4.6 and 4.7 remain true if
the condition of pseudo ∆-(or pseudo weak*) nonexpansiveness on S is replaced
by norm nonexpansiveness. This fact will be used later to establish Theorem 4.14.

Let us return to the general setting that K ⊂ E and ∆ is a weak* dense subset
of (E∗)1. For x ∈ K we denote

rx = sup
k∈K
‖x− k‖,

and let rK = inf{rx : x ∈ K}.
Since ∆ is weak* dense in (E∗)1, we have

rK = inf
x∈K

sup{|〈φ, x− k〉| : φ ∈ ∆, k ∈ K}.
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Assume that S acts on K and b ∈ K so that the conditions of Lemma 4.6 are
satisfied. From the definition one sees clearly that the relation

ρb ≤ rK

holds. We show further the following.

Lemma 4.9
Under the condition of Lemma 4.6, if Kb = K then ρb = rK .

Lemma 4.9 is crucial for us to prove our main theorems. Its proof relies on
the well-known Ky Fan’s inequality on convex functions as stated below.

Lemma 4.10 (Ky Fan [6])
Let K be a compact convex subset of a topological vector space. Let {fν}ν∈I be
a family of lower semicontinuous convex functions defined on K. If for each finite
set of indices ν1, ν2, . . . , νn ∈ I and any numbers λ1 ≥ 0, λ2 ≥ 0, . . . , λn ≥ 0 such
that

∑n
i=1 λi = 1 the inequality

min
x∈K

n∑
i=1

λifνi(x) ≤ c

holds, then there is x0 ∈ K such that supν∈I fν(x0) ≤ c.

Proof of Lemma 4.9. It suffices to show rK ≤ ρb. If Kb = K then

µt(|〈φ, Tt(b)− k〉|) ≤ ρb

for all φ ∈ ∆ and all k ∈ K. Let (φi, ki), i = 1, 2, . . . , n, be any finite set of ∆×K,
and let λ1 ≥ 0, λ2 ≥ 0, . . . , λn ≥ 0 be finite numbers such that

∑n
i=1 λi = 1. Then,

as µ is a submean,

µt

( n∑
i=1

λi|〈φi, Ttb− ki〉|
)
≤

n∑
i=1

λiµt(|〈φi, Ttb− ki〉|) ≤ ρb.

By the monotone property of µ, for any ε > 0, there must exists tε ∈ S such that
n∑
i=1

λi|〈φi, Ttεb− ki〉| ≤ ρb + ε.

This shows that

min
x∈K

n∑
i=1

λi|〈φi, x− ki〉| ≤ ρb.

Now the function f(φ,k)(x) = |〈φ, x−k〉| is σ(E,∆) continuous convex function on
K for each (φ, k) ∈ ∆×K, and K is σ(E,∆) compact convex set. By Lemma 4.10,
there is x0 ∈ K such that

sup
(φ,k)∈∆×K

|〈φ, x0 − k〉| ≤ ρb.

By definition, we then have rK ≤ ρb.
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Lemma 4.11
Let E be a Banach space and ∆ be a weak* dense subset of (E∗)1. Suppose that K
is a σ(E,∆) compact convex subset of E containing more than one point. Let S be
a semigroup acting on K as pseudo ∆-nonexpansive self mappings. Let X be a left
invariant positively semilinear lattice subset of `∞(S) that has a strictly increasing
left subinvariant submean µ. Suppose that the functions ϕ(x,φ,y)(s) = |〈φ, Tsx−y〉|,
s ∈ S, belong to X for all φ ∈ ∆ and all x, y ∈ K. If K has normal structure,
then there is x ∈ K such that Kx ( K.

Proof. Since K is norm bounded and has more than one point, 0 < rK <∞. As-
sume to the contrary that Kx = K for all x ∈ K. We aim to construct a sequence
(xn) ⊂ K such that

‖xn − xm‖ ≤ rK and ‖xn+1 − x̄n‖ ≥ rK −
1
n2

for all n,m ∈ N, where x̄n = 1
n

∑n
i=1 xi. Then, by Lim’s characterization of

normal structure [22, Lemma 1], K could not have normal structure. This would
be a contradiction to the hypothesis.

First, sinceK is σ(E,∆) compact, by the standard finite intersection argument
one sees that the Chebyshev center CK = {k ∈ K : supx∈K ‖x − k‖ ≤ rK} is
nonempty. Take k0 ∈ CK . We clearly have

‖Tsx− k0‖ ≤ rK (s ∈ S, x ∈ K). (2)

Let x1 = k0. Since x̄1 = x1 ∈ K = Kk0 by assumption, we have

sup
Λ∈Γ

µt(max
φ∈Λ
|〈φ, Ttk0 − x̄1〉|) = ρk0(x̄1) = ρk0 = rK

due to Lemma 4.9, where Γ denotes the collection of all finite subsets of ∆. The
identity implies that there exist φ ∈ ∆ and t1 ∈ S such that

|〈φ, Tt1k0 − x̄1〉| ≥ rK − 1.

This then ensures that ‖Tt1k0 − x̄1‖ ≥ rK − 1. Let x2 = Tt1k0. Then

‖x2 − x̄1‖ ≥ rK − 1.

On the other hand, by (2) we also have

‖x2 − x1‖ = ‖Tt1k0 − k0‖ ≤ rK .

In general, let xp (1 ≤ p ≤ n) have been chosen, with the forms x1 = k0 and
xp = Tt1t2···tp−1k0 for 1 < p ≤ n, so that

‖xp − xq‖ ≤ rK and ‖xp+1 − x̄p‖ ≥ rK −
1
p2

for 1 ≤ p ≤ n − 1 and 1 ≤ q ≤ n. Since x̄n ∈ K = Kk0 by assumption, we have
again

sup
Λ∈Γ

µt(max
φ∈Λ
|〈φ, Ttk0 − x̄n〉|) = ρk0(x̄n) = ρk0 = rK .
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From subinvariance of µ we have

sup
Λ∈Γ

µt(max
φ∈Λ
|〈φ, Tt1t2···tn−1tk0 − x̄n〉|) ≥ rK .

So there is φ ∈ ∆ and tn ∈ S such that

|〈φ, Tt1···tn−1tnk0 − x̄n〉| ≥ rK −
1
n2 .

This ensures that ‖Tt1···tn−1tnk0− x̄n‖ ≥ rK− 1
n2 . Let xn+1 = Tt1···tn−1tnk0. Then

‖xn+1 − x̄n‖ ≥ rK −
1
n2 .

On the other hand, by (2)

‖xn+1 − x1‖ = ‖Tt1···tn−1tnk0 − k0‖ ≤ rK

and, since the pseudo ∆-nonexpansive mapping Ts is norm nonexpansive, for each
s ∈ S we also have

‖xn+1 − xp‖ = ‖Tt1···tp−1···tnk0 − Tt1···tp−1k0‖ ≤ ‖Ttp···tnk0 − k0‖ ≤ rK

for each 1 < p ≤ n.
By induction, the sequence (xn) that we were seeking does exist. The proof is

completed.

Lemma 4.12
Let E be a Banach space and ∆ a weak* dense subset of (E∗)1. Let S be a semi-
group acting on a σ(E,∆) compact convex subset K of E as pseudo ∆-nonexpansive
self mappings. Suppose that X is a left invariant positively semilinear lattice subset
of `∞(S) that has a strictly increasing left subinvariant submean µ and contains
the functions ϕ(x,φ,y)(s) = |〈φ, Tsx − y〉| (s ∈ S) for all φ ∈ ∆ and all x, y ∈ K.
If K has normal structure then K has a common fixed point for S.

Proof. By Zorn’s Lemma, there is a minimal nonempty σ(E,∆) compact S-inva-
riant convex subset K0 6= ∅ of K. By the hypothesis, if K0 is not a singleton,
then K0 has normal structure. By Lemma 4.11 there is x ∈ K0 such that Kx (
K0, where Kx is the µ-average Chebyshev center of K0 at x with respect to ∆.
However, Kx is a nonempty σ(E,∆) compact convex S-invariant subset of K0 due
to Lemma 4.6. This contradicts the minimum assumption of K0. So K0 = {k} is
a singleton. Then k is a common fixed point for S in K.

When ∆ = (E∗)1 we can even allow K to be unbounded.

Lemma 4.13
Let S be a semigroup that acts on a weak* closed convex set K 6= ∅ of a dual Banach
space E = (E∗)∗ as pseudo weak* nonexpansive self mappings. Suppose that X
is a left invariant positively semilinear lattice subset of `∞(S) that has a strictly
increasing left subinvariant submean µ and contains the function ϕ(x,φ,y)(s) =
|〈φ, Tsx− y〉| (s ∈ S) for all φ ∈ (E∗)1 and all x, y ∈ K such that Sx is bounded.
If K has normal structure and there is b ∈ K such that Sb is bounded, then K has
a common fixed point for S.
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Proof. From Lemma 4.7, Kb is a nonempty weak* compact convex S-invariant
subset of K. Then replace K by Kb. The result then follows from Lemma 4.12
for the case ∆ = (E∗)1.

In light of Remark 4.8 we derive our first main theorem concerning norm
nonexpansive semigroup actions on weak* closed convex sets.

Theorem 4.14
Let S be a semigroup that acts on a weak* closed convex set K 6= ∅ of a dual
Banach space E = (E∗)∗ as norm nonexpansive self mappings. Suppose that `∞(S)
has a strictly increasing supremum admissible left subinvariant submean. If K has
normal structure and there is b ∈ K such that Sb is bounded, then K has a common
fixed point for S.

Proof. The function ϕ(x,φ,y)(s) = |〈φ, Tsx− y〉|, s ∈ S, belongs to X = `∞(S) for
all φ ∈ (E∗)1 and all x, y ∈ K such that Sx is bounded. Note that the boundedness
of Sb and nonexpansiveness of the S-action imply Sx is bounded for all x ∈ K.
Lemma 4.13 and Remark 4.8 then lead to the result.

A special case is when S is a group.

Corollary 4.15
Let G be a group that acts on a weak* closed convex set K 6= ∅ of a dual Banach
space E = (E∗)∗ as norm nonexpansive self mappings. If K has normal structure
and there is b ∈ K such that Gb is bounded, then K has a common fixed point for
G.

Proof. `∞(G) has a strictly increasing left invariant submean (Example 1) that is
supremum admissible.

We remark that since nonexpansive group actions are isometries, Corollary 4.15
also follows from [4, Theorem 3].

From Proposition 4.3, Lemma 4.12 immediately yields the following.

Theorem 4.16
Let E be a Banach space and ∆ be a weak* dense subset of (E∗)1. Let S be a semi-
group acting on a σ(E,∆) compact convex subset K of E as σ(E,∆) continuous
and norm nonexpansive self mappings. Suppose that X is a left invariant positively
semilinear lattice subset of `∞(S) that has a strictly increasing left subinvariant
submean µ and contains the functions ϕ(x,φ,y)(s) = |〈φ, Tsx − y〉| (s ∈ S) for all
φ ∈ ∆ and all x, y ∈ K. If K has normal structure then K has a common fixed
point for S.

We now consider special types of semigroups S that ensure certain subspaces
X of `∞(S) that fulfill the requirements of our general results above.

Corollary 4.17
Let S be a left reversible semitopological semigroup and let S = {Ts : s ∈ S} be
a norm nonexpansive representation of S on a nonempty weak* compact convex
subset K of a dual Banach space E = (E∗)∗. If K has normal structure and the
representation is weak* continuous, then K contains a common fixed point for S.
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Proof. We choose X = `∞(S). From Example 3, there is a strictly increasing
left subinvariant submean on X. Trivially, ϕ(x,φ,y) ∈ X for all φ ∈ (E∗)1 and all
x, y ∈ K. The conclusion follows from Theorem 4.16 for the case ∆ = (E∗)1.

We wonder whether the weak* continuity assumption on the representation is
removable in the above corollary.

Recall that a function f ∈ Cb(S) is almost periodic if the orbit {lsf : s ∈ S}
of f is norm precompact in Cb(S). The set of almost periodic functions on S is
denoted by AP (S). This is a translation invariant subspace of Cb(S), containing
the constant functions.

Corollary 4.18
Let S be a semitopological semigroup such that AP (S) has a LIM. Let S = {Ts :
s ∈ S} be a norm nonexpansive representation of S on a nonempty weak* compact
convex subset K of a dual Banach space E = (E∗)∗. If K has normal structure and
the representation is separately continuous and equicontinuous when K is equipped
with the weak* topology of E, then K contains a common fixed point for S.

Proof. We consider X = AP (S). A LIM on AP (S) may be regarded as a strictly
increasing left subinvariant submean on X. Proposition 4.3 ensures that the
representation is pseudo weak* nonexpansive. Since the representation is weak*
equicontinuous, we have ϕ(x,φ,y) ∈ AP (S) = X for all φ ∈ (E∗)1 and all x, y ∈ K
(see [12, Lemma 3.1]). The result then follows from Theorem 4.16 for the case
∆ = (E∗)1.

Corollary 4.19
Let S be a semitopological semigroup such that LUC(S) has a left invariant mean.
Let S = {Ts : s ∈ S} be a norm nonexpansive representation of S on a nonempty
weak* compact convex subset K of a dual Banach space E = (E∗)∗ and the mapping
(s, x) 7→ Tsx from S×K into K is jointly continuous when K is equipped with the
weak* topology of E. If K has normal structure, then it contains a common fixed
point for S.

Proof. We consider X = LUC(S). From the hypothesis, X has a left invariant
mean which is certainly a strictly increasing left subinvariant submean. Since the
representation of S on K is weak* jointly continuous and K is weak* compact, the
function ϕ(x,φ,y)(s) = |〈φ, Tsx− y〉| is left uniformly continuous, i.e. ϕ(x,φ,y) ∈ X
for all φ ∈ (E∗)1 and all x, y ∈ K. So again the result follows from Theorem 4.16
for the case ∆ = (E∗)1.

Remark 4.20
Corollary 4.19 is indeed [17, Proposition 6.1], which partially answers the open
question raised in [14] (see also page 2962 of [17]). One may relax the normal
structure assumption to weak* normal structure on K. We wonder whether the
normal structure assumption on K is removable.



[84] Anthony To-Ming Lau and Yong Zhang

Corollary 4.21
Let S be a semitopological semigroup such that RUC(S) has a left invariant mean.
Let S = {Ts : s ∈ S} be a norm nonexpansive representation of S on a nonempty
weak* compact convex subset K of a dual Banach space E = (E∗)∗. If K has nor-
mal structure and if the representation is separately continuous and equicontinuous
when K is equipped with the weak* topology of E, then K contains a common fixed
point for S.

Proof. Take X = RUC(S). By assumption, it has a left invariant mean. On
the other hand, the representation is pseudo weak* nonexpansive due to Proposi-
tion 4.3. Since the representation is weak* equicontinuous, for each φ ∈ (E∗)1 and
all x, y ∈ K we have that the function ϕ(x,φ,y)(s) = |〈φ, Tsx−y〉| is right uniformly
continuous, i.e. ϕ(x,φ,y) ∈ X. The result follows from Theorem 4.16.

5. Some open questions and remarks

Let S be a semitopological semigroup. Consider the following fixed point
property for S.

(Fj) : Whenever S = {Ts : s ∈ S} is a norm nonexpansive representation of S
on a nonempty weak* compact convex subset K of a dual Banach space
E = (E∗)∗ such that the mapping (s, x) 7→ Tsx is jointly continuous from
S×K into K when K has the weak*-topology of E, K contains a common
fixed point for S.

Problem 1
If LUC(S) has a left invariant mean, does S have the fixed point property (Fj)?

This problem was posed in a conference in Marseille in 1990 by the first author
(see [14]). Corollary 4.19 partially answers this open problem. Note that if a
semitopological semigroup S has the fixed point property (Fj), then LUC(S)
must have a left invariant mean. In fact, let E be LUC(S)∗, K be the set of
means on LUC(S) and S = {`∗s : s ∈ S}, then K and S satisfy the conditions of
(Fj). A common fixed point in this K for this representation of S is indeed a left
invariant mean on LUC(S).

Problem 2
If LUC(S) has a left invariant mean, when does the linear span of the set of left
invariant means on LUC(S) (i.e. the fixed point set of the adjoint operators of
left translations on the set of means) form a finite dimensional space?

For discrete S this question was answered affirmatively by E. E. Graniner
[7, 8].

Problem 3
Is the condition of σ(E,∆) continuity on T removable in Proposition 4.3?

Any partial affirmative answer to this problem can notably improve Theo-
rem 4.16.

For a semitopological semigroup S, it is known that AP (S) has a left invariant
mean if S is left reversible [10]. The converse is not true.
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Problem 4
If S is a semitopological semigroup such that AP (S) has a LIM, does the conclusion
of Corollary 4.17 hold?

Note that Corollary 4.18 answers the question affirmatively under the strong
condition that the representation of S is separately weak* continuous and weak*
equicontinuous.

An F-algebra is a Banach algebra A which is a predual of a von Neumann
algebra M such that the identity 1 of M is a multiplicative linear functional on A
[13]. The F-algebra A is left amenable if there is a topological left invariant mean
m on A∗ = M, i.e. if there is m ∈M∗ such that ‖m‖ = 1 and 〈m,ϕ · f〉 = 〈m, f〉
for all f ∈M and all ϕ ∈ A such that ‖ϕ‖ = 〈1, ϕ〉 = 1, where 〈ϕ · f, ψ〉 = 〈f, ψϕ〉
for ψ ∈ A. In a recent paper [18] the authors showed that A is left amenable if
and only if the metric semigroup S = P1(A) = {ϕ ∈ A : ϕ ≥ 0, ‖ϕ‖ = 1} with
the product and topology inherited from A has the following fixed point property:

(FU) : Whenever S acts on a compact subset K of a locally convex space such
that the mapping (s, y) 7→ Tsy : S ×K → K is separately continuous and
is uniformly continuous in s for each y ∈ K, then K has a common fixed
point for S.

Related to Problem 2 we pose the following problem.

Problem 5
Suppose that the F-algebra A is left amenable. When is the space spanned by the
set of topological left invariant means on A finite dimensional?

The authors are grateful to the referee for careful reading of the paper and
valuable suggestions.
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