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Abstract. Let Zn = p0 + p1 + · · · + pn be a configuration of points in P2,
where all points pi except p0 lie on a line, and let I(Zn) be its corresponding
homogeneous ideal in K[P2]. The resurgence and the Waldschmidt constant
of I(Zn) in [5] have been computed. In this note, we compute these two
invariants for the defining ideal of a fat point subscheme Zn,c = cp0 + p1 +
· · · + pn, i.e. the point p0 is considered with multiplicity c. Our strategy is
similar to [5].

1. Introduction

Let K be an algebraically closed field of characteristic zero and let PN be
the projective N -space over K. Let I be a non-trivial homogeneous ideal of R =
K[PN ] = K[x0, . . . , xN ] and let m be a positive integer. The mth symbolic power
of I is defined to be the ideal

I(m) =
⋂

P∈Ass(I)

(R ∩ ImRP ),

where Ass(I) is the set of associated prime ideals of I and the intersection is taken
in the field of fractions of R.

Recently, comparing two ideals I(m) and Ir, for all pairs of positive integers
(m, r), has raised a great deal of interest among the algebraic geometers and
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commutative algebraists (see e.g. [2, 5, 8] and references therein). It can be easily
proved that Ir ⊆ I(m) if and only if r ≥ m (see [1, Lemma 8.1.4]). In addition,
if I(m) ⊆ Ir, then m ≥ r. However, determining all positive integers m and r to
insure the containment I(m) ⊆ Ir is a widely open problem, which is known as the
containment problem.

Bocci and Harbourne [2] in order to capture more precise information about
the containment problem, introduced a number of numerical invariants attached
to I. One of these invariants is the resurgence of I. It is defined as

ρ(I) = sup
{m
r

: I(m) * Ir
}
.

Another invariant is the Waldschmidt constant of I, and it is defined to be

α̂(I) = lim
m→∞

α(I(m))
m

= inf
m≥1

α(I(m))
m

,

where α(I) is the initial degree of I, i.e. the least degree t for which (I)t 6= 0.
Computing ρ(I) and α̂(I) is a hard problem and except some special cases (see for
example [2, 3, 6, 7]), they are not known.

Let {p1, . . . , pn} be a finite set of points in PN and let m1, . . . ,mn be non-
negative integers. Let I(pi) be the ideal of forms in R which vanish at the point
pi. The ideal I = I(p1)m1 ∩ · · · ∩ I(pn)mn is called a fat point ideal and defines
a subscheme of PN , which is known as a fat point subscheme and formally we
denote it by Z = m1p1 + · · · + mnpn. Moreover, the mth symbolic power of I is
the ideal defined by I(m) = I(p1)mm1 ∩ · · · ∩ I(pn)mmn .

In one part of his PhD thesis [10], Janssen studied the containment problem
of a special zero dimensional subscheme Zn = p0 + p1 + · · · + pn in P2, which he
called an almost collinear subscheme. Along the way, he showed that ρ(I(Zn)) =
n2/(n2 − n+ 1) [5, Theorem 2.7] and α̂(I(Zn)) = 2− 1/n [5, Lemma 3.1]. Now it
would be interesting to see the effect of fattening of points of Zn in the resurgence
and the Waldschmidt constant of I(Zn). Due to this interest, we study these two
invariants for the ideal of a fat almost collinear subscheme Zn,c = cp0+p1+· · ·+pn

(see Definition 2.1).
The main result of this note is the following theorem.

Theorem A
Let I be the defining ideal of the fat almost collinear subscheme Zn,c, where c ≤ n,
in P2. Then ρ(I) = n2

n2−nc+c2 .
Remark 1.1
Fat point ideals I in K[P2] for which ρ(I) = 1 are of interest. As a consequence of
the above theorem we have ρ(I(Zn,n)) = 1.

Also, as another result we prove:
Theorem B
Let I be the defining ideal of the fat almost collinear subscheme Zn,c, where c ≤ n,
in P2. Then α̂(I) = (1 + c)− c

n .
The proof of Theorem A is given in Section 2. Also see Section 3 for the proof

of Theorem B.
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2. Construction and resurgence of I(Zn,c)

The goal of this section is to prove Theorem A. We start by recalling the
definition of an almost collinear subscheme in P2, which was introduced in [5]. We
also define a fat almost collinear subscheme.

Definition 2.1 ([5, Definition 1.2])
Let Zn = p0 + p1 + · · · + pn, where n ≥ 2, be a zero dimensional subscheme
in the projective plane. Zn is called an almost collinear subscheme if all these
points except p0 lie on a line L. Moreover, we call the zero dimensional subscheme
Zn,c = cp0 + p1 + · · ·+ pn a fat almost collinear subscheme.

For the remainder of this section, we keep the letter R to denote the graded
ring K[P2] = K[x, y, z] and also we assume that I = I(Zn,c) is the defining ideal
of the fat almost collinear subscheme Zn,c.

Let Zn,c = cp0 + p1 + · · · + pn be as above. Without loss of generality, we
may assume that all collinear points p1, . . . , pn lie on the line z = 0, and the point
p1 is the intersection point of the lines L1 = x and z = 0. For each 2 ≤ i ≤ n,
let pi be the intersection point of the lines Li = x − `iy and z = 0, where `is
are non-zero distinct elements of K. Moreover, we may assume that p0 is the
intersection point of the lines x = 0 and y = 0. Then I = (x, y)c ∩ (z, F ), where
F = L1 · · ·Ln = x(x − `2y) · · · (x − `ny) is a homogeneous polynomial in x, y of
degree n. Since the ideals (x, y) and (z, F ) are complete intersection ideals, by the
unmixedness theorem, we have I(m) = (x, y)cm ∩ (z, F )m.

The above situation is illustrated in the following figure.

p0

p1 p2 p3 p4 . . . pn

z = 0

y = 0

x = 0

L1 L2 L3 L4 . . . Ln

The fat almost collinear subscheme Zn,c

Remark 2.2
In Theorem A and Theorem B, we assumed that the multiplicity of p0 is c ≤ n.
We need this assumption for computational purposes. In fact, since c ≤ n, we
have (x, y)n ⊂ (x, y)c, and since F = x(x − `2y) . . . (x − `ny) ∈ (x, y)n, we have
F ∈ (x, y)c. Therefore I has the following simple description.

I = (x, y)c ∩ (z, F ) = (zxc, zxc−1y, . . . , zxyc−1, zyc, F ).
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Turning to the proof of Theorem A, let i be a non-negative integer, then by the
division algorithm i = an + e, with 0 ≤ e < n. We denote the polynomial xeF a

by Hi. In the sequel, we use [5, Lemma 2.4], stated here as Lemma 2.3, to give a
K-vector space basis for the ring R = K[x, y, z] consisting of elements of the form
Hiy

jzl.

Lemma 2.3 ([5, Lemma 2.4])
A K-basis of R is given by BR =

⋃
i≥0 Bi, where

Bi = {Hiy
jzl : j, l ∈ N0, i = an+ e, 0 ≤ e < n, Hi = xeF a}.

Now, using the same strategy as in [5], we restrict the vector space basis BR

to obtain K-bases for the ideals I(m) and Ir of the form Hiy
jzl with different

conditions on i, j and l, which makes it easy to compare I(m) and Ir in order to
obtain the resurgence of I.

Lemma 2.4
Let m ≥ 1 be an integer.

(a) Then Hiy
jzl ∈ I(m) if and only if i, j, l ≥ 0, i+ ln ≥ mn and i+ j ≥ cm.

(b) Moreover, I(m) is the K-vector space span of the elements of the form Hiy
jzl

contained in I(m).

In the following lemma we describe Ir similarly to I(m).

Lemma 2.5
Let r ≥ 1 be an integer.

(a) The ideal Ir is the span of the elements of the form Hiy
jzl ∈ Ir. In addition,

if Hiy
jzl ∈ Ir, then Hiy

jzl is a product of r elements of I.
(b) Moreover, Hiy

jzl ∈ Ir if and only if i, j, l ≥ 0, and either:

(1) l < j/c and i+ nl ≥ rn, or
(2) j/c ≤ l < (i+ j)/c and i+ j + (n− c)l ≥ rn, or
(3) (i+ j)/c ≤ l and r ≤ (i+ j)/c.

Remark 2.6
Since with some changes in the proofs of [5, Lemma 2.5] and [5, Lemma 2.6] one
can prove Lemma 2.4 and Lemma 2.5 respectively, we omit the proof of these two
lemmas.

Now with the aid of Lemmas 2.4 and 2.5, we are able to prove the main theorem
of this note.

Proof of Theorem A. Consider Hiy
jzl, where i = ctn2, j = 0 and l = tn2 − ctn,

and let m = tn2 and r = tn2− ctn+ c2t+ 1. We have i+ j ≥ cm and i+nl ≥ mn
then Hiy

jzl ∈ I(m) for every t ≥ 1 by Lemma 2.4(a), but i+ j + (n− c)l < rn, so
I(m) * Ir by Lemma 2.5(b)(2). Hence m/r ≤ ρ(I) for all t. Taking the limit as
t→∞ gives n2/(n2 − nc+ c2) ≤ ρ(I).

For the upper bound of ρ(I), suppose m/r ≥ n2/(n2 − nc + c2) and hence
m ≥ r. Consider Hiy

jzl ∈ I(m). Then i + j ≥ cm and i + nl ≥ mn, by Lemma
2.4(a). Now we consider the following cases.
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(a) If l < j/c, then i+ nl ≥ mn ≥ nr, so Hiy
jzl ∈ Ir, by Lemma 2.5(b)(1).

(b) If j/c ≤ l < (i+j)/c, use i+j ≥ cm ≥ crn2/(n2−nc+c2) and i+nl ≥ mn ≥
rn3/(n2−nc+ c2). Assume to the contrary that i+ j+ (n− c)l < rn. Then
rn2 > (n− c)i+ci+nj+n(n−c)l = (n−c)(i+nl)+ci+nj ≥ rn3(n−c)/(n2−
nc+ c2) + ci+nj, so rn2(n2−nc+ c2) > rn3(n− c) + (ci+nj)(n2−nc+ c2)
which simplifies to rc2n2 > (ci+nj)(n2−nc+c2), so rc2n2/(n2−nc+c2) >
ci+ nj = c(i + j) + (n − c)j. Using i+ j ≥ crn2/(n2 − nc + c2), this gives
rc2n2/(n2− nc+ c2) > rc2n2/(n2− nc+ c2) + (n− c)j, which is impossible.
Thus i+ j + (n− c)l ≥ rn so Hiy

jzl ∈ Ir, by Lemma 2.5(b)(2).
(c) If (i+j)/c ≤ l, then i+j ≥ cm ≥ cr, which gives r ≤ (i+j)/c, soHiy

jzl ∈ Ir,
by Lemma 2.5(b)(3).

Thus m/r ≥ n2/(n2 − nc + c2) implies I(m) ⊆ Ir by Lemma 2.4(b), and so
ρ(I) ≤ n2/(n2 − nc+ c2), that is, ρ(I) = n2/(n2 − nc+ c2).

3. The Waldschmidt constant of I(Zn,c)

In this section we compute α̂(I(Zn,c)). First, let us recall some notation and
definitions related to blowing up P2 at a finite set of points in P2.

Let Z = m1p1 + · · ·+mtpt be a fat point subscheme of P2 and let I(Z) be its
defining ideal. Let π : X → P2 be the morphism obtained by blowing up at the
points {p1, . . . , pt}. Let Ei = π−1(pi), with i = 1, . . . , t, be the exceptional curve
and let L be the total transform to X of a general line in P2. Then L and Eis give
an orthogonal basis for the divisor class group of X such that −L2 = E2

i = −1,
and Ei.Ej = Ei.L = 0, when i 6= j.

We need the following lemma to prove Theorem B.

Lemma 3.1
Keep the above notation and let a, b be two positive integers. Also, let di, with
i = 1, . . . , t, be non-negative integer. Let N = aL − b(d1E1 + · · · + dtEt) be an
effective divisor and let P 6= 0 be a nef divisor on X such that P.N = 0. Then
α̂(I(Z)) = a/b.

Proof. The proof is similar to the proof of [9, Proposition 1.4.8].

Now we are ready to use Lemma 3.1 to compute integers α̂(I(Zn,c)).

Proof of Theorem B. Let L̃i = L − E0 − Ei, with i = 1, . . . , n, be the proper
transform of the line passing through p0 and pi and let L̃ = L− (E1 + · · ·+En) be
the proper transform of the line passing through p1, . . . , pn. Consider the divisor
N on X as

(n+ cn− c)L− n(cE0 + E1 + · · ·+ En) = c(L̃1 + · · ·+ L̃n) + (n− c)L̃,

which is an effective divisor. Also, let P = nL − ((n − 1)E0 + E1 + · · · + En) =
L̃1 + · · · + L̃n + E0. Since P is a sum of prime divisors L̃i, with 1 ≤ i ≤ n, and
E0 each of which P meets non-negatively, it is nef. It is easy to see that P.N = 0.
Thus, by Lemma 3.1, we have α̂(I(Zn,c)) = (n+ cn− c)/n = (1 + c)− c/n.
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4. A question

In this section we pose a question arising from this paper.
Let W = cp0 +p1 + · · ·+pn be a zero dimensional subscheme in the projective

plane, where all points pi except p0 lie on a line. When 1 ≤ c ≤ n, we computed
ρ(I(W )) in Theorem A. Now, if c > n, what can be said about ρ(I(W ))? In what
follows we discuss this issue in more general setting.

Let Z = m1p1 + m2p2 + · · · + msps be a fat point subscheme in PN , where
m1 ≥ m2 + · · ·+ms, and let I = I(Z). A necessary condition to have I(m) = Im

is that α(I(m)) = α(Im) for all m ≥ 1. The following theorem shows that I has
this necessary condition.

Theorem 4.1
Let the ideal I be as above. Then α(I(m)) = α(Im) for all m ≥ 1.

Proof. It is obvious that α(I) = m1. Since Im ⊆ I(m), we have α(I(m)) ≤ α(Im)
for all m ≥ 1. Let there exist an integer k such that α(I(k)) < α(Ik). Therefore

α̂(I) ≤ α(I(k))
k

<
α(Ik)
k

= kα(I)
k

= α(I) = m1.

Since I ⊆ I(p1)m1 , we have α̂(I) ≥ α̂(I(p1)m1) = m1, which contradicts α̂(I) <
m1.

Computer calculations using Singular [4] which we have carried out in I suggest
that I(m) = Im for all m ≥ 1.

With Theorem 4.1 and computer calculations, we pose the following question:

Question 4.2
Let I be the defining ideal of a fat point subscheme Z = m1p1 +m2p2 + · · ·+msps

in PN , where m1 ≥ m2 + · · ·+ms. Is then I(m) = Im for all m ≥ 1? In particular,
do we have ρ(I) = 1?

As a special case of Question 4.2, we can ask:

Question 4.3
For the fat point subscheme W = cp0 + p1 + · · ·+ pn, where c > n, is it true that
I(W )(m) = I(W )m for all m ≥ 1? In particular, do we have ρ(I(W )) = 1?

We conclude this note with the following remark.

Remark 4.4
Consider the zero dimensional subschemeW = cp0 +p1 + · · ·+pn in the projective
plane. Let I = I(W ) = (x, y)c ∩ (z, F ) be the defining ideal of W . If we assume
c = 0, then I = (z, F ), a complete intersection ideal, which implies ρ(I) = 1.
Whenever, 1 ≤ c ≤ n, W is the fat almost collinear subscheme Zn,c. Thus, by
Theorem A, we have ρ(I) = n2/(n2 − nc + c2). In particular, for c = n we get
ρ(I) = 1. In the case of c > n, if the Question 4.3 has a positive answer, we get
I(m) = Im for all m ≥ 1. In particular, we again obtain ρ(I) = 1. To sum up, we
may expect:
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ρ(I) =


1, c = 0,

n2

(n2−nc+c2) , 1 ≤ c ≤ n− 1,
1, c ≥ n.
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