Annales Academiae Paedagogicae Cracoviensis

Folia 23
Studia Mathematica IV (2004)

Wtodzimierz Waliszewski
Oriented angles in affine space

To Andrzej Zajtz, on the occasion of His 70th birthday

Abstract

The concept of a smooth oriented angle in an arbitrary affine space is introduced. This concept is based on a kinematics concept of a run. Also, a concept of an oriented angle in such a space is considered. Next, it is shown that the adequacy of these concepts holds if and only if the affine space, in question, is of dimension 2 or 1.

0. Preliminaries

Let us consider an arbitrary affine space, i.e. a triple

$$
\begin{equation*}
(E, V, \rightarrow) \tag{0}
\end{equation*}
$$

(see $[\mathrm{B}-\mathrm{B}]$), where E is a set, V is an arbitrary vector space over reals and \rightarrow is a function which to any points $p, q \in E$ assigns a vector $\overrightarrow{p q}$ of V in such a way that

1) $\overrightarrow{p q}+\overrightarrow{q r}=\overrightarrow{p r}$ for $p, q, r \in E$,
2) $\overrightarrow{p q}=0$ iff $p=q$ for $p, q \in E$,
3) for any $p \in E$ and any vector x of V there exists $q \in E$ with $\overrightarrow{p q}=x$.

The unique point q for which $\overrightarrow{p q}=x$ will be denoted by $p+x$. The set of all vectors of the vector space V will be denoted by \underline{V}. The fact that W is a vector subspace of V will be written as $W \leq V$. For any sets M, N, X, Y, P such that $M \cup N \subset \mathbb{R}, X \cup Y \subset \underline{V}, P \subset E$, any $b \in \mathbb{R}, y \in \underline{V}$ and $p \in E$ we set

$$
\begin{array}{rlrl}
M+N & =\{a+b ; a \in M \& b \in N\}, & M+b & =M+\{b\}, \\
M N & =\{a b ; a \in M \& b \in N\}, & b M & =\{b\} M, \\
M X & =\{a x ; a \in M \& x \in X\}, & & b X=\{b\} X, \\
X+Y & =\{x+y ; x \in X \& y \in Y\}, & & \\
P+X & =\{p+x ; p \in P \& x \in X\}, & p+X=\{p\}+X .
\end{array}
$$

[^0]A subset H of E is a hyperplane in an affine space (0) iff there exist $p \in E$ and $W \leq V$ such that

$$
\begin{equation*}
H=p+\underline{W} . \tag{1}
\end{equation*}
$$

The subspace W of V for which (1) holds will be denoted by V_{H}. The affine space

$$
\begin{equation*}
\left(H, V_{H}, \rightarrow H\right) \tag{2}
\end{equation*}
$$

where $\rightarrow H$ is the restriction of the function \rightarrow to the set $H \times H$, is called the subspace of (0) determined by the hyperplane H. The triple (2), where $H=\emptyset$, $V_{H} \leq V, \underline{V_{H}}=\{0\}$ and $\rightarrow H=\emptyset$ is an affine space and will be treated as a subspace of (0) as well. Also, the set \emptyset will be considered as a hyperplane in (0). We will write $W \leq_{k} V$ instead of to state that a vector subspace W of V is of codimension k in V. In particular, $W \leq_{1} V$ means that W is of codimension 1 in V. We say that H is a hyperplane of codimension k in the affine space (0) iff $V_{H} \leq_{k} V$.

Any set P of points of the affine space (0), i.e. $P \subset E$, such that

$$
\begin{equation*}
P=H+\mathbb{R}_{+} e \tag{3}
\end{equation*}
$$

where H is a hyperplane of codimension 1 in (0), $e \in \underline{V} \backslash \underline{V_{H}}, \mathbb{R}_{+}=\langle 0 ;+\infty)$, is said to be a halfspace of (0). The hyperplane H in (3) uniquely determined by P is called the shore of the halfspace P and denoted by P^{o}. The set $P \backslash P^{o}$ will be called the interior of the halfspace P and denoted by P_{+}. It is easy to check that the set P^{-}of the form $E \backslash P_{+}$is also a halfspace and the equalities

$$
\begin{equation*}
\left(P^{-}\right)^{o}=P^{o} \quad \text { and } \quad\left(P^{-}\right)_{+}=E \backslash P \tag{4}
\end{equation*}
$$

hold. The set $E \backslash P$ will be denoted by P_{-}. The halfspace P^{-}is called the opposite one to P. It is easy to verify that (3) yields also

$$
\begin{equation*}
P_{+}=P^{o}+(0 ;+\infty) e, \quad P^{-}=P^{o}+\mathbb{R}_{+}(-e), \quad P_{-}=P^{o}+(-\infty ; 0) e \tag{5}
\end{equation*}
$$

where $e \in \underline{V} \backslash \underline{V_{H}}$ and $H=P^{o}$.
Let B be a base of a vector space V. For any $\mathrm{v} \in \underline{V}$ there exists a unique real function v_{B} defined on B such that $\left\{e ; e \in B \& \mathrm{v}_{B}(e) \neq 0\right\}$ is finite and

$$
\begin{equation*}
\mathrm{v}=\sum_{e \in B} \mathrm{v}_{B}(e) e \tag{6}
\end{equation*}
$$

where the sign of addition in (6) denotes of course a finite operation. This formula will be very useful.

For any topology $\mathcal{T}($ see $[\mathrm{K}])$ the set of all points of \mathcal{T} will be denoted by \mathcal{I}, i.e. by definition we have

$$
\begin{equation*}
\underline{\mathcal{T}}=\bigcup \mathcal{T} \tag{7}
\end{equation*}
$$

For any set $A \subset \underline{\mathcal{T}}$ the induced to A topology from the topology \mathcal{T} will be denoted by $\mathcal{T} \mid A$, i.e. $\mathcal{T} \mid A=\{B \cap A ; B \in \mathcal{T}\}$.

For any affine space (0) the smallest topology containing the set of all sets P_{+}, where P is a halfspace of (0) will be called the topology of the affine space (0) and denoted by $\operatorname{top}(E, V, \rightarrow)$. It is easy to check that for any hyperplane H in (0) we have

$$
\begin{equation*}
\operatorname{top}\left(H, V_{H}, \rightarrow^{H}\right)=\operatorname{top}(E, V, \rightarrow) \mid H \tag{8}
\end{equation*}
$$

Let f be any function. The domain of f will be denoted by D_{f}. For any $A \subset D_{f}$ the restriction of the function f to the set A and the f-image of A will be denoted by $f \mid A$ and $f A$, respectively. Any function may be treated as a set of ordered pairs, and then

$$
D_{f}=\{x ; \exists y((x, y) \in f)\}, \quad f \mid A=\{(x, y) ;(x, y) \in f \& x \in A\}
$$

and

$$
f A=\{y ; \exists x \in A \quad((x, y) \in f)\}
$$

For any set B the f-preimage $f^{-1} B$ is defined by

$$
f^{-1} B=\{x ; \exists y \in B \quad((x, y) \in f)\}
$$

or, equivalently, $f^{-1} B=\left\{x ; x \in D_{f} \& f(x) \in B\right\}$.
Let f be a function with $D_{f} \subset \mathbb{R}, f D_{f} \subset E, t \in \mathbb{R}$ and $p \in E$. We say that f tends to p at t in the affine space (0) and we write

$$
\begin{equation*}
f(x) \underset{x \longrightarrow t}{\longrightarrow} p \quad(\text { in }(E, V, \rightarrow)) \tag{9}
\end{equation*}
$$

iff for any $U \in \operatorname{top}(E, V, \rightarrow)$ such that $p \in U$ there exists $\delta>0$ for which $f(x) \in U$ whenever $0<|x-t|<\delta$. It is easy to prove the following

Proposition 1

For any function f with $D_{f} \subset \mathbb{R}, f D_{f} \subset E$, any $t \in \mathbb{R}$ and $p \in E$ we have (9) if and only if for any base B of vector space V and any $e \in B$ we have

$$
\begin{equation*}
\overrightarrow{p f(x)}_{B}(e) \underset{x \longrightarrow t}{\longrightarrow} 0 \tag{10}
\end{equation*}
$$

For any vector space V we have well defined the affine space aff V as $(\underline{V}, V, \rightarrow)$, where $\overrightarrow{\mathrm{vw}}=\mathrm{w}-\mathrm{v}$ for $\mathrm{v}, \mathrm{w} \in \underline{V}$. Let $D_{f} \subset \mathbb{R}$ and $f D_{f} \subset E$. Setting

$$
\begin{equation*}
f^{\prime}=\left\{(t, \mathrm{v}) ; t \in D_{f} \cap\left(D_{f}\right)^{\prime} \& \frac{1}{x-t} \overrightarrow{f(t) f(x)} \underset{x \longrightarrow t}{\longrightarrow} \mathrm{v}(\text { in aff } V)\right\} \tag{11}
\end{equation*}
$$

where for any set $A \subset \mathbb{R}, A^{\prime}$ denotes the set of all cluster points of A, we have defined the derivative function f^{\prime} of a function f. A function $f: D_{f} \rightarrow E$, $D_{f} \subset \mathbb{R}$, is differentiable iff

$$
\begin{equation*}
D_{f^{\prime}}=D_{f} \tag{12}
\end{equation*}
$$

Denoting the natural topology of \mathbb{R} by \mathcal{R} we have the topology $\mathcal{R} \mid D_{f}$. The function f satisfying (12) and having the continuous derivative function f^{\prime} from $\mathcal{R} \mid D_{f}$ to top aff V is said to be smooth in (E, V, \rightarrow).

1. Runs, \boldsymbol{O}-turns, and smooth oriented angles

Before introducing the concept of smooth oriented angle in an arbitrary affine space we introduce a concept of a run and a turn. Any function f smooth in (E, V, \rightarrow) with $D_{f}=\langle a ; b\rangle, a<b$, is said to be a run in (E, V, \rightarrow). Let $o \in E$. Any run f satisfying one of the following conditions:

$$
\begin{equation*}
f(t)=f(u) \neq o \quad \text { for } t, u \in D_{f} \tag{o1f}
\end{equation*}
$$

or

$$
\begin{equation*}
f^{\prime}(t), \overrightarrow{o f(t)} \text { are linearly independent for } t \in D_{f} \tag{o2f}
\end{equation*}
$$

is said to be an o-turn in (E, V, \rightarrow). The set of all o-turns in (E, V, \rightarrow) will be denoted by $T_{o}(E, V, \rightarrow)$. In this set we introduce an equivalence \equiv_{o} setting $f \equiv_{o} g$ iff $f, g \in T_{o}(E, V, \rightarrow)$ and there exist real smooth functions λ and φ such that
(i) $D_{\varphi}=D_{\lambda}=D_{f}$ and $\varphi D_{\varphi}=D_{g}$,
(ii) $\lambda(t)>0, \varphi^{\prime}(t)>0$ and $\overrightarrow{o g(\varphi(t))}=\lambda(t) \overrightarrow{o f(t)}$ for $t \in D_{f}$.

Denoting by $T_{o}(E, V, \rightarrow) / \equiv_{o}$ the set of all cosets in $T_{o}(E, V, \rightarrow)$ given by the equivalence \equiv_{o} we may define the set $\operatorname{soa}(E, V, \rightarrow)$ by the equality

$$
\operatorname{soa}(E, V, \rightarrow)=\bigcup_{o \in E} T_{o}(E, V, \rightarrow) / \equiv_{o}
$$

Any element of this set is said to be a smooth oriented angle in the affine space (E, V, \rightarrow).

Proposition 2

For any $o \in E, \mathfrak{a} \in T_{o}(E, V, \rightarrow) / \equiv_{o}$ and $g \in \mathfrak{a}$ we have

$$
\underline{\mathfrak{a}}=\bigcup_{p \in g D_{g}}(o p \infty),
$$

where

$$
\underline{\mathfrak{a}}=\bigcup_{f \in \mathfrak{a}} f D_{f} \quad \text { and } \quad(o p \infty)=\{o+t \overrightarrow{o p} ; t>0\}
$$

Proof. Let $f \in \mathfrak{a}$. We have then $f \equiv_{o} g$. Taking any $q \in f D_{f}$ we get $q=f(t), t \in D_{f}$. Then there exist functions λ, φ such that (i) and (ii) hold. Setting $p=g(\varphi(t))$ we get $\overrightarrow{o q}=\frac{1}{\lambda(t)} \overrightarrow{o p}$, which yields $q \in(o p \infty)$, where $p \in g D_{g}$. Now, let $q \in(o p \infty)$, where $p \in g D_{g}$. We have then $\overrightarrow{o q}=s \overrightarrow{o p}$, where $p=g(u), u \in D_{g}$ and $s>0$. Setting $D_{f}=D_{g}$ and $f(t)=o+s \overrightarrow{o g(t)}$ for $t \in D_{f}$ we get $f \equiv_{o} g$ and $q=o+s \overrightarrow{o p}=o+s \overrightarrow{o g(u)}=f(u) \in f D_{f}$, so $(o p \infty) \subset \mathfrak{a}$.

Proposition 3
For any $o \in E$ and $\mathfrak{a} \in T_{o}(E, V, \rightarrow) / \equiv_{o}$ if $o \in U \in \operatorname{top}(E, V, \rightarrow)$, then there exists $g \in \mathfrak{a}$ such that $g D_{g} \subset U$.

Proof. Let $f \in \mathfrak{a}$ and $s>0$. Setting $D_{f_{s}}=D_{f}$ and

$$
f_{s}(t)=o+s \overrightarrow{o f}(t) \quad \text { for } t \in D_{f}
$$

we have, of course, $f_{s} \equiv_{o} f$, so $f_{s} \in \mathfrak{a}$. We will prove that
for any halfspace P with $o \in P_{+}$there exists $\varepsilon>0$ such that for any $s \in(0 ; \varepsilon)$ the relation $f_{s} D_{f} \subset P_{+}$holds.

Let P be a halfspace such that $o \in P_{+}$. Then we have $P=o+\underline{W}+\langle-\beta ;+\infty) e$, where $W \leq_{1} V, \underline{e \in \underline{V}} \backslash \underline{W}$ and $\beta>0$. Then $P_{+}=o+\underline{W}+(-\beta ;+\infty) e$. For any $t \in D_{f}$ we have of $(t)=\mathrm{w}(t)+\mu(t) e$. From continuity of f by Proposition 1 it follows that μ is continuous. Thus, μ is bounded. So, there exists $m>0$ such that $|\mu(t)|<m$ for $t \in D_{f}$. Hence it follows that $\overrightarrow{o f_{s}(t)}=s \mathrm{w}(t)+s \mu(t) e \in$ $\underline{W}+(-s m ;+\infty) e$, so $f_{s}(t) \in o+\underline{W}+(-s m ;+\infty) e \subset P_{+}$for $t \in D_{f}$, as $0<s<\frac{\beta}{m}$.

Now, assume that $o \in U \in \operatorname{top}(E, V, \rightarrow)$. Then there exist halfspaces P_{1}, \ldots, P_{n} such that $o \in P_{1+} \cap \ldots \cap P_{n+} \subset U$. By ((\star) for any $j \in\{1, \ldots, n\}$ we get $\varepsilon_{j}>0$ such that $f_{s} D_{f} \subset P_{j+}$ as $s \in\left(0 ; \varepsilon_{j}\right)$. Setting $g=f_{s}$, where $0<s<\min \left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$, we get $g D_{g} \subset U$.

Proposition 4
If $o, q \in E$ and $\mathfrak{a} \in T_{o}(E, V, \rightarrow) / \equiv_{o} \cap T_{q}(E, V, \rightarrow) / \equiv_{q}$, then $o=q$.
Proof. Let us suppose that $o \neq q$. Take any $U \in \operatorname{top}(E, V, \rightarrow)$ such that $q \in U$. Since $\mathfrak{a} \in T_{q}(E, V, \rightarrow) / \equiv_{q}$, by Proposition 3 there exists $g \in \mathfrak{a}$ such that $g D_{g} \subset U$. From the condition $\mathfrak{a} \in T_{o}(E, V, \rightarrow) / \equiv_{o}$ it follows that $\mathfrak{a} \subset$ $T_{o}(E, V, \rightarrow)$. Therefore $g \in T_{o}(E, V, \rightarrow)$, so $g D_{g} \subset U \backslash\{o\}$, and by Proposition 2 we get

$$
\underline{\mathfrak{a}} \subset A \quad \text { where } A=\bigcap_{q \in U \in \operatorname{top}(E, V, \rightarrow)} \bigcup_{p \in U \backslash\{o\}}(o p \infty) .
$$

Now, we will prove that $A \subset(o q \infty)$. Assume that there exists a point $x \in$ $A \backslash(o q \infty)$. Let us set $C=\{\overrightarrow{o q}, \overrightarrow{o x}\}$, whenever $\overrightarrow{o x}$ and $\overrightarrow{o q}$ are linearly independent and $C=\{\overrightarrow{o q}\}$ in the opposite case. Then there exists a base B of V with $C \subset B$. Let W be the vector subspace of V generated by $B \backslash\{e\}$, where $e=\overrightarrow{o q}$. Let us set

$$
P=o+\underline{W}+\mathbb{R}_{+} e
$$

So, we have $P^{o}=o+\underline{W}$ and $P_{+}=o+\underline{W}+(0 ;+\infty) e$. First, we suppose that $\overrightarrow{o x}$ and $\overrightarrow{o q}$ are linearly independent. Then $x=o+\overrightarrow{o x} \in o+\underline{W}=P^{o}$. If we assume that $x \in \bigcup_{p \in P_{+}}(o p \infty)$, then we get $p \in P_{+}$with $x \in(o p \infty)$. Then it should be in turn, $p=o+w+t e, w \in \underline{W}, t>0, x=o+u \overrightarrow{o p}$, $u>0, x=o+u w+u t e \in P_{+}$, which is impossible. Therefore we have $x \notin \bigcup_{p \in P_{+}}(o p \infty) \supset A$. So, $\overrightarrow{o x}$ and $\overrightarrow{o q}$ should be linearly dependent. Thus, $\overrightarrow{o x}=a \cdot \overrightarrow{o q}, a \in \mathbb{R}$. Because of $x \notin(o q \infty)$ we get $a \leq 0$. Thus $x \in P_{-}$. By definition of P_{-}we have

$$
P_{-} \cap \bigcup_{p \in P_{+}}(o p \infty)=\emptyset
$$

what yields $x \notin A$. So, we have $A \subset(o q \infty)$. Hence it follows that $\underline{\mathfrak{a}} \subset(o q \infty)$ and similarly $\mathfrak{a} \subset(q o \infty)$. By Proposition 2 we get $(o p \infty) \subset \mathfrak{a}$ for some $p \in g D_{g}$. This yields $(o p \infty) \subset(o q \infty) \cap(q o \infty)$, which is impossible.

The point $o \in E$ such that $\mathfrak{a} \in T_{o}(E, V, \rightarrow) / \equiv_{o}$ is called the vertex of \mathfrak{a}.
Notice that if $f, g \in \mathfrak{a} \in T_{o}(E, V, \rightarrow) / \equiv_{o}, D_{f}=\langle a ; b\rangle$, and $D_{g}=\langle c ; d\rangle$, then $\langle o f(a) \infty)=\langle o g(c) \infty)$ and $\langle o f(b) \infty)=\langle o g(d) \infty)$, where

$$
\begin{equation*}
\langle o p \infty)=\{o+s \overrightarrow{o p} ; s \geq 0\} \quad \text { for } p \in E . \tag{13}
\end{equation*}
$$

The sets $\langle o f(a) \infty)$ and $\langle o f(b) \infty)$ we called the former side and the latter one of \mathfrak{a}, respectively.

2. Oriented angles

Consider any affine space (0) and any $o \in E$. The set of all functions L such that D_{L} is a closed segment in \mathbb{R} and there exists a function f with $D_{f}=D_{L}$, continuous from $\mathcal{R} \mid D_{f}$ to $\operatorname{top}(E, V, \rightarrow)$ such that for any $t \in D_{f}$ we have

$$
\begin{equation*}
o \neq f(t) \quad \text { and } \quad L(t)=\langle o f(t) \infty) \tag{L}
\end{equation*}
$$

$\langle o f(t) \infty)$ is defined by (13), and one of the following two conditions
$(1 L) L(t)=L(u)$ for $t, u \in D_{L}$,
(2L) for any $t \in D_{L}$ there exists $\delta>0$ for which

$$
L \mid D_{L} \cap(t-\delta ; t+\delta) \text { is } 1-1
$$

is satisfied will be denoted by $\langle o ; E, V, \rightarrow)$. We set

$$
\langle E, V, \rightarrow)=\bigcup_{o \in E}\langle o ; E, V, \rightarrow)
$$

and $L \equiv M$ iff $L, M \in\langle E, V, \rightarrow)$ and there exists a real continuous increasing function φ such that $D_{\varphi}=D_{L}, \varphi D_{\varphi}=D_{M}$ and $M \circ \varphi=L$. It is easy to see that \equiv is an eqiuvalence.

Elements of the set $\langle E, V, \rightarrow) / \equiv$ of all cosets of \equiv will be called oriented angles in the affine space (0). The point o such that the equality in (L) is satisfied depending only on the oriented angle for which L belongs is called the vertex of this oriented angle. Any oriented angle for which constant function L belongs is said to be zero angle in the affine space (0).

Proposition 5

For any smooth oriented angle \mathfrak{a} in the affine space (0) we have the oriented angle $\langle\mathfrak{a}\rangle$ well defined by the formula

$$
\begin{equation*}
<\mathfrak{a}>=\left[f_{o}\right] \tag{14}
\end{equation*}
$$

where $f_{o}(t)=\langle o f(t) \infty)$ for $t \in D_{f}, f \in \mathfrak{a} \in T_{o}(E, V, \rightarrow) / \equiv_{o}, L \in[L] \in$ $\langle E, V, \rightarrow) / \equiv$ for $L \in\langle E, V, \rightarrow)$. The function

$$
\begin{equation*}
\operatorname{soa}(E, V, \rightarrow) \ni \mathfrak{a} \longmapsto<\mathfrak{a}> \tag{15}
\end{equation*}
$$

is $1-1$. If $\operatorname{dim} V>2$, then there exists an oriented angle in (0) which is not of the form $\langle\mathfrak{a}\rangle$, where \mathfrak{a} is a smooth oriented angle in (0).

Lemma
If l_{1}, l_{2} are real functions, f_{1}, f_{2} are vector ones with $D_{l_{1}}=D_{l_{2}}=D_{f_{1}}=$ $D_{f_{2}} \subset \mathbb{R}, f_{j}(x) \underset{x \longrightarrow t}{\longrightarrow} e_{j}(i n \operatorname{aff}(V)), j \in\{1,2\}, e_{1}, e_{2}$ are linearly independent in V and

$$
l_{1}(x) f_{1}(x)+l_{2}(x) f_{2}(x) \xrightarrow[x \longrightarrow t]{ } \mathrm{v} \quad(\text { in aff } V)
$$

then there exist reals c_{1}, c_{2} such that $l_{j}(x) \underset{x \longrightarrow t}{\longrightarrow} c_{j}, j \in\{1,2\}$.
Proof. There exists a base B in V containing $\left\{e_{1}, e_{2}\right\}$. By Proposition 1 we have $g_{i}(x) \xrightarrow[x \longrightarrow t]{ } \mathrm{v}_{B}\left(e_{i}\right)$ where

$$
\begin{equation*}
g_{i}(x)=l_{1}(x) f_{1}(x)_{B}\left(e_{i}\right)+l_{2}(x) f_{2}(x)_{B}\left(e_{i}\right) \tag{16}
\end{equation*}
$$

and

$$
f_{j}(x)_{B}\left(e_{i}\right) \underset{x \longrightarrow t}{\longrightarrow} e_{j B}\left(e_{i}\right)=\delta_{j i} \quad\left(\delta_{j i}-\text { Kronecker's delta }\right),
$$

so $\operatorname{det}\left[f_{j}(x)_{B}\left(e_{i}\right) ; i, j \leq 2\right] \underset{x \longrightarrow t}{\longrightarrow} 1$. Therefore, by (16),

$$
l_{1}(x)=\left|\begin{array}{ll}
g_{1}(x) & f_{2}(x)_{B}\left(e_{1}\right) \\
g_{2}(x) & f_{2}(x)_{B}\left(e_{2}\right)
\end{array}\right| m(x) \xrightarrow[x \longrightarrow t]{ }\left|\begin{array}{cc}
\mathrm{v}_{B}\left(e_{1}\right) & \delta_{21} \\
\mathrm{v}_{B}\left(e_{2}\right) & \delta_{22}
\end{array}\right|=c_{1}
$$

and

$$
l_{2}(x)=\left|\begin{array}{l}
f_{1}(x)_{B}\left(e_{1}\right) \\
f_{1}(x)_{B}\left(e_{2}\right) \\
f_{2}(x)
\end{array}\right| m(x) \underset{x \longrightarrow t}{ }\left|\begin{array}{c}
\delta_{11} \mathrm{v}_{B}\left(e_{1}\right) \\
\delta_{12} \mathrm{v}_{B}\left(e_{2}\right)
\end{array}\right|=c_{2}
$$

where $m(x)=1 / \operatorname{det}\left[f_{j}(x)_{B}\left(e_{i}\right) ; i, j \leq 2\right]$ and $c_{i}=\mathrm{v}_{B}\left(e_{i}\right)$.
Proof of Proposition 5. Correctness of the definition of $\langle\mathfrak{a}\rangle$ by (14) is evident. To prove that (15) is $1-1$ assume that $\langle\mathfrak{a}\rangle=\langle\mathfrak{b}\rangle$, where $\mathfrak{a} \in$ $T_{o}(E, V, \rightarrow) / \equiv_{o}$ and $\mathfrak{b} \in T_{q}(E, V, \rightarrow) / \equiv_{q}$. We have (14) and

$$
<\mathfrak{b}>=\left[g_{q}\right], \quad \text { where } g_{q}(u)=\langle q g(u) \infty) \text { for } u \in D_{g}, g \in \mathfrak{b}
$$

By definition of \equiv we get a continuous increasing function φ such that $D_{\varphi}=$ $D_{f}, \varphi D_{\varphi}=D_{g}$ and $g_{q} \circ \varphi=f_{o}$, i.e. by (14) and (14'), $\langle q g(\varphi(t)) \infty)=$ $\langle o f(t) \infty)$ for $t \in D_{f}$. Hence $q=o$ and for any $t \in D_{f}$ there is

$$
\begin{equation*}
\lambda(t)>0 \quad \text { with } \overrightarrow{o g(\varphi(t))}=\lambda(t) \overrightarrow{o f(t)} . \tag{17}
\end{equation*}
$$

This yields, in turn,

$$
\lambda(t+s) \overrightarrow{o f(t+s)}=\overrightarrow{o g(\varphi(t+s))} \underset{s \longrightarrow 0}{ } \overrightarrow{o g(\varphi(t))}=\lambda(t) \overrightarrow{o f(t)}
$$

and

$$
\overrightarrow{o f(t+s)} \underset{s \longrightarrow 0}{ } \overrightarrow{o f(t)} \neq 0
$$

According to Lemma we get $\lambda(t+s) \underset{s \longrightarrow 0}{\longrightarrow} \lambda(t)$. So, λ is continuous. We have also

$$
\begin{aligned}
& \frac{1}{s}(\varphi(t+s)-\varphi(t)) \cdot \frac{1}{\varphi(t+s)-\varphi(t)} \overrightarrow{g(\varphi(t)) g(\varphi(t+s))}-\frac{1}{s}(\lambda(t+s)-\lambda(t)) \overrightarrow{o f(t)} \\
& =\lambda(t+s) \cdot \frac{1}{s} \frac{f(t) f(t+s)}{} \\
& \frac{1}{\varphi(t+s)-\varphi(t)} \overline{g(\varphi(t)) g(\varphi(t+s))} \xrightarrow[s \longrightarrow 0]{\longrightarrow} g^{\prime}(\varphi(t))
\end{aligned}
$$

and

$$
\frac{1}{s} \overrightarrow{f(t) f(t+s)} \underset{s \longrightarrow 0}{ } f^{\prime}(t)
$$

First, we consider the case when o-turns f and g satisfy conditions ($o 2 f$) and $(o 2 g)$, respectively. Then by Lemma we have

$$
\frac{\varphi(t+s)-\varphi(t)}{s} \underset{s \longrightarrow 0}{ } \varphi^{\prime}(t) \quad \text { and } \quad \frac{\lambda(t+s)-\lambda(t)}{s} \underset{s \longrightarrow 0}{\longrightarrow} \lambda^{\prime}(t)
$$

Thus,

$$
\begin{equation*}
\varphi^{\prime}(t) g^{\prime}(\varphi(t))-\lambda^{\prime}(t) \overrightarrow{o f(t)}=\lambda(t) f^{\prime}(t) \quad \text { for } t \in D_{f} \tag{18}
\end{equation*}
$$

From the fact that φ is increasing it follows that $\varphi^{\prime}(t) \geq 0$. By (o2f) we have $\varphi^{\prime}(t)>0$. According to Lemma by (18) and (o2f) we conclude that the functions φ^{\prime} and λ^{\prime} are continuous. In other words, φ and λ are smooth. So, $f \equiv_{o} g$ and we have $\mathfrak{a}=\mathfrak{b}$.

Now, let us assume (o1f). Setting $\overrightarrow{o f(t)}=e$, by (17), we get $\overrightarrow{o g(u)}=$ $\mu(u) e$, where $\mu(u)=\lambda\left(\varphi^{-1}(u)\right)$ for $u \in D_{g}$. Thus

$$
\frac{1}{s}(\mu(u+s)-\mu(u)) \cdot e=\frac{1}{s} \overrightarrow{g(u) g(u+s)} \underset{s \longrightarrow 0}{\longrightarrow} g^{\prime}(u) .
$$

By Lemma we get $g^{\prime}(u)=\mu^{\prime}(u) e$. Hence it follows that $g^{\prime}(u), \overrightarrow{o g(u)}$ are not linearly independent. Therefore $(o 1 g)$ holds. Thus, taking any $u, u_{1} \in D_{g}$ by (17) we get $\mu\left(u_{1}\right) e=\overrightarrow{o g\left(u_{1}\right)}=\overrightarrow{o g(u)}=\mu(u) e$, and $\mu(u)=\mu\left(u_{1}\right)$, which yields $g \equiv_{o} f$, i.e. $\mathfrak{a}=\mathfrak{b}$. Therefore (15) is $1-1$.

Assuming that $\operatorname{dim} V>2$ we get three vectors e_{1}, e_{2}, e_{3} linearly independent in V. Let us set

$$
\overrightarrow{o g(u)}= \begin{cases}e_{1}+u\left(e_{2}-e_{1}\right), & \text { when } 0 \leq u \leq 1 \\ e_{2}+(u-1)\left(e_{3}-e_{2}\right), & \text { when } 1<u \leq 2\end{cases}
$$

and $L(u)=\langle o g(u) \infty)$ for $u \in\langle 0 ; 2\rangle$. Let us suppose that there exists $f \in$ $T_{o}(E, V, \rightarrow)$ such that $[L]=\left[f_{o}\right]$, where $f_{o}(t)=\langle o f(t) \infty)$ for $t \in D_{f}$. Then there exist a continuous and increasing function φ for which $D_{\varphi}=D_{f}, L \circ \varphi=$ $f_{o}, \varphi D_{\varphi}=D_{L}=\langle 0 ; 2\rangle$. Thus, for some function λ with $D_{\lambda}=D_{\varphi}$ (17) holds. Let us set $t_{1}=\varphi^{-1}(1)$. Hence it follows that $\overrightarrow{o f(t)}=\alpha_{1}(t) e_{1}+\alpha_{2}(t) e_{2}$ as $t \in D_{f}, t \leq t_{1}$ and $\overrightarrow{o f(t)}=\beta_{2}(t) e_{2}+\beta_{3}(t) e_{3}$ as $t \in D_{f}, t \geq t_{1}$, where α_{1}, α_{2}, β_{2}, β_{3} are real functions. Thus, by Lemma we get

$$
f^{\prime}\left(t_{1}\right)=\alpha_{1}^{\prime}\left(t_{1}\right) e_{1}+\alpha_{2}^{\prime}\left(t_{1}\right) e_{2}=\beta_{2}^{\prime}\left(t_{1}\right) e_{2}+\beta_{3}^{\prime}\left(t_{1}\right) e_{3}
$$

Then $\alpha_{1}^{\prime}\left(t_{1}\right)=0=\beta_{3}^{\prime}\left(t_{1}\right)$. So, $f^{\prime}\left(t_{1}\right)=\alpha_{2}^{\prime}\left(t_{1}\right) e_{2}$. On the other hand,

$$
\overrightarrow{o f\left(t_{1}\right)}=\frac{1}{\lambda\left(t_{1}\right)} \overrightarrow{o g\left(\varphi\left(t_{1}\right)\right)}=\frac{1}{\lambda\left(t_{1}\right)} \overrightarrow{o g(1)}=\frac{1}{\lambda\left(t_{1}\right)} e_{2} .
$$

The vectors $f^{\prime}\left(t_{1}\right)$ and $\overrightarrow{o f\left(t_{1}\right)}$ are linearly dependent. So, $(o 2 f)$ does not hold. Therefore $(o 1 f)$ is satisfied, which yields $\overrightarrow{o g(\varphi(t))}=\lambda(t) \overrightarrow{o f\left(t_{1}\right)}$ for $t \in D_{\varphi}$, i.e. $\overrightarrow{o g(u)}=\lambda\left(\varphi^{-1}(u)\right) \overrightarrow{o f\left(t_{1}\right)}$ for $u \in\langle 0 ; 2\rangle$, which is impossible.

240 Włodzimierz Waliszewski

3. Oriented angles in an Euclidean plane

Let us consider an Euclidean plane, i.e. an affine space (0), $\operatorname{dim} V=2$, together with a positively defined scalar product $\underline{V} \times \underline{V} \ni(\mathrm{v}, \mathrm{w}) \mapsto \mathrm{v} \cdot \mathrm{w} \in \mathbb{R}$. For any $\mathrm{v} \in \underline{V}$ we set $|\mathrm{v}|=\sqrt{\mathrm{v} \cdot \mathrm{v}}$ and for any function f defined on the segment of \mathbb{R} with values in E we set $D_{f}=\langle a ; b\rangle$ and for $t \in D_{f}$

$$
\begin{equation*}
|f|(t)=\sup \left\{\sum_{i=0}^{k}\left|\overrightarrow{f\left(t_{i}\right) f\left(t_{i+1}\right)}\right| ; a=t_{0}<\ldots<t_{k}=t \& k \in \mathbb{N}\right\} . \tag{19}
\end{equation*}
$$

The function $|f|$ defined by (19) has values in $\mathbb{R} \cup\{+\infty\}$, in general.

Proposition 6

In the Euclidean plane for any oriented angle $\mathcal{A} \in\langle E, V, \rightarrow) / \equiv$ there exists a unique continuous function $f: D_{f} \rightarrow E$ such that $D_{f}=\langle 0 ; c\rangle, c>0$, $\langle o f(\cdot) \infty) \in \mathcal{A}$,

$$
\begin{equation*}
|\overrightarrow{o f(s)}|=1 \quad \text { for } s \in D_{f} \tag{20}
\end{equation*}
$$

o is a vertex of \mathcal{A}, and one of the following conditions

$$
\begin{array}{ll}
|f|(s)=0 & \text { for } s \in D_{f} \\
|f|(s)=s & \text { for } s \in D_{f} \tag{1;f}
\end{array}
$$

is satisfied. We have $f \in \mathfrak{a} \in T_{o}(E, V, \rightarrow) / \equiv_{o}$ and $\left.\mathcal{A}=<\mathfrak{a}\right\rangle$, where $\langle\mathfrak{a}\rangle$ is the oriented angle defined by (14).

Proof. Let $L \in \mathcal{A} \in\langle E, V, \rightarrow) / \equiv$. Then there exists a continuous function h such that $D_{L}=D_{h}=\langle a ; b\rangle$ and $L(t)=\langle o h(t) \infty)$ for $t \in D_{h}$. We consider two cases. First, when (1L) is satisfied. Then, setting $c=b-a$ and

$$
f(s)=o+\frac{1}{|\overrightarrow{o h(a+s)}|} \overrightarrow{o h(a+s)} \quad \text { for } s \in\langle 0 ; c\rangle
$$

we see that

$$
\begin{equation*}
f(s)=f(t) \quad \text { for } s, t \in D_{f} \tag{21}
\end{equation*}
$$

and

$$
\langle o f(\cdot) \infty)=(s \mapsto L(a+s)) \in \mathcal{A}
$$

The condition $(0 ; f)$ holds in this case. From $(0 ; f)$ it follows (21). In the second case we assume $(2 L)$. Thus, for any $t \in D_{h}$ we have $\delta_{t}>0$ such that the function $L \mid D_{L} \cap\left(t-\delta_{t} ; t+\delta_{t}\right)$ is $1-1$. Then there exist $\tau_{1}, \ldots, \tau_{l} \in D_{L}$ such
that $\tau_{1}<\ldots<\tau_{l}$ and $D_{L} \subset \bigcup_{j=1}^{l}\left(a_{j} ; b_{j}\right)$, where $a_{j}=\tau_{j}-\frac{\delta_{\tau_{j}}}{2}, b_{j}=\tau_{j}+\frac{\delta_{\tau_{j}}}{2}$. We have then $1-1$ functions

$$
L \mid D_{L} \cap\left\langle a_{j} ; b_{j}\right\rangle, \quad j \in\{1, \ldots, l\}
$$

Setting, $g(t)=o+\frac{1}{\mid \overrightarrow{o h(t)}} \overrightarrow{o h(t)}$ we get $|\overrightarrow{o g(t)}|=1$ and $L(t)=\langle o g(t) \infty)$ for $t \in D_{L}$ and 1-1 functions $g \mid D_{g} \cap\left\langle a_{j} ; b_{j}\right\rangle, D_{g}=D_{L}$. We may assume that $a_{1}=a$ and $b_{l}=b$, so $D_{L} \cap\left\langle a_{j} ; b_{j}\right\rangle=\left\langle a_{j} ; b_{j}\right\rangle$ and setting $g_{j}=g \mid\left\langle a_{j} ; b_{j}\right\rangle$ we get

$$
\left|g_{j}\right|(t) \leq 2 \pi \quad \text { for } t \in\left\langle a_{j} ; b_{j}\right\rangle
$$

Hence it follows that for any $t \in D_{g}$ we have

$$
|g|(t) \leq|g|(b) \leq \sum_{j=1}^{l}\left|g_{j}\right|\left(b_{j}\right) \leq 2 l \pi<+\infty
$$

Then the function $|g|$ is finite continuous and increasing. Taking the inverse function $|g|^{-1}$ to $|g|$ and setting $f=g \circ|g|^{-1}$ we get the continuous function f with $D_{f}=\langle 0 ; c\rangle$, where $c=|g|(b)$. It is easy to see that $|f|$ is continuous and increasing and $L\left(|g|^{-1}(s)\right)=\langle o f(s) \infty)$ for $s \in D_{f}$. Therefore, we have $(1 ; f)$ and $\langle o f(\cdot) \infty)=L \circ|g|^{-1} \equiv L$, so $\langle o f(\cdot) \infty) \in \mathcal{A}$. From (20) and $(1 ; f)$ it follows that there exist orthonormal vectors $e_{1}, e_{2} \in \underline{V}$ such that

$$
\overrightarrow{o f(s)}=\cos s \cdot e_{1}+\sin s \cdot e_{2} \quad \text { for } s \in D_{f}
$$

Thus f is smooth. Taking $\mathfrak{a} \in T_{o}(E, V, \rightarrow) / \equiv_{o}$ such that $f \in \mathfrak{a}$ we get $\mathcal{A}=\langle\mathfrak{a}\rangle$.

To prove that f is uniquely determined we take a continuous function $f_{1}: D_{f_{1}} \rightarrow E$ with $D_{f_{1}}=\left\langle 0 ; c_{1}\right\rangle, c_{1}>0,\left\langle o f_{1}(\cdot) \infty\right) \in \mathcal{A},\left|\overrightarrow{o f_{1}(t)}\right|=1$ for $t \in D_{f_{1}}$ and satisfying $\left(0 ; f_{1}\right)$ or $\left(1 ; f_{1}\right)$. Then there exists a real continuous increasing function φ such that $\xrightarrow[\varphi]{D_{\varphi}=D_{f} \text { and } \varphi D_{\varphi}=D_{f_{1}} \text { and }\left\langle o f_{1}(\varphi(s)) \infty\right)==~=~=~}$ $\langle o f(s) \infty)$ for $s \in D_{f}$. Thus, $\overrightarrow{o f_{1}(\varphi(s))}=\lambda(s) \overrightarrow{o f(s)}$, where $\lambda(s)>0$ for $s \in D_{f}$. Hence it follows that $1=\left|\overrightarrow{o f_{1}(\varphi(s))}\right|=\lambda(s)|\overrightarrow{o f(s)}|=\lambda(s)$, so $f_{1} \circ \varphi=f$. This yields $\left|f_{1}\right| \circ|\varphi|=|f|$. If $\left(0 ; f_{1}\right)$ holds, then $\left|f_{1}\right|=0$, so $|f|=0$. If $\left(1 ; f_{1}\right)$ is satisfied, then $\varphi=|f|=\operatorname{id}_{\langle 0 ; c\rangle}$. Therefore $f_{1}=f$.

Corollary

If (0) is an affine plane, i.e. $\operatorname{dim} V=2$, then the function in (15) is $1-1$ and maps $\operatorname{soa}(E, V, \rightarrow)$ onto $\langle E, V, \rightarrow) / \equiv$.

Indeed, taking any positively defined scalar product in V we get an Euclidean space and we may apply Proposition 6.

4. Conclusion

The case when the affine space is 1-dimensional is not of importance however from purely logical point of view the definition of the set $\langle E, V, \rightarrow) / \equiv$ is correct.

Remark

If the affine space (0) is 1-dimensional, then all elements of $\langle E, V, \rightarrow) / \equiv$ are zero angles and (15) is $1-1$ and maps soa (E, V, \rightarrow) onto $\langle E, V, \rightarrow) / \equiv$.

Indeed, for any $\mathcal{A} \in\langle E, V, \rightarrow) / \equiv$ there is $L \in \mathcal{A}$, so $L(t)=\langle o f(t) \infty)$ and $o \neq f(t)$ for $t \in D_{L}$, where $f: D_{L} \rightarrow E$ is continuous and ($1 L$) or ($2 L$) holds. Let $0 \neq e \in \underline{V}$. Then $\overrightarrow{o f(t)}=\lambda(t) e, 0 \neq \lambda(t) \in \mathbb{R}$. According to Lemma λ is continuous. Thus $\lambda(t)>0$ for $t \in D_{L}$ or $\lambda(t)<0$ for $t \in D_{L}$. We may assume that $\lambda(t)>0$. Therefore $L(t)=\langle o p \infty)$, where $p=o+e$. Setting $f_{1}(t)=p$ for $p \in D_{L}$ we get a smooth function f_{1} for which $L(t)=\left\langle o f_{1}(t) \infty\right)$ as $t \in D_{L}$. Then we have $(1 L)$. For $\mathfrak{a} \in T_{o}(E, V, \rightarrow) / \equiv_{o}$ such that $f_{1} \in \mathfrak{a}$ we get $\langle\mathfrak{a}\rangle=\mathcal{A}$.

Proposition 5, Corollary to Proposition 6 and the above Remark allows us to conclude our consideration by

Theorem

For any affine space (0) the function (15) is 1-1. This function maps the set soa (E, V, \rightarrow) of all smooth oriented angles in the affine space (0) onto the set $\langle E, V, \rightarrow) / \equiv$ of all oriented angles in (0) if and only if $\operatorname{dim} V=2$ or $\operatorname{dim} V=1$.

References

[B-B] A. Białynicki-Birula, Linear Algebra with Geometry (in Polish), Biblioteka Matematyczna [Mathematics Library] 48, PWN, Warszawa, 1974.
[K] J.L. Kelley, General Topology, D. Van Nostrand Company, Inc., Toronto - New York-London, 1955.

Department of Mathematics
University of Łódź
Banacha 22
90-238 Łódź
Poland

[^0]: AMS (2000) Subject Classification: 51N10, 51N20, 51L10.

