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To Andrzej Zajtz, on the occasion of His 70th birthday

QSR@TVU W XZY U [
The concept of a smooth oriented angle in an arbitrary affine

space is introduced. This concept is based on a kinematics concept of a
run. Also, a concept of an oriented angle in such a space is considered.
Next, it is shown that the adequacy of these concepts holds if and only
if the affine space, in question, is of dimension 2 or 1.

\"]_^ `Za0b c dec f0gH`Zc a0h

Let us consider an arbitrary affine space, i.e. a triple

(E, V,→), (0)

(see [B–B]), where E is a set, V is an arbitrary vector space over reals and →
is a function which to any points p, q ∈ E assigns a vector −−→pq of V in such a
way that

1) −−→pq + −−→qr = −−→pr for p, q, r ∈ E,

2) −−→pq = 0 iff p = q for p, q ∈ E,

3) for any p ∈ E and any vector x of V there exists q ∈ E with −−→pq = x.

The unique point q for which −−→pq = x will be denoted by p + x. The set of
all vectors of the vector space V will be denoted by V . The fact that W is a
vector subspace of V will be written as W ≤ V . For any sets M , N , X , Y , P
such that M ∪N ⊂ R, X ∪Y ⊂ V , P ⊂ E, any b ∈ R, y ∈ V and p ∈ E we set

M + N = {a + b; a ∈ M & b ∈ N} , M + b = M + {b} ,

MN = {ab; a ∈ M & b ∈ N} , bM = {b}M,

MX = {ax; a ∈ M & x ∈ X} , bX = {b}X,

X + Y = {x + y; x ∈ X & y ∈ Y } ,

P + X = {p + x; p ∈ P & x ∈ X} , p + X = {p}+ X.

AMS (2000) Subject Classification: 51N10, 51N20, 51L10.



i0jki�l/m nCoqpqr str uqvwpxlzy�{ r |qpqu~}�|q�~r

A subset H of E is a hyperplane in an affine space (0) iff there exist p ∈ E
and W ≤ V such that

H = p + W. (1)

The subspace W of V for which (1) holds will be denoted by VH . The affine
space

(H, VH ,→H), (2)

where →H is the restriction of the function → to the set H × H , is called the
subspace of (0) determined by the hyperplane H . The triple (2), where H = ∅,
VH ≤ V , VH = {0} and →H = ∅ is an affine space and will be treated as a
subspace of (0) as well. Also, the set ∅ will be considered as a hyperplane in
(0). We will write W ≤k V instead of to state that a vector subspace W of V is
of codimension k in V . In particular, W ≤1 V means that W is of codimension
1 in V . We say that H is a hyperplane of codimension k in the affine space (0)
iff VH ≤k V .

Any set P of points of the affine space (0), i.e. P ⊂ E, such that

P = H + R+e, (3)

where H is a hyperplane of codimension 1 in (0), e ∈ V \ VH , R+ = 〈0; +∞),
is said to be a halfspace of (0). The hyperplane H in (3) uniquely determined
by P is called the shore of the halfspace P and denoted by P o. The set P \P o

will be called the interior of the halfspace P and denoted by P+. It is easy to
check that the set P− of the form E \P+ is also a halfspace and the equalities

(

P−
)o

= P o and
(

P−
)

+
= E \ P (4)

hold. The set E \ P will be denoted by P−. The halfspace P− is called the
opposite one to P . It is easy to verify that (3) yields also

P+ = P o + (0; +∞) e, P− = P o + R+ (−e) , P− = P o + (−∞; 0) e (5)

where e ∈ V \ VH and H = P o.
Let B be a base of a vector space V . For any v ∈ V there exists a unique

real function vB defined on B such that {e; e ∈ B & vB (e) 6= 0} is finite and

v =
∑

e∈B

vB (e) e, (6)

where the sign of addition in (6) denotes of course a finite operation. This
formula will be very useful.

For any topology T (see [K]) the set of all points of T will be denoted by T ,
i.e. by definition we have

T =
⋃

T. (7)
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For any set A ⊂ T the induced to A topology from the topology T will be
denoted by T|A, i.e. T|A = {B ∩ A; B ∈ T}.

For any affine space (0) the smallest topology containing the set of all sets
P+, where P is a halfspace of (0) will be called the topology of the affine space
(0) and denoted by top(E, V,→). It is easy to check that for any hyperplane
H in (0) we have

top(H, VH ,→H) = top(E, V,→)|H. (8)

Let f be any function. The domain of f will be denoted by Df . For any
A ⊂ Df the restriction of the function f to the set A and the f -image of A
will be denoted by f |A and fA, respectively. Any function may be treated as
a set of ordered pairs, and then

Df = {x; ∃y ((x, y) ∈ f)} , f |A = { (x, y) ; (x, y) ∈ f & x ∈ A}

and

fA = {y; ∃x ∈ A ((x, y) ∈ f)} .

For any set B the f -preimage f−1B is defined by

f−1B = {x; ∃y ∈ B ((x, y) ∈ f)}

or, equivalently, f−1B = {x; x ∈ Df & f (x) ∈ B}.
Let f be a function with Df ⊂ R, fDf ⊂ E, t ∈ R and p ∈ E. We say that

f tends to p at t in the affine space (0) and we write

f (x)−−−→
x−→t

p (in (E, V,→)) (9)

iff for any U ∈ top(E, V,→) such that p ∈ U there exists δ > 0 for which
f (x) ∈ U whenever 0 < |x − t| < δ. It is easy to prove the following

Proposition 1

For any function f with Df ⊂ R, fDf ⊂ E, any t ∈ R and p ∈ E we have (9)
if and only if for any base B of vector space V and any e ∈ B we have

−−−−→
pf(x) B(e)−−−→

x−→t
0. (10)

For any vector space V we have well defined the affine space aff V as
(V , V,→), where −−→vw = w − v for v,w∈ V . Let Df ⊂ R and fDf ⊂ E.
Setting

f ′ =
{

(t, v); t ∈ Df ∩ (Df )′ & 1
x−t

−−−−−−→
f(t)f(x) −−−→

x−→t
v (in aff V )

}

, (11)
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where for any set A ⊂ R, A′ denotes the set of all cluster points of A, we have
defined the derivative function f ′ of a function f . A function f : Df → E,
Df ⊂ R, is differentiable iff

Df ′ = Df . (12)

Denoting the natural topology of R by R we have the topology R|Df . The
function f satisfying (12) and having the continuous derivative function f ′ from
R|Df to top aff V is said to be smooth in (E, V,→).

� ]_� �0f0h��
o � � �0`Zf0h��JgHf0��h0de�0� �V� �0`Zc a0f � a0��gHf0�0b a0h

Before introducing the concept of smooth oriented angle in an arbitrary
affine space we introduce a concept of a run and a turn. Any function f
smooth in (E, V,→) with Df = 〈a; b〉, a < b, is said to be a run in (E, V,→).
Let o ∈ E. Any run f satisfying one of the following conditions:

f(t) = f(u) 6= o for t, u ∈ Df , (o1f)

or

f ′(t),
−−−−→
of(t) are linearly independent for t ∈ Df , (o2f)

is said to be an o-turn in (E, V,→). The set of all o-turns in (E, V,→) will
be denoted by To(E, V,→). In this set we introduce an equivalence ≡o setting
f ≡o g iff f, g ∈ To(E, V,→) and there exist real smooth functions λ and ϕ
such that

(i) Dϕ = Dλ = Df and ϕDϕ = Dg ,

(ii) λ(t) > 0, ϕ′(t) > 0 and
−−−−−−→
og(ϕ(t)) = λ(t)

−−−−→
of(t) for t ∈ Df .

Denoting by To(E, V,→)/ ≡o the set of all cosets in To(E, V,→) given by
the equivalence ≡o we may define the set soa(E, V,→) by the equality

soa(E, V,→) =
⋃

o∈E

To(E, V,→)/ ≡o .

Any element of this set is said to be a smooth oriented angle in the affine space
(E, V,→).

Proposition 2

For any o ∈ E, a ∈ To(E, V,→)/ ≡o and g ∈ a we have

a =
⋃

p∈gDg

(o p∞),

where

a =
⋃

f∈a

fDf and (o p∞) = {o + t−−→op ; t > 0} .
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Proof. Let f ∈ a. We have then f ≡o g. Taking any q ∈ fDf we get
q = f(t), t ∈ Df . Then there exist functions λ, ϕ such that (i) and (ii) hold.
Setting p = g(ϕ(t)) we get −−→oq = 1

λ(t)
−−→op , which yields q ∈ (o p∞), where

p ∈ gDg. Now, let q ∈ (o p∞), where p ∈ gDg. We have then −−→oq = s−−→op ,

where p = g (u), u ∈ Dg and s > 0. Setting Df = Dg and f(t) = o + s
−−−−→
og(t)

for t ∈ Df we get f ≡o g and q = o + s−−→op = o + s
−−−−→
og(u) = f(u) ∈ fDf , so

(o p∞) ⊂ a.

Proposition 3

For any o ∈ E and a ∈ To(E, V,→)/ ≡o if o ∈ U ∈ top(E, V,→), then there
exists g ∈ a such that gDg ⊂ U .

Proof. Let f ∈ a and s > 0. Setting Dfs
= Df and

fs(t) = o + s
−−→
of (t) for t ∈ Df

we have, of course, fs ≡o f , so fs ∈ a. We will prove that

for any halfspace P with o ∈ P+ there exists ε > 0 such that
for any s ∈ (0; ε) the relation fsDf ⊂ P+ holds.

(?)

Let P be a halfspace such that o ∈ P+. Then we have P = o+W +〈−β; +∞) e,
where W ≤1 V , e ∈ V \W and β > 0. Then P+ = o+W +(−β; +∞)e. For any

t ∈ Df we have
−−−−→
of(t) = w(t) + µ (t) e. From continuity of f by Proposition 1

it follows that µ is continuous. Thus, µ is bounded. So, there exists m > 0 such

that |µ(t)| < m for t ∈ Df . Hence it follows that
−−−−→
ofs(t) = s w(t) + s µ(t)e ∈

W + (−sm; +∞)e, so fs(t) ∈ o + W + (−sm; +∞)e ⊂ P+ for t ∈ Df , as

0 < s < β
m

.
Now, assume that o ∈ U ∈ top(E, V,→). Then there exist halfspaces

P1, . . . , Pn such that o ∈ P1+ ∩ . . . ∩ Pn+ ⊂ U . By (?) for any j ∈ {1, . . . , n}
we get εj > 0 such that fsDf ⊂ Pj+ as s ∈ (0; εj). Setting g = fs, where
0 < s < min{ε1, . . . , εn}, we get gDg ⊂ U .

Proposition 4

If o, q ∈ E and a ∈ To(E, V,→)/ ≡o ∩Tq(E, V,→)/ ≡q, then o = q.

Proof. Let us suppose that o 6= q. Take any U ∈ top(E, V,→) such that
q ∈ U . Since a ∈ Tq(E, V,→)/ ≡q, by Proposition 3 there exists g ∈ a such
that gDg ⊂ U . From the condition a ∈ To(E, V,→)/ ≡o it follows that a ⊂
To(E, V,→). Therefore g ∈ To(E, V,→), so gDg ⊂ U \ {o}, and by Proposition
2 we get

a ⊂ A where A =
⋂

q∈U∈top(E,V,→)

⋃

p∈U\{o}

(o p∞).
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Now, we will prove that A ⊂ (o q∞). Assume that there exists a point x ∈
A \ (o q∞). Let us set C = {−−→oq ,−−→ox }, whenever −−→ox and −−→oq are linearly
independent and C = {−−→oq } in the opposite case. Then there exists a base B
of V with C ⊂ B. Let W be the vector subspace of V generated by B \ {e},
where e = −−→oq . Let us set

P = o + W + R+e.

So, we have P o = o + W and P+ = o + W + (0; +∞)e. First, we suppose
that −−→ox and −−→oq are linearly independent. Then x = o + −−→ox ∈ o + W = P o.
If we assume that x ∈ ⋃

p∈P+
(o p∞), then we get p ∈ P+ with x ∈ (o p∞).

Then it should be in turn, p = o + w + te, w ∈ W , t > 0, x = o + u−−→op ,
u > 0, x = o + uw + ute ∈ P+, which is impossible. Therefore we have
x /∈ ⋃

p∈P+
(o p∞) ⊃ A. So, −−→ox and −−→oq should be linearly dependent. Thus,

−−→ox = a · −−→oq , a ∈ R. Because of x /∈ (o q∞) we get a ≤ 0. Thus x ∈ P−. By
definition of P− we have

P− ∩
⋃

p∈P+

(o p∞) = ∅,

what yields x /∈ A. So, we have A ⊂ (o q∞). Hence it follows that a ⊂ (o q∞)
and similarly a ⊂ (q o∞). By Proposition 2 we get (o p∞) ⊂ a for some
p ∈ gDg. This yields (o p∞) ⊂ (o q∞) ∩ (q o∞), which is impossible.

The point o ∈ E such that a ∈ To(E, V,→)/ ≡o is called the vertex of a.
Notice that if f, g ∈ a ∈ To(E, V,→)/ ≡o, Df = 〈a; b〉, and Dg = 〈c; d〉,

then 〈o f(a) ∞) = 〈o g(c) ∞) and 〈o f(b) ∞) = 〈o g(d) ∞), where

〈o p∞) = {o + s−−→op ; s ≥ 0} for p ∈ E. (13)

The sets 〈o f(a)∞) and 〈o f(b)∞) we called the former side and the latter one
of a, respectively.

�"]_�"`Zc a0f � a0�zgHf0�0b a0h

Consider any affine space (0) and any o ∈ E. The set of all functions L such
that DL is a closed segment in R and there exists a function f with Df = DL,
continuous from R|Df to top(E, V,→) such that for any t ∈ Df we have

o 6= f(t) and L(t) = 〈o f(t)∞) , (L)

〈o f (t) ∞) is defined by (13), and one of the following two conditions

(1 L) L(t) = L(u) for t, u ∈ DL,
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(2 L) for any t ∈ DL there exists δ > 0 for which

L|DL ∩ (t − δ; t + δ) is 1–1,

is satisfied will be denoted by 〈o; E, V,→). We set

〈E, V,→) =
⋃

o∈E

〈o; E, V,→)

and L ≡ M iff L, M ∈ 〈E, V,→) and there exists a real continuous increasing
function ϕ such that Dϕ = DL, ϕDϕ = DM and M ◦ ϕ = L. It is easy to see
that ≡ is an eqiuvalence.

Elements of the set 〈E, V,→)/ ≡ of all cosets of ≡ will be called oriented
angles in the affine space (0). The point o such that the equality in (L) is
satisfied depending only on the oriented angle for which L belongs is called the
vertex of this oriented angle. Any oriented angle for which constant function L
belongs is said to be zero angle in the affine space (0).

Proposition 5

For any smooth oriented angle a in the affine space (0) we have the oriented
angle <a> well defined by the formula

<a> = [fo] (14)

where fo(t) = 〈o f(t)∞) for t ∈ Df , f ∈ a ∈ To(E, V,→)/ ≡o, L ∈ [L] ∈
〈E, V,→)/ ≡ for L ∈ 〈E, V,→). The function

soa(E, V,→) 3 a 7−→ <a> (15)

is 1–1. If dim V > 2, then there exists an oriented angle in (0) which is not of
the form <a>, where a is a smooth oriented angle in (0).

Lemma

If l1, l2 are real functions, f1, f2 are vector ones with Dl1 = Dl2 = Df1
=

Df2
⊂ R, fj(x)−−−→

x−→t
ej (in aff(V )), j ∈ {1, 2}, e1, e2 are linearly independent

in V and

l1(x)f1(x) + l2(x)f2(x)−−−→
x−→t

v (in aff V ),

then there exist reals c1, c2 such that lj(x)−−−→
x−→t

cj , j ∈ {1, 2}.

Proof. There exists a base B in V containing {e1, e2}. By Proposition 1
we have gi(x)−−−→

x−→t
vB(ei) where

gi(x) = l1(x)f1(x)B(ei) + l2(x)f2(x)B(ei) (16)
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and

fj(x)B(ei)−−−→
x−→t

ejB(ei) = δji (δji — Kronecker’s delta),

so det [fj(x)B(ei); i, j ≤ 2] −−−→
x−→t

1. Therefore, by (16),

l1(x) =

∣

∣

∣

∣

∣

g1(x) f2(x)B(e1)

g2(x) f2(x)B(e2)

∣

∣

∣

∣

∣

m(x)−−−→
x−→t

∣

∣

∣

∣

∣

vB(e1) δ21

vB(e2) δ22

∣

∣

∣

∣

∣

= c1

and

l2(x) =

∣

∣

∣

∣

∣

f1(x)B(e1) g1(x)

f1(x)B(e2) g2(x)

∣

∣

∣

∣

∣

m(x)−−−→
x−→t

∣

∣

∣

∣

∣

δ11 vB(e1)

δ12 vB(e2)

∣

∣

∣

∣

∣

= c2,

where m(x) = 1/ det [fj(x)B(ei); i, j ≤ 2] and ci = vB(ei).

Proof of Proposition 5. Correctness of the definition of <a> by (14) is
evident. To prove that (15) is 1–1 assume that <a> = <b>, where a ∈
To(E, V,→)/ ≡o and b ∈ Tq(E, V,→)/ ≡q . We have (14) and

<b> = [gq ] , where gq(u) = 〈q g(u)∞) for u ∈ Dg , g ∈ b. (14′)

By definition of ≡ we get a continuous increasing function ϕ such that Dϕ =
Df , ϕDϕ = Dg and gq ◦ ϕ = fo, i.e. by (14) and (14′), 〈q g(ϕ(t))∞) =
〈o f(t)∞) for t ∈ Df . Hence q = o and for any t ∈ Df there is

λ(t) > 0 with
−−−−−−→
og(ϕ(t)) = λ(t)

−−−−→
of(t) . (17)

This yields, in turn,

λ(t + s)
−−−−−−−→
of(t + s) =

−−−−−−−−−→
og(ϕ(t + s)) −−−→

s−→0

−−−−−−→
og(ϕ(t)) = λ(t)

−−−−→
of(t)

and −−−−−−−→
of(t + s) −−−→

s−→0

−−−−→
of(t) 6= 0.

According to Lemma we get λ(t + s)−−−→
s−→0

λ(t). So, λ is continuous. We have

also

1
s
(ϕ(t + s) − ϕ(t)) · 1

ϕ(t+s)−ϕ(t)

−−−−−−−−−−−−−−→
g(ϕ(t))g(ϕ(t + s)) − 1

s
(λ(t + s) − λ(t))

−−−−→
of(t)

= λ (t + s) · 1
s

−−−−−−−−−→
f(t) f(t + s) ,

1
ϕ(t+s)−ϕ(t)

−−−−−−−−−−−−−−→
g(ϕ(t))g(ϕ(t + s)) −−−→

s−→0
g′(ϕ(t))

and
1
s

−−−−−−−−−→
f(t)f(t + s) −−−→

s−→0
f ′(t).
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First, we consider the case when o–turns f and g satisfy conditions (o2f)
and (o2g), respectively. Then by Lemma we have

ϕ(t + s) − ϕ(t)

s
−−−→
s−→0

ϕ′(t) and
λ(t + s) − λ(t)

s
−−−→
s−→0

λ′(t).

Thus,

ϕ′(t)g′(ϕ(t)) − λ′(t)
−−−−→
of(t) = λ(t)f ′(t) for t ∈ Df . (18)

From the fact that ϕ is increasing it follows that ϕ′(t) ≥ 0. By (o2f) we
have ϕ′(t) > 0. According to Lemma by (18) and (o2f) we conclude that the
functions ϕ′ and λ′ are continuous. In other words, ϕ and λ are smooth. So,
f ≡o g and we have a = b.

Now, let us assume (o1f). Setting
−−−−→
of(t) = e, by (17), we get

−−−−→
og(u) =

µ(u)e, where µ(u) = λ(ϕ−1(u)) for u ∈ Dg. Thus

1
s

(µ(u + s) − µ(u)) · e = 1
s

−−−−−−−−−−→
g(u)g(u + s) −−−→

s−→0
g′(u).

By Lemma we get g′(u) = µ′(u)e. Hence it follows that g′(u),
−−−−→
og(u) are not

linearly independent. Therefore (o1g) holds. Thus, taking any u, u1 ∈ Dg by

(17) we get µ(u1)e =
−−−−−→
og(u1) =

−−−−→
og(u) = µ(u)e, and µ(u) = µ(u1), which

yields g ≡o f , i.e. a = b. Therefore (15) is 1–1.
Assuming that dim V > 2 we get three vectors e1, e2, e3 linearly indepen-

dent in V . Let us set

−−−−→
og(u) =

{

e1 + u(e2 − e1), when 0 ≤ u ≤ 1,

e2 + (u − 1)(e3 − e2), when 1 < u ≤ 2,

and L(u) = 〈o g(u)∞) for u ∈ 〈0; 2〉. Let us suppose that there exists f ∈
To(E, V,→) such that [L] = [fo], where fo(t) = 〈o f (t) ∞) for t ∈ Df . Then
there exist a continuous and increasing function ϕ for which Dϕ = Df , L◦ϕ =
fo, ϕDϕ = DL = 〈0; 2〉. Thus, for some function λ with Dλ = Dϕ (17) holds.

Let us set t1 = ϕ−1(1). Hence it follows that
−−−−→
of(t) = α1(t)e1 + α2(t)e2 as

t ∈ Df , t ≤ t1 and
−−−−→
of(t) = β2(t)e2 + β3(t)e3 as t ∈ Df , t ≥ t1, where α1, α2,

β2, β3 are real functions. Thus, by Lemma we get

f ′(t1) = α′
1(t1)e1 + α′

2(t1)e2 = β′
2(t1)e2 + β′

3(t1)e3.

Then α′
1(t1) = 0 = β′

3(t1). So, f ′(t1) = α′
2(t1)e2. On the other hand,

−−−−−→
of(t1) = 1

λ(t1)

−−−−−−−→
og(ϕ(t1)) = 1

λ(t1)

−−−−→
og(1) = 1

λ(t1)e2.

The vectors f ′(t1) and
−−−−−→
of(t1) are linearly dependent. So, (o2f) does not hold.

Therefore (o1f) is satisfied, which yields
−−−−−−→
og(ϕ(t)) = λ(t)

−−−−−→
of(t1) for t ∈ Dϕ,

i.e.
−−−−→
og(u) = λ(ϕ−1(u))

−−−−−→
of(t1) for u ∈ 〈0; 2〉, which is impossible.
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Let us consider an Euclidean plane, i.e. an affine space (0), dim V = 2,
together with a positively defined scalar product V × V 3 (v,w) 7→ v·w∈ R.
For any v∈ V we set |v| =

√
v · v and for any function f defined on the segment

of R with values in E we set Df = 〈a; b〉 and for t ∈ Df

|f | (t) = sup

{

k
∑

i=0

∣

∣

∣

−−−−−−−−−→
f(ti)f(ti+1)

∣

∣

∣
; a = t0 < . . . < tk = t & k ∈ N

}

. (19)

The function |f | defined by (19) has values in R ∪ {+∞}, in general.

Proposition 6

In the Euclidean plane for any oriented angle A ∈ 〈E, V,→)/ ≡ there ex-
ists a unique continuous function f : Df → E such that Df = 〈0; c〉, c > 0,
〈o f (·) ∞) ∈ A,

∣

∣

∣

−−−−→
of(s)

∣

∣

∣
= 1 for s ∈ Df , (20)

o is a vertex of A, and one of the following conditions

|f | (s) = 0 for s ∈ Df , (0; f)

|f | (s) = s for s ∈ Df (1; f)

is satisfied. We have f ∈ a ∈ To(E, V,→)/ ≡o and A = <a>, where <a> is
the oriented angle defined by (14).

Proof. Let L ∈ A ∈ 〈E, V,→)/ ≡. Then there exists a continuous function
h such that DL = Dh = 〈a; b〉 and L(t) = 〈o h(t)∞) for t ∈ Dh. We consider
two cases. First, when (1 L) is satisfied. Then, setting c = b − a and

f(s) = o + 1
∣

∣

∣

−−−−−−→
oh(a+s)

∣

∣

∣

−−−−−−−→
oh(a + s) for s ∈ 〈0; c〉

we see that

f(s) = f(t) for s, t ∈ Df (21)

and

〈o f (·) ∞) = (s 7→ L(a + s)) ∈ A.

The condition (0; f) holds in this case. From (0; f) it follows (21). In the
second case we assume (2 L). Thus, for any t ∈ Dh we have δt > 0 such that
the function L|DL∩ (t− δt; t+ δt) is 1–1. Then there exist τ1, . . . , τl ∈ DL such



� vwr uq�,� uqo�y��q�q{ uq|�r �xyZ� � r �qu�|q�qy��@u�i0�k£

that τ1 < . . . < τl and DL ⊂ ⋃ l
j=1(aj ; bj), where aj = τj −

δτj

2 , bj = τj +
δτj

2 .
We have then 1–1 functions

L|DL ∩ 〈aj ; bj〉 , j ∈ {1, . . . , l} .

Setting, g(t) = o + 1
∣

∣

∣

−−−−→
oh(t)

∣

∣

∣

−−−−→
oh(t) we get

∣

∣

∣

−−−−→
og(t)

∣

∣

∣
= 1 and L(t) = 〈o g (t) ∞)

for t ∈ DL and 1–1 functions g|Dg ∩ 〈aj ; bj〉, Dg = DL. We may assume that
a1 = a and bl = b, so DL ∩ 〈aj ; bj〉 = 〈aj ; bj〉 and setting gj = g| 〈aj ; bj〉 we get

|gj | (t) ≤ 2π for t ∈ 〈aj ; bj〉 .

Hence it follows that for any t ∈ Dg we have

|g| (t) ≤ |g| (b) ≤
l

∑

j=1

|gj | (bj) ≤ 2lπ < +∞.

Then the function |g| is finite continuous and increasing. Taking the inverse

function |g|−1
to |g| and setting f = g ◦ |g|−1

we get the continuous function
f with Df = 〈0; c〉, where c = |g| (b). It is easy to see that |f | is continuous

and increasing and L
(

|g|−1 (s)
)

= 〈o f(s)∞) for s ∈ Df . Therefore, we have

(1; f) and 〈o f (·) ∞) = L ◦ |g|−1 ≡ L, so 〈o f(·)∞) ∈ A. From (20) and (1; f)
it follows that there exist orthonormal vectors e1, e2 ∈ V such that

−−−−→
of(s) = cos s · e1 + sin s · e2 for s ∈ Df .

Thus f is smooth. Taking a ∈ To(E, V,→)/ ≡o such that f ∈ a we get
A = <a>.

To prove that f is uniquely determined we take a continuous function

f1 : Df1
→ E with Df1

= 〈0; c1〉, c1 > 0, 〈o f1 (·) ∞) ∈ A,
∣

∣

∣

−−−−→
of1(t)

∣

∣

∣
= 1

for t ∈ Df1
and satisfying (0; f1) or (1; f1). Then there exists a real continuous

increasing function ϕ such that Dϕ = Df and ϕDϕ = Df1
and 〈o f1(ϕ(s))∞) =

〈o f(s)∞) for s ∈ Df . Thus,
−−−−−−−→
of1(ϕ(s)) = λ(s)

−−−−→
of(s) , where λ (s) > 0 for

s ∈ Df . Hence it follows that 1 =
∣

∣

∣

−−−−−−−→
of1(ϕ(s))

∣

∣

∣
= λ(s)

∣

∣

∣

−−−−→
of(s)

∣

∣

∣
= λ(s), so

f1 ◦ϕ = f . This yields |f1| ◦ |ϕ| = |f |. If (0; f1) holds, then |f1| = 0, so |f | = 0.
If (1; f1) is satisfied, then ϕ = |f | = id〈0;c〉. Therefore f1 = f .

Corollary

If (0) is an affine plane, i.e. dim V = 2, then the function in (15) is 1–1 and
maps soa(E, V,→) onto 〈E, V,→)/ ≡.

Indeed, taking any positively defined scalar product in V we get an Eu-
clidean space and we may apply Proposition 6.
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The case when the affine space is 1-dimensional is not of importance however
from purely logical point of view the definition of the set 〈E, V,→)/ ≡ is correct.

Remark

If the affine space (0) is 1-dimensional, then all elements of 〈E, V,→)/ ≡ are
zero angles and (15) is 1–1 and maps soa(E, V,→) onto 〈E, V,→)/ ≡.

Indeed, for any A ∈ 〈E, V,→)/ ≡ there is L ∈ A, so L(t) = 〈o f(t)∞) and
o 6= f(t) for t ∈ DL, where f : DL → E is continuous and (1 L) or (2 L) holds.

Let 0 6= e ∈ V . Then
−−−−→
of(t) = λ(t)e, 0 6= λ(t) ∈ R. According to Lemma

λ is continuous. Thus λ(t) > 0 for t ∈ DL or λ(t) < 0 for t ∈ DL. We may
assume that λ(t) > 0. Therefore L(t) = 〈o p∞), where p = o + e. Setting
f1(t) = p for p ∈ DL we get a smooth function f1 for which L(t) = 〈o f1(t)∞)
as t ∈ DL. Then we have (1 L). For a ∈ To(E, V,→)/ ≡o such that f1 ∈ a we
get <a> = A.

Proposition 5, Corollary to Proposition 6 and the above Remark allows us
to conclude our consideration by

Theorem

For any affine space (0) the function (15) is 1–1. This function maps the set
soa(E, V,→) of all smooth oriented angles in the affine space (0) onto the set
〈E, V,→)/ ≡ of all oriented angles in (0) if and only if dim V = 2 or dim V = 1.
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