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Abstract. Each familyM of means has a natural, partial order (point-wise
order), that is M ≤ N iff M(x) ≤ N(x) for all admissible x.

In this setting we can introduce the notion of interval-type set (a subset
I ⊂ M such that whenever M ≤ P ≤ N for some M, N ∈ I and P ∈
M then P ∈ I). For example, in the case of power means there exists a
natural isomorphism between interval-type sets and intervals contained in
real numbers. Nevertheless there appear a number of interesting objects for
a families which cannot be linearly ordered.

In the present paper we consider this property for Gini means and Hardy
means. Moreover, some results concerning L∞ metric among (abstract)
means will be obtained.

1. Introduction

It is well known that the comparability problem is one of the most extensively
developed branch in the theory of means. In fact, whenever Y is a family of means,
we usually treat it as a partially ordered set. We will be interested in subfamilies
I ⊂ Y such that if some element of Y is bounded from both sides by elements of I
then it itself belongs to I. More precisely, if for some y ∈ Y there exists yl, yu ∈ I
such that yl ≤ y ≤ yu, then y ∈ I, too; such kind of condition is very characteristic
for intervals, therefore we will call I an interval-type set in Y .

The simplest examples of interval-type sets appear to be the natural gen-
eralization of intervals. Indeed, for every order-preserving embedding Y ⊂ X
(for example we can assign Y = Q and X = R) and every p, q ∈ X, the set
[p, q]Y := {y ∈ Y : p ≤ y ≤ q} is an interval-type set in Y . Similarly, for p ∈ X,
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one can define [p,+∞)Y := {y ∈ Y : p ≤ y} etc.; all these objects are interval-type
sets in Y .

Notice that if ≤ is a linear order in Y and X = Y then these definitions
coincide with the standard one. Moreover, if I1 and I2 are interval-type sets in Y
then so is I1 ∩ I2, similarly the union of an increasing sequence of interval-type
sets in Y is an interval-type set in Y , too. Finally if Y ⊆ X and p, q, r ∈ X
with p ≤ q ≤ r then [p, q]Y ∪ [q, r]Y ⊆ [p, r]Y but, contrary to standard intervals,
equality does not hold in the general case (even if Y = X). Furthermore it could
be easily proved that if I, Y ⊂ X then

I is an interval-type set in X ⇐⇒ I ∩ Y is an interval-type set in Y. (1)
In fact if "≤" is a linear order then, roughly speaking, this definition reduces

to common intervals. The situation becomes much more interesting when "≤" is
just a partial ordering. For example if the inclusion is considered as the order,
then each filter and each ideal is an interval-type set.

From our point of view the most interesting set is a family of functions. There
appears a natural order (point-wise order) that could be imprecisely defined as
f ≤ g if and only if f(x) ≤ g(x) for all x. In this sense all families denoted in the
literature by O(·) or o(·) are in fact interval-type sets. Additionally, in the family
of functions we have a number of heterogeneous interval-type sets like: functions
that are convergent to a certain point (it is exactly what does squeeze theorem
claim), bounded functions, Lp spaces (in the family of all measurable functions).

This order is also used for comparing means – this is in fact the setting we
are heading towards. Indeed, comparability property is quite rare in the family of
means, whence such a relation is a very natural partial order. Therefore from now
on we are going to focus on a family of means only; remarkably we treat them
simply as functions and we do not assume any extra properties. Some families of
means are mentioned in this paper just to provide both motivation and background
of presented results – for their precise definitions we refer the reader to the classical
monograph [1].

Let us emphasize that there is no universal definition of a mean. Means are
defined, in different places, for a various domain, i.e. a vector of length two, vector
of an arbitrary length, probabilistic measure, vector with weights (we usually use
the prefix ’weighted’ in this case); in fact all these definitions appear in [1].

Despite this drawback, there are usually no difficulties when it comes to define
comparability between means. Namely, for two means (say M , N) we denote
M ≤ N if and only if M(x) ≤ N(x) for all x belonging to an intersection of the
domains of M and N ; such an assumption is so natural that it is usually skipped,
however it is made even in a classical Cauchy’s inequality (cf. [1, p. 203]). On the
other hand, power means P1 and P3 are not comparable when considered on the
set of real numbers. This causes an essential problem that the inequalitiesM ≤ N
and N ≤ P do not imply the inequality M ≤ P . A very simple example is the
pair P1, P3 considered once on reals, and in the other case jointly with P2 – this
time, to provide the meaningfulness of inequalities P1 ≤ P2 and P2 ≤ P3, all three
means need to be considered on positive numbers only.

Due to this fact each time we are dealing with the comparability of means, we
need to declare their domain.
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Another domain-type problem can be observed when we look through the
result concerning comparability in the family of Gini means. In this family the
solution of comparability problem changes dramatically while we are changing the
number of arguments. Notice that, excluding the case of two- and an arbitrary
number of arguments, this problem remains open (see [12, 13]). However, by virtue
of Jensen’s inequality, this is not the case for quasi-arithmetic means. In this family
comparability problems for vectors of length two, vectors of any (either fixed or
arbitrary) length, their weighted counterparts and for measures are all equivalent
among each other.

To continue dealing with means theory, let us make a short order-theory in-
termezzo concerning generalized intervals. Let (X,≤) and (Y,≤) be two partially
ordered sets (POSETs) such that either X ⊆ Y or Y ⊂ X and the order "≤"
coincide on X ∩ Y . Denote

[Y ]X := {x ∈ X : yl ≤ x ≤ yu for some yl, yu ∈ Y } =
⋃

yl,yu∈Y

[yl, yu]X ;

the order "≤" in the definition is taken on X ∪ Y .
In such case any consideration would go twofold, luckily the first case is simple

and we are going to rule it out shortly. Indeed, for X ⊂ Y we have

X ⊆ X ∩ Y ⊆ [Y ]X ⊆ X.

Thus [Y ]X = X whenever X ⊆ Y . Therefore the only interesting case is Y ⊂ X.
Having this condition satisfied, it is natural to ask when [Y ]X is the smallest
possible, that is [Y ]X = Y . Whenever this equality holds we say that Y is an
interval-type in X or, briefly, X-interval-type.

Saying nothing of how common (or uncommon) this theory is, there are a num-
ber of interval-type sets among function spaces (recall that in this setting "≤" is
a standard pointwise order). In fact we can just reformulate examples that are
given above as interval-type sets, that is: functions that are converging to a certain
(fixed) point, bounded functions, Lp spaces (in a family of measurable functions).

In what follows we will investigate interval-type sets for various families of
means. Some of results are either simple of just a new wording of known results.
All these facts will be enclosed in the following section as well as new interval-type
properties for means.

2. Interval-type sets among means

Many families of means have an order that is isomorphic to (N,≤) (for example
symmetric polynomial means) or (R,≤) (for example power means). Such kinds
of families are, from our point of view, trivial cases. Obviously it does not mean
that proving these inequalities is immediate. Conversely, these families are so
well characterized that our theory, at least in our opinion, does not convey any
additional knowledge in this case. At the moment each subsection will be devoted
to a different family of means.

Let us emphasize that whenever X is a family of means and P,Q ∈ X with
P ≤ Q then [P,Q]X are simply all intermediate means between P and Q that
belong to X. If the inequality P ≤ Q is not satisfied then [P,Q]X is empty.
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In sections 2.2–2.3 we avoid making any unnecessary assumptions, therefore
that not all considered objects are means. Nevertheless, by virtue of (1), one can
always add more assumptions, whenever it is required.

2.1. Gini means

Gini means were first considered by Gini [5] as a generalization of power means.
For p, q ∈ R and an all-positive-entry vector v = (v1, . . . , vn), n ∈ N they equal

Gp,q(v1, . . . , vn) =


(
vp

1 + · · ·+ vp
n

vq
1 + · · ·+ vq

n

)1/(p−q)
, if p 6= q,

exp
(
vp

1 ln v1 + · · ·+ vp
n ln vn

vp
1 + · · ·+ vp

n

)
, if p = q.

It is just a simple calculation that Gp,q = Gq,p. From our point of view the
order in this family is the most important one. It is known (cf. [3]) that for all
p, q, p′, q′ ∈ R,

Gp,q ≤ Gp′,q′ ⇐⇒ min(p, q) ≤ min(p′, q′) ∧max(p, q) ≤ max(p′, q′). (2)

Therefore we can leave the definition of means itself and deal with the order on R2

defined exactly like the right hand side of (2). However it is difficult to characterize
all interval-type sets in this family. We will focus just on the simplest case.

Proposition 1
Let p, q, r, s ∈ R be such that p ≤ s and q, r ∈ [p, s]. Then Gp,q ≤ Gr,s and

[Gp,q,Gr,s]G = {Gx,y : (x, y) ∈ [p, r]× [q, s] ∪ [q, s]× [p, r]}.

The assumption involving p, q, r and s seamed to be restrictive, nevertheless it
appears very naturally when we take into account the requirement of comparability
between Gp,q and Gr,s and the mentioned symmetry Gp,q = Gq,p.

To prove this proposition we need to consider two cases p ≤ q ≤ r ≤ s and
p ≤ r < q ≤ s. However, by virtue of (2), this proof is elementary and we will
omit it.

Let us present another kind of interval-type sets for Gini means

Proposition 2
Let f : (0,∞) → (0,∞), g : (−∞, 0) → (−∞, 0) be two continuous, decreasing
functions with f(0+) = +∞, g(0−) = −∞ and f ◦ f = id, g ◦ g = id. The
following sets are of G-interval-type

{Gx,y : x ≤ 0 or (x > 0 and y ≤ f(x))},

{Gx,y : x ≥ 0 or (x < 0 and y ≥ g(x))},

{Gx,y : (x < 0 and y ≥ g(x)) or x = 0 or (x > 0 and y ≤ f(x))}.

Proof. Denote these sets byX, Y andX∩Y , respectively. Suppose that Gp,q,Gr,s ∈
X for some p, q, r and s. We can assume, without loss of generality, that p ≤ q,
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r ≤ s and q ≤ s. As these means are comparable, we immediately obtain the
inequality p ≤ r. By Proposition 1 we need to prove that

{Gx,y : (x, y) ∈ [p, r]× [q, s] ∪ [q, s]× [p, r]} = [Gp,q,Gr,s]G ⊂ X. (3)

As X covers all parameters in second, third, and fourth quarter we can assume
that all p, q, r, s are non-negative. Due to the fact that Gr,s ∈ X we get s ≤ f(r)
or, equivalently (by the assumptions) r ≤ f(s). Now, for (x0, y0) ∈ [p, r] × [q, s],
by decreasingness of f we obtain

y0 ≤ s ≤ f(r) ≤ f(x0).

Similarly for (x0, y0) ∈ [q, s]× [p, r] we get y0 ≤ r ≤ f(s) ≤ f(x0), which provides
(3). The second case is analogous, while the third one is just a combining of first
two cases.

2.2. Hardy means

Let us now consider so-called Hardy property of means. Let M :
⋃n

i=1 R+ →
R+ be a mean. Let HM be the smallest extended real number satisfying

∞∑
n=1

M(v1, . . . , vn) ≤ HM

∞∑
i=1

vn for all v ∈ `1(R+).

We call M to be a Hardy mean if HM < +∞; the number HM is called the Hardy
constant of M . The definition of Hardy means was first introduced by Páles and
Persson in [15] but it was developed since 1920s, when Hardy constants for power
means were given in a series of papers [6, 10, 2, 7, 8]; more details about interesting
history of this result can be found in catching surveys [11, 4] and in a recent book
[9]. The term Hardy constant was introduced recently in [14].

Let us consider a family of sets

H−1
· (I) := {M : HM ∈ I} for I ⊂ (0,+∞]

and the family of all Hardy means H, that is H := H−1
· (0,+∞).

We are going to prove the following statement
Proposition 3
For every (extended) interval I ⊂ [0,+∞] the family H−1

· (I) is an interval-type
set in the family of all means. In particular, H is an interval-type set.
Proof. Take any meanM and P, Q satisfying P ≤M ≤ Q. It is sufficient to prove
that

HM ∈ [HP , HQ]. (4)
Indeed, for all v ∈ `1(R+) we have

∞∑
n=1

M(v1, . . . , vn) ≤
∞∑

n=1
Q(v1, . . . , vn) ≤ HQ

∞∑
i=1

vn.

By the definition HM is the smallest constant satisfying such an inequality, thus
HM ≤ HQ. Analogously we can prove HP ≤ HM , which implies (4).
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2.3. Finite distance between means

For the purpose of this section I is an interval and a domain of a mean is an
arbitrary set D, that is M is any function M : D → I (it is natural to denote this
family as ID). In particular, all means are defined on the same domain.

In the spirit of [16, 17] let us define a metric among quasi-arithmetic means as
a maximal possible difference between their value. This definition could be easily
adapted for a general case. More precisely, for M,N ∈ ID we define the distance
as an L∞-norm,

ρ(M,N) := sup
x∈D
|M(x)−N(x)| .

It is easy to prove that ρ is an extended metric on the space ID. Therefore we
can define neighbourhoods of functions (each function is treated as a single point
in the space) in the following way

Br(M) := {N ∈ ID : ρ(M,N) < r},
Br(M) := {N ∈ ID : ρ(M,N) ≤ r}.

If the set I is unbounded, it can happen that the distance between means is not
bounded, i.e. ρ(M,N) = +∞. Therefore it is also reasonable to define

B(M) := {N ∈ ID : ρ(M,N) < +∞} =
⋃
r>0

Br(M).

Having these definitions there holds the following

Proposition 4
For each mean M the set B(M) is an ID-interval-type family. Moreover, for every
positive number r, sets Br(M) and Br(M) are ID-interval-type families.

The proof of this proposition is elementary and we omit it.
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