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Abstract. In this paper, we define a new subclass of bi-univalent functions
involving a Hohlov operator in the open unit disk. For functions belonging to
this class, we obtain estimates on the first two Taylor-Maclaurin coefficients
|a2| and |a3|.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U := {z ∈ C : |z| < 1}.
By S we will denote the subclass of all functions in A which are univalent in

U. Some of the important and well-investigated subclasses of the class S include,
for example, the class S∗(α) of starlike functions of order α in U, and the class
K(α) of convex functions of order α in U, with 0 ≤ α < 1.

It is well known that every function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z for all z ∈ U

and
f(f−1(w)) = w for |w| < r0(f) and r0(f) ≥ 1
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where

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + . . . . (2)

A function f ∈ A is said to be bi-univalent in U if f(z) and f−1(w) are
univalent in U, and let Σ denote the class of bi-univalent functions in U.

The convolution or Hadamard product of two functions f, h ∈ A is denoted by
f ∗ h, and is defined by

(f ∗ h)(z) := z +
∞∑
n=2

anbnz
n,

where f is given by (1) and h(z) = z+
∞∑
n=2

bnz
n. Next, in our present investigation,

we need to recall the convolution operator Ia,b,c due to Hohlov [11, 10], which is a
special case of the Dziok-Srivastava operator [6, 7].

For the complex parameters a, b and c (c 6= 0,−1,−2,−3, . . . ), the Gaussian
hypergeometric function 2F1(a, b, c; z) is defined as

2F1(a, b, c; z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn

n! = 1 +
∞∑
n=2

(a)n−1(b)n−1

(c)n−1

zn−1

(n− 1)! , z ∈ U, (3)

where (α)n is the Pochhammer symbol (or the shifted factorial) given by

(α)n := Γ(α+ n)
Γ(α) =

{
1, if n = 0,
α(α+ 1)(α+ 2) · · · (α+ n− 1), if n = 1, 2, 3, . . . .

For the real positive values a, b and c, using the Gaussian hypergeometric func-
tion (3), Hohlov [11, 10] introduced the familiar convolution operator Ia,b,c : A→ A

by

Ia,b,cf(z) = [z 2F1(a, b, c; z)] ∗ f(z) = z +
∞∑
n=2

ϕnanz
n, z ∈ U, (4)

where
ϕn = (a)n−1(b)n−1

(c)n−1(n− 1)! , (5)

and the function f is of the form (1).
Hohlov [11, 10] discussed some interesting geometrical properties exhibited by

the operator Ia,b,c, and the three-parameter family of operators Ia,b,c contains, as
its special cases, most of the known linear integral or differential operators. In
particular, if b = 1 in (4), then Ia,b,c reduces to the Carlson-Shaffer operator.
Similarly, it is easily seen that the Hohlov operator Ia,b,c is also a generalization
of the Ruscheweyh derivative operator as well as the Bernardi-Libera-Livingston
operator. It is of interest to note that for a = c and b = 1, Ia,1,af = f for all
f ∈ A.

Recently there has been triggering interest to study bi-univalent function class
Σ and obtained non-sharp coefficient estimates on the first two coefficients |a2|
and |a3| of (1) (see [3, 2, 4, 13, 15, 21]). No estimates for the general coefficient
|an|, n > 3, was investigated up until the publication of the article [12] in 2013.
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Many researchers (see [8, 9, 14, 19]) have recently introduced and investigated
several interesting subclasses of the bi-univalent function class Σ and they have
found non-sharp estimates on the first two Taylor-MacLaurin coefficients |a2| and
|a3|.

2. Definitions and preliminaries

In [16] Padmanabhan and Parvatham defined the classes of functions Pm(β)
as follows.

Definition 2.1 ([16])
Let Pm(β), with m ≥ 2 and 0 ≤ β < 1, denote the class of univalent analytic
functions P , normalized with P (0) = 1 and satisfying∫ 2π

0

∣∣∣∣ReP (z)− β
1− β

∣∣∣∣d θ ≤ mπ,
where z = reiθ ∈ U.

For β = 0, we denote Pm := Pm(0), hence the class Pm represents the class of
functions p analytic in U, normalized with p(0) = 1, and having the representation

p(z) =
∫ 2π

0

1− zeit

1 + zeit
dµ(t),

where µ is a real-valued function with bounded variation, which satisfies∫ 2π

0
dµ(t) = 2π and

∫ 2π

0
|dµ(t)| ≤ m, m ≥ 2.

Details referring the above integral representation could be found in [16, Lemma
1]. Remark that P := P2 is the well-known class of Carathéodory functions, i.e.
the normalized functions with positive real part in the open unit disk U.

Motivated by the earlier work of Deniz [5], Peng et al. [18] (see also [17, 20])
and Goswami et al. [1], in the present paper we introduce new subclasses of the
function class Σ of complex order γ ∈ C∗ := C \ {0}, involving Hohlov operator
Ia,b,c, and we find estimates on the coefficients |a2| and |a3| for the functions that
belong to these new subclasses of functions of the class Σ. Several related classes
are also considered, and connection to earlier known results are made.

Definition 2.2
For 0 ≤ λ ≤ 1 and 0 ≤ β < 1, a function f ∈ Σ is said to be in the class
S
a,b,c
Σ (γ, λ, β) if the following two conditions are satisfied:

1 + 1
γ

[
z(Ia,b,cf(z))′

(1− λ)z + λIa,b,cf(z) − 1
]
∈ Pm(β) (6)

and
1 + 1

γ

[
w(Ia,b,cg(w))′

(1− λ)w + λIa,b,cg(w) − 1
]
∈ Pm(β), (7)

where γ ∈ C∗, the function g is given by (2) and z, w ∈ U.
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Definition 2.3
For 0 ≤ λ ≤ 1 and 0 ≤ β < 1, a function f ∈ Σ is said to be in the class
K
a,b,c
Σ (γ, λ, β) if it satisfies the following two conditions:

1 + 1
γ

[
z(Ia,b,cf(z))′ + z2(Ia,b,cf(z))′′

(1− λ)z + λz(Ia,b,cf(z))′ − 1
]
∈ Pm(β) (8)

and
1 + 1

γ

[
w(Ia,b,cg(w))′ + w2(Ia,b,cg(w))′′

(1− λ)w + λw(Ia,b,cg(w))′ − 1
]
∈ Pm(β), (9)

where γ ∈ C∗, the function g is given by (2) and z, w ∈ U.

On specializing the parameters λ one can state various new subclasses of Σ.
In order to derive our main results, we shall need the following lemma.

Lemma 2.1 ([1, Lemma 2.1])
Let the function Φ(z) = 1 +

∞∑
n=1

hnz
n, z ∈ U be such that Φ ∈ Pm(β). Then

|hn| ≤ m(1− β), n ≥ 1.

By employing the techniques used earlier by Deniz [5], in the following section
we find estimates of the coefficients |a2| and |a3| for the functions of the above-
defined subclasses Sa,b,cΣ (γ, λ, β) and K

a,b,c
Σ (γ, λ, β) of the function class Σ.

3. Coefficient bounds for the function class S
a,b,c
Σ (γ, λ, β)

We begin by finding the estimates on the coefficients |a2| and |a3| for functions
belonging to the class S

a,b,c
Σ (γ, λ, β). Supposing that the functions p, q ∈ Pm(β),

with

p(z) = 1 +
∞∑
k=1

pkz
k, z ∈ U, (10)

q(z) = 1 +
∞∑
k=1

qkz
k, z ∈ U, (11)

from Lemma 2.1 it follows that

|pk| ≤ m(1− β), (12)
|qk| ≤ m(1− β) for all k ≥ 1. (13)

Theorem 3.1
If the function f given by (1) belongs to the class S

a,b,c
Σ (γ, λ, β), then

|a2| ≤ min
{√

m|γ|(1− β)
|(λ2 − 2λ)ϕ2

2 + (3− λ)ϕ3|
; m|γ|(1− β)

(2− λ)ϕ2

}
(14)



Bi-univalent functions of complex order [31]

and

|a3| ≤ min
{
m|γ|(1− β)
(3− λ)ϕ3

+ m|γ|(1− β)
|(λ2 − 2λ)ϕ2

2 + (3− λ)ϕ3|
;

m|γ|(1− β)
(3− λ)ϕ3

(
1 + m|γ|(2λ− λ2)(1− β)

(2− λ)2ϕ2
2

)
; (15)

m|γ|(1− β)
(3− λ)ϕ3

(
1 +m|γ|(1− β) |(λ

2 − 2λ)ϕ2
2 + 2(3− λ)ϕ3|

(2− λ)2ϕ2
2

)}
,

where ϕ2 and ϕ3 are given by (5).

Proof. Since f ∈ S
a,b,c
Σ (γ, λ, β) from (6) and (7) it follows that

1 + 1
γ

[
z (Ia,b,cf(z))′

(1− λ)z + λIa,b,cf(z) − 1
]

= 1 + 2− λ
γ

ϕ2a2z +
[
λ2 − 2λ

γ
ϕ2

2a
2
2 + 3− λ

γ
ϕ3a3

]
z2 + . . . (16)

=: p(z)

and

1 + 1
γ

[
w (Ia,b,cg(w))′

(1− λ)w + λIa,b,cg(w) − 1
]

= 1− 2− λ
γ

ϕ2a2w +
[
λ2 − 2λ

γ
ϕ2

2a
2
2 + 3− λ

γ
ϕ3(2a2

2 − a3)
]
w2 + . . . (17)

=: q(w),

where p, q ∈ Pm(β), and are of the form (10) and (11), respectively. Now, equating
the coefficients in (16) and (17) we get

p1 = 2− λ
γ

ϕ2a2, (18)

p2 = λ2 − 2λ
γ

ϕ2
2a

2
2 + 3− λ

γ
ϕ3a3, (19)

q1 = −2− λ
γ

ϕ2a2 (20)

and
q2 = λ2 − 2λ

γ
ϕ2

2a
2
2 + 3− λ

γ
ϕ3(2a2

2 − a3). (21)

From (18) and (20) we find that

a2 = γp1

(2− λ)ϕ2
= −γq1

(2− λ)ϕ2
, (22)
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which implies

|a2| ≤
|γ|m(1− β)
(2− λ)ϕ2

. (23)

Adding (19) and (21), by using (22) we obtain

[2(λ2 − 2λ)ϕ2
2 + 2(3− λ)ϕ3]a2

2 = γ(p2 + q2).

Now, by using (12) and (13), we get

|a2|2 ≤
m|γ|(1− β)

|(λ2 − 2λ)ϕ2
2 + (3− λ)ϕ3|

, (24)

hence

|a2| ≤

√
m|γ|(1− β)

|(λ2 − 2λ)ϕ2
2 + (3− λ)ϕ3|

,

which gives the bound on |a2| as asserted in (14).
Next, in order to find the upper-bound for |a3|, by subtracting (21) from (19)

we get
2(3− λ)ϕ3a3 = γ(p2 − q2) + 2(3− λ)ϕ3a

2
2. (25)

It follows from (12), (13), (24) and (25) that

|a3| ≤
m|γ|(1− β)
(3− λ)ϕ3

+ m|γ|(1− β)
|(λ2 − 2λ)ϕ2

2 + (3− λ)ϕ3|
.

From (18) and (19) we have

a3 = 1
(3− λ)ϕ3

(
γp2 −

γ2(λ2 − 2λ)p2
1

(2− λ)2ϕ2
2

)
,

hence

|a3| ≤
m|γ|(1− β)
(3− λ)ϕ3

(
1 + m|γ(λ2 − 2λ)|(1− β)

(2− λ)2ϕ2
2

)
.

Further, from (18) and (21) we deduce that

|a3| ≤
m|γ|(1− β)
(3− λ)ϕ3

(
1 +m|γ|(1− β) |(λ

2 − 2λ)ϕ2
2 + 2(3− λ)ϕ3|

(2− λ)2ϕ2
2

)
and thus we obtain the conclusion (15) of our theorem.

Remark 3.1
For a = c and b = 1, we have ϕn = 1 for all n ≥ 1. Taking γ = 1 and m = 2
in Theorem 3.1, for the special cases λ = 1 and λ = 0 we obtain more accurate
results corresponding to the results obtained in [20, 19].
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4. Coefficient bounds for the function class K
a,b,c
Σ (γ, λ, β)

Theorem 4.1
If the function f given by (1) belongs to the class K

a,b,c
Σ (γ, λ, β) then

|a2| ≤ min
{√

m|γ|(1− β)
|4(λ2 − 2λ)ϕ2

2 + 3(3− λ)ϕ3|
; m|γ|(1− β)

2(2− λ)ϕ2

}
(26)

and

|a3| ≤ min
{
m|γ|(1− β)
3(3− λ)ϕ3

(
1 + m|γ|(2λ− λ2)(1− β)

(2− λ)2ϕ2
2

)
;

m|γ|(1− β)
3(3− λ)ϕ3

+ m|γ|(1− β)
|4(λ2 − 2λ)ϕ2

2 + 3(3− λ)ϕ3|
;

m|γ|(1− β)
3(3− λ)ϕ3

+ m2|γ|2(1− β)2

3(3− λ)ϕ3

(
λ

λ− 2 + 3(3− λ)ϕ3

2(2− λ)2ϕ2
2

)}
, (27)

where ϕ2 and ϕ3 are given by (5).

Proof. For f ∈ K
a,b,c
Σ (γ, λ, β), from the definition relations (8) and (9) it follows

that

1 + 1
γ

[
z(Ia,b,cf(z))′ + z2(Ia,b,cf(z))′′

(1− λ)z + λz(Ia,b,cf(z))′ − 1
]

= 1 + 2(2− λ)
γ

ϕ2a2z +
[

4(λ2 − 2λ)
γ

ϕ2
2a

2
2 + 3(3− λ)

γ
ϕ3a3

]
z2 + . . . (28)

=: p(z)

and

1 + 1
γ

[
w(Ia,b,cg(w))′ + w2(Ia,b,cg(w))′′

(1− λ)w + λz(Ia,b,cg(w))′ − 1
]

= 1− 2(2− λ)
γ

ϕ2a2w (29)

+
[

4(λ2 − 2λ)
γ

ϕ2
2a

2
2 + 3(3− λ)

γ
ϕ3(2a2

2 − a3)
]
w2 + . . .

=: q(w),

where p, q ∈ Pm(β), and are of the form (10) and (11), respectively. Now, equating
the coefficients in (28) and (29), we get

p1 = 2
γ

(2− λ)ϕ2a2, (30)

p2 = 1
γ

[4(λ2 − 2λ)ϕ2
2a

2
2 + 3(3− λ)ϕ3a3], (31)
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q1 = − 2
γ

(2− λ)ϕ2a2

and
q2 = 1

γ
[4(λ2 − 2λ)ϕ2

2a
2
2 + 3(3− λ)(2a2

2 − a3)ϕ3]. (32)

From (30) we get
a2 = p1γ

2(2− λ)ϕ2
, (33)

further, by adding (31) and (32), and using (33) we have

a2
2 = (p2 + q2)γ

8(λ2 − 2λ)ϕ2
2 + 6(3− λ)ϕ3

. (34)

Now, from (30) and (34), according to Lemma 2.1, we easily deduce the inequality
(26).

Next, in order to find the upper-bound for |a3|, from (31), by using (33) we
have

a3 = p2γ

3(3− λ)ϕ3
− (λ2 − 2λ)p2

1γ
2

3(2− λ)2(3− λ)ϕ3
.

Subtracting (32) from (31) we obtain

−6(3− λ)ϕ3a3 + 6(3− λ)a2
2ϕ3 = (p2 − q2)γ

and using (34) we deduce

a3 = (p2 + q2)γ
8(λ2 − 2λ)ϕ2

2 + 6(3− λ)ϕ3
− (p2 − q2)γ

6(3− λ)ϕ3
.

Finally, from (32) we compute

4
(
λ2 − 2λ

)
ϕ2

2a
2
2 + 6(3− λ)a2

2ϕ3 − γq2 = 3(3− λ)ϕ3a3

and replacing in this the value of a2 with those given by (33) we get

a3 = 1
3(3− λ)ϕ3

(
λ

λ− 2 + 3(3− λ)ϕ3

2(2− λ)2ϕ2
2

)
p2

1γ
2 − q2γ

3(3− λ)ϕ3
.

Proceeding on lines similarly to the proof of Theorem 3.1 and applying the
Lemma 2.1, we get the desired estimate given in (27).

Remark 4.1
(i) If a = 1, b = 1 + δ, c = 2 + δ, with Re δ > −1, then the operator Ia,b,c turns

into well-known Bernardi operator, that is

Bf (z) := Ia,b,cf(z) = 1 + δ

zδ

∫ z

0
tδ−1f(t) d t.

(ii) Moreover, the operators I1,1,2 and I1,2,3 are the well-known Alexander and
Libera operators, respectively.
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(iii) Further, if we take b = 1 in (4), then Ia,1,c immediately yields the Carlson-
Shaffer operator, that is L(a, c) := Ia,1,c.

Remark that, various other interesting corollaries and consequences of our main
results, which are asserted by Theorem 3.1 and Theorem 4.1 above, can be derived
similarly. The details involved may be left as exercises for the interested reader.
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