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The aim of this paper is to show that for any ruled surface X

with a unisecant polarization L ≡ C0 + µ0f the Seshadri constant of L

at every point of X is equal 1.

[]\_^ `QaUbYc0d0e0fYaUg c0`

We investigate Seshadri constants of ample line bundles on ruled surfaces.
In general it is difficult to calculate Seshadri constants and their values are
known only in few examples. As for lower bounds, if a line bundle L is very
ample, then we have always ε(L; x) ≥ 1. Ein and Lazarsfeld proved that on
any smooth surface X with arbitrary polarization L, the previous bound is
somewhat surprisingly valid in almost every point of X , more exactly: we have
ε(L; x) ≥ 1 for x very general (see [2]). On the other hand Bauer proved that if
L is very ample and there is a line passing through a point x, then ε(L; x) = 1
(see [1]). Here we investigate unisecant polarizations on ruled surfaces. In this
situation there is a line passing through every point of x but the polarization is
usually not very ample. Our main result states that nevertheless the Seshadri
constant at every point is equal 1.

Main Theorem
If X is a ruled surface with a unisecant polarization L ≡ C0 + µ0f , then the
Seshadri constant of L at every point of X is equal 1.

We follow the notation and terminology used by R. Hartshorne in [4]. All
facts recalled in the introduction to theory of ruled surfaces are taken from [4]
V section 2, and we use them here without proofs.

Throughout this paper we work over the field C of complex numbers. For
any coherent sheaf on a (smooth, projective) variety X , we write H i(F) instead
of H i(X,F), and we denote by hi(F) the dimension of the cohomology group
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H i(F). As customarily we use additive notation for tensor powers of line
bundles.

{ \_| e0} ~0d��0e0b��U�NfQ~0�
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Definition 1
A geometrically ruled surface, or simply a ruled surface, is a surface X , together
with a surjective morphism π: X −→ C to a (nonsingular) curve C, such that
for every point y ∈ C, the fibre Xy is isomorphic to P1, and such that π admits
a section (i.e. a morphism s: C −→ X such that π ◦ s = idC).

Example 1
If C is a nonsingular curve, then C × P1 with the first projection is a ruled
surface.

Example 2
Let E be a vector bundle of rank 2 over a curve C. The associated projective
space bundle P(E) with the projection morphism π: P(E) −→ C is a ruled
surface.

The following proposition shows that all ruled surfaces arise as in the above
example.

Proposition 1 ([4] V, 2.2)
If π: X −→ C is a ruled surface, then there exists a vector bundle E of rank 2
on C such that X ∼= P(E) over C. If E and E ′ are two vector bundles of rank 2
on C, then P(E) and P(E ′) are isomorphic as ruled surfaces over C if and only
if there is an invertible sheaf L on C such that E ′ ∼= E ⊗ L.

Remark 1
A surface X is called a birationally ruled surface if is birationally equivalent to
C × P1 for some curve C. Since P2 is birational to P1 × P1, this means that
every rational surface is a birationally ruled surface.

Let π: X −→ C be a ruled surface over a curve C of a genus g. By Proposi-
tion 1, we can choose E0 a locally free sheaf of rank 2 on C such that X ∼= P(E0).
Moreover we can assume that H0(E0) 6= 0 but for all invertible sheaves L on
C with degL < 0, we have H0(E0 ⊗ L) = 0. A sheaf E0 with this property is
called normalized.

In general E0 is not necessarily determined uniquely, but its invariant e =
− deg(E0) is fixed.
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Example 3
Let C be a curve with positive genus, and E = OC ⊕L where deg(L) = 0 but
L � OC . In this case we have two choices of normalized E0 , namely E and
E ⊗ L−1.

Let e be the divisor on C corresponding to the invertible sheaf
∧2 E0, then

e = − deg(e). Moreover, there exists a section s0: C −→ X with the image C0 ,
such that OX(C0) ∼= OX(1), where OX(1) is the Serre line bundle on X (for
more details see [4] V, 2.8).

Proposition 2 ([4] V, 2.3)
Under above assumptions we have:

Pic(X) ∼= Z · C0 ⊕ π∗ Pic(C).

Also

Num(X) ∼= Z · C0 ⊕ Z · f,

where f is the class of a fiber. Moreover C0.f = 1, f2 = 0 and C2
0 = −e (see

Proposition 3).

If b is any divisor on C, then we denote the divisor π∗
b on X by bf . Thus

from Proposition 2 we have that, any element of Pic(X) can be written as
aC0 + bf with a ∈ Z and b ∈ Pic(C). Any element of Num(X) can be written
as aC0 + bf with a, b ∈ Z.

Lemma 1 ([4] V, 2.20 and 2.11)
Using above notations

(1) the canonical divisor K on X is given by

K ∼ −2C0 + (t + e)f

where t is the canonical divisor on C.

(2) For numerical equivalence, we have

K ≡ −2C0 + (2g − 2 − e)f

and therefore

K2 = 8(1 − g).

Proposition 3 ([4] V, 2.6 and 2.9)
Let E be a locally free sheaf of rank two on a curve C, and let X be the ruled
surface P(E). Let OX(1) be the invertible sheaf OP(E)(1). Then there ex-
ists a one-to-one correspondence between sections s: C −→ X and surjections
E −→ L −→ 0, where L is an invertible sheaf on C, given by L = s∗OX(1).
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Furthermore, if D is any section of X corresponding to a surjection E −→
L −→ 0, and if L = OC(d), for some divisor d on C, then deg(d) = C0.D, and
D ∼ C0 + (d − e)f . In particular, we have that C2

0 = deg(e) = −e.

From Proposition 2 and Proposition 3 it follows that C0 is a curve on X
with the minimum self-intersection. Next lemma gives us more information
about a number of such curves.

Lemma 2 ([3], 2.8)
Let π: X = P(E0) −→ C be a ruled surface. Then h0(OX (C0)) = 2 if X ∼=
C × P1 and h0(OX (C0)) = 1 in all other cases.

This means that the curve C0 is unique in its class of linear equivalence,
except when the ruled surface is the product C × P1.

¡ �j�x�j¢£�j�j�j�5¤j¥ ���,¦j¥ �j���j¦j���$�5�x�j�

Definition 2
A ruled surface X ∼= P(E0) is called decomposable if E0 is a direct sum of two
invertible sheaves.

Theorem 1 ([4] V, 2.12)
Let X be a ruled surface over a curve C of genus g, determined by a normalized
locally free sheaf E0 .

(1) If E0 is decomposable, then E0
∼= OC ⊕ L for some L with deg(L) ≤ 0.

Therefore e ≥ 0. All values of e ≥ 0 are possible.

(2) If E0 is indecomposable, then −g ≤ e ≤ 2g − 2.

Let X ∼= P(E0) be a decomposable ruled surface. Geometrically it means
that X has two disjoint unisecant curves C0 and C1 (i.e. Ci.f = 1 for each fiber
f). These curves are given by surjections E0

∼= OC(e) ⊕OC −→ OC −→ 0 and
E0

∼= OC(e) ⊕ OC −→ OC(e) −→ 0, respectively. Moreover from Proposition
3, it follows that C1 ∼ C0 − ef .

§0\_¨Qg `0~0�Nbu�0©0�QaU~0ªI��c0`�bYe0} ~0d��0e0b��U�NfQ~0�

We start by recalling some basic facts.

Theorem 2 ([4] V, 2.20 and 2.21)
Let X be a ruled surface over a curve C of genus g, with a fiber f , the section
C0 and e = − deg(e) = −C2

0 .

(1) If Y ≡ aC0 + bf is an irreducible curve different from C0 and a fiber,
then
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(a) a > 0 and b ≥ ae for e ≥ 0,

(b) (a = 1 and b ≥ 0) or (a ≥ 2 and b ≥ 1
2ae) for e < 0.

(2) A divisor D ≡ aC0 + bf is ample if and only if

(a) a > 0 and b > ae for e ≥ 0,

(b) a > 0 and b > 1
2ae for e < 0.

Remark 2
There are no better numerical conditions characterizing irreducible curves on
ruled surfaces as this property does not depend only on the numerical equiva-
lence class of the considered line bundle.

�j� i��G¬j¥ �j¢£�j�x�$�5�,u�$�,�5�j�x�$�j�,¢£���$� �j�®�x�"�I�,¦j¥ �j�®�j¦j���$�5�x�

Let π: X −→ C be a geometrically ruled surface and let x be a point on X
with π(x) = P . We denote by Pf the fiber through the point x.

Let σ: Xx −→ X be the blow-up of X at x with the exceptional divisor

E = σ−1(x). We have σ∗(Pf) = P̃ f + E, where P̃ f = σ−1(Pf \ {x}) is

the strict transform of the fiber Pf . Since P̃ f ∼= P1, and P̃ f
2

= −1, this

means that we can blow-down the surface Xx along P̃ f (this follows from the
Castelnuovo’s criterion). We denote by τ : Xx −→ X ′ the blow-down of Xx

along the exceptional curve E ′ = P̃ f .

Definition 3
An elementary transformation of X at the point x is the birational map
ν: X ′ −→ X where ν = σ ◦ τ−1. The surface X ′ is called the elementary
transform of X at x. For a curve C on the surface X we define its strict
transform as C ′ = τ∗(C̃).

Note that (Pf)′ is zero as τ contracts P̃ F to a point. We observe furter
that:

Remark 3
If X ′ is an elementary transform of X at x, then X is the elementary transform
of X ′ at τ(y), where y is the intersection of the exceptional divisors E and E ′

on Xx . Moreover, if Pf ′ is the fiber through the point τ(y), then P̃ f ′ = E.

Assume that π: X −→ C is a geometrically ruled surface over a curve C of
genus g with the invariant e. Let ν: X ′ −→ X be the elementary transformation
of the surface X at a point x with π(x) = P . The question is: how the
elementary transformation ν changes properties of X?
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Proposition 4 ([3], 4.4)
With above assumptions we have:

(1) If b is a divisor on C, then ν∗(bf) = bf ′.

(2) If D is a curve on X, then ν∗D = D′ + (multx D) · Pf ′.

(3) If D is a n-secant curve on X (i.e. D ≡ nC0 + bf for some b ∈ Z) and
G is a m-secant curve on X, then

D′.G′ = D.G + nm − n · multx G − m · multx D.

Therefore, if D and G are unisecant curves on X then:

(a) if x ∈ D ∩ G, then D′.G′ = D.G − 1.

(b) if x /∈ D ∪ G, then D′.G′ = D.G + 1.

(c) if x ∈ D but x /∈ G, then D′.G′ = D.G.

(4) If D is a unisecant curve on X, then ν∗ν
∗D = D + Pf .

Let C0 be the minimum self-intersection curve on X . We know that C2
0 =

−e and for any other curve D on X , we have D2 ≥ −e. Moreover assume
that x ∈ C0 . Let C ′

0 denote the strict transform of C0 by the elementary
transformation X at x. From Proposition 4 it follows that C ′2

0 = C2
0 − 1, but

for any other unisecant curve D we have D′2 ≥ D2−1. It means that D′2 ≥ C ′2
0

and C ′
0 is the minimum self-intersection curve on X ′. Since C ′2

0 = −e−1, then
e′ = e + 1.

In this way we gave the idea of the following

Theorem 3 ([3], 4.9)
Let π: P(E0) −→ C be a ruled surface. Fix a point x on the minimum self-
intersection curve C0 on X, with π(x) = P . Let X ′ denote the elementary
transform of X at x. Then X ′ is a ruled surface corresponding to a normalized
sheaf E ′

0 with
∧2 E ′

0
∼= OC(e′) satisfying e

′ ∼ e − P (e′ = e + 1). Furthermore,
the minimum self-intersection curve on X ′ is C ′

0 .

Let X0 be an indecomposable ruled surface over a curve C of genus g and
invariant e. If we apply an elementary transformation to X at a point on C0 ,
then we obtain a ruled surface X1 with invariant e1 = e+1 (from Theorem 3).
We can take n such transformations so that en = e + n > 2g − 2. This means
that after n steps the surface Xn is decomposable (see Theorem 1). Applying
Remark 3 to surfaces X and Xn, we have that X can be obtained from Xn by
elementary transformations. We proved the following

Remark 4 ([3], 4.10)
Any indecomposable ruled surface is obtained from a decomposable one by a
finite number of elementary transformations.
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We can say more, namely

Remark 5 ([3], 4.11)
Any ruled surface over the curve C is obtained from C × P1 applying a finite
number of elementary transformations.

From Remark 5 follows that every ruled surface is birationally ruled surface
(compare with Remark 1).

Remark 3 and Theorem 3 give us useful tools to study numerical properties
of transformed divisors.

Proposition 5
Let ν: X ′ −→ X be the elementary transformation at x ∈ C0 .

(a) Let D be a divisor on X. If D ≡ aC0 + bf with integers a and b, then
ν∗D ≡ aC ′

0 + (a + b)f ′, where C ′
0 and f ′ generate Num(X ′).

(b) Let Y be a divisor on X ′. If Y ≡ pC ′
0 + qf ′ with integers p and q, then

ν∗Y ≡ pC0 + qf .

Proof. We are using the notation introduced in the definition of an ele-
mentary transformation and in the previous propositions.

Part (a). Let

ν∗D ≡ pC ′
0 + qf ′, with p, q ∈ Z. (1)

From Proposition 2 we have that for any fiber f ′

(ν∗D).f ′ = p,

but

(ν∗D).f ′ = (τ∗σ
∗D).f ′ = (σ∗D).(τ∗f ′).

Let τ(y) ∈ f ′. In our notation it means that f ′ = Pf ′. Then

(ν∗D).f ′ = (σ∗D).(P̃ f ′ + E′) = (σ∗D).E + (σ∗D).P̃ f

= (σ∗D).(σ∗(Pf)) − (σ∗D).E = D.(Pf)

= a.

If τ(y) /∈ f ′, then

(ν∗D).f ′ = (σ∗D).(τ∗f ′) = (σ∗D).f̃ ′ = (σ∗D).f̃ = (σ∗D).(σ∗f) = D.f = a.

In this way we proved p = a.
To show that it holds q = a+b, it is enough to test the intersection product

(ν∗D).C ′
0 .

Since x ∈ C0 , then τ(y) /∈ C ′
0 . Moreover from Theorem 3 it follows that

C ′2
0 = C2

0 − 1. (2)
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By Proposition 2, conditions (1) and (2)

(ν∗D).C ′
0 = pC ′2

0 + q = pC2
0 − p + q. (3)

On another hand

(ν∗D).C ′
0 = (σ∗D).(τ∗C ′

0) = (σ∗D).C̃ ′
0 = (σ∗D).C̃0

= (σ∗D).(σ∗C0) − (σ∗D).E = D.C0 (4)

= aC2
0 + b.

Applying the equality p = a for conditions (3) and (4) we have q = a + b.

Part (b). Let Pf ′ denote, as before, the fiber through τ(y). Moreover
assume that

ν∗Y ≡ aC0 + bf. (5)

The idea of the proof for this part is the same as in the part (a). In particular,
it is not difficult to see that a = p. We concentrate more on the second
intersection product i.e. (ν∗Y ).C0.

From conditions (2) and (5) it follows

(ν∗Y ).C0 = aC2
0 + b = aC ′2

0 + a + b. (6)

We have also

(ν∗Y ).C0 = (σ∗(τ
∗Y )).C0 = (τ∗Y ).(σ∗C0) = (τ∗Y ).(C̃0 + E)

= (τ∗Y ).C̃ ′
0 + (τ∗Y ).P̃ f ′

= (τ∗Y ).(τ∗C ′
0) + (τ∗Y ).(τ∗Pf ′ − E′) (7)

= Y.C ′
0 + Y.Pf ′

= pC ′2
0 + q + p.

Applying the equality a = p to (6) and (8) we see that b = q.

Proposition 6
For any n-secant curve D on X its strict transform D′ on X ′ is still an n-secant
curve.

Proof. Let D ≡ nC0 + bf be an n-secant curve on X and let ν: X ′ −→ X
be an elementary transformation at a point x. From Proposition 4 it follows
that

D′ = ν∗D − (multx D) · Pf ′.

Hence by Proposition 5 we have:

(a) if x ∈ C0, then D′ ≡ nC ′
0 + (n + b − multx D)f ′;

(b) if x /∈ C0, then D′ ≡ nC ′
0 + (b − multx D)f ′.
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Let G ≡ C0+µ0f be an ample divisor on X . The question is: what happens
with ampleness of the strict transform G′ ? Is G′ still ample? In general G′

need not to be ample. More precisely we can formulate the following

Proposition 7
With above assumptions, the strict transform G′ is ample except when

(i) in the case e > 0 we have G ≡ C0 + (e + 1)f and we apply an elementary
transformation at a point x ∈ C0 which is also a base point of |G|,

(ii) in the case e < 0 and e odd we have G ≡ C0 + 1
2 (e + 1)f and we apply

an elementary transformation at a base point of |G|.

Proof. Let X be a ruled surface with invariant e, and let D ∈ |G|. As
before, by ν : X ′ −→ X we denote the elementary transformation at a point
x ∈ X .

Case (1). If x ∈ C0, then by Theorem 3 the surface X ′ is ruled with
invariant e′ = e + 1. Moreover by Proposition 5 the strict transform D′ ≡
C ′

0 + (µ0 + 1 − multx D)f ′.
From Theorem 2 it follows that:

(a) for e ≥ 0 we have µ0 ≥ e + 1 and

µ0 + 1 − multx D ≥ e′ + 1 − multx D,

hence D′ is not ample if µ0 = e + 1 and x ∈ D;

(b) for e < 0 and e even, µ0 ≥ 1
2e + 1 and

µ0 + 1 − multx D ≥ 1

2
(e′ + 1) + 1 − multx D,

then D′ always is ample;

(c1) for e = −1 we have µ0 ≥ 0 and

µ0 + 1 − multx D ≥ 1 − multx D;

(c2) for e < −1 and e odd, µ0 ≥ 1
2 (e + 1) and

µ0 + 1 − multx D ≥ 1

2
e′ + 1 − multx D.

It means that D′ is not ample if µ0 = 1
2 (e + 1) and x ∈ D.

Case (2). If x /∈ C0, then by Theorem 3 and Remark 3 the surface X ′ is the
ruled surface with invariant e′ = e − 1. By Proposition 5 the strict transform
D′ ≡ C ′

0 + (µ0 − multx D)f ′.
Using the same technique we have:
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(a1) for e > 0 the coefficient

µ0 − multx D ≥ e′ + 2− multx D,

(a2) for e = 0 we have µ0 ≥ 1 and µ0 − multx D > − 1
2 ,

it means that for e ≥ 0 the strict transform D′ is always ample;

(b) for e < 0 and e even,

µ0 − multx D ≥ 1

2
e′ +

3

2
− multx D,

and D′ is always ample;

(c) for e < 0 and e odd

µ0 − multx D ≥ 1

2
e′ + 1 − multx D,

and D′ is not ample if µ0 = 1
2 (e + 1) and x ∈ D.

´"\_µ"~0�0¶0�Nd0bYg5fQc0`0�QaU�N`QaU�

The concept of Seshadri constants was introduced by Damailly. He asso-
ciated a real number ε(L; x) with an ample line bundle L at a point x of an
algebraic variety X . This number in effect measures how much of positivity of
L can be concentrated at x.

In this section we calculate Seshadri constant for a ruled surface X with a
unisecant polarization i.e. an ample line bundle of type L ≡ C0 + µ0f .

Let us recall the definition and some properties of Seshadri constants.

Definition 4
Let L be a nef line bundle on a smooth projective variety X . Fix a point x on
X . Let σ: Xx −→ X be the blowing-up of X at the point x with the exceptional
divisor E = σ−1(x). The Seshadri constant of L at x is the non-negative real
number

ε(L; x) = sup{ε ∈ R | σ∗L − εE is nef}.

From Kleiman’s nefness criterion it follows that ε(L; x) ≤ dim X
√

LdimX . If
the value of ε(L; x) is less than the previous upper bound, then we say that
the Seshadri constant is L-submaximal (or simply submaximal).

Remark 6
We can define the Seshadri constant of L at x as
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ε(L; x) = inf
D3x

{
L.D

multx D

}

where the infimum is taken over all (irreducible) curves D (see [5] 5.1.5).

If L.D
multx D

= ε(L; x), then we say that the curve D computes the Seshadri
constant.

Assume moreover that L is an ample line bundle. For a fixed point x ∈ X ,
we denote by mx ⊂ OX its maximal ideal.

Definition 5
We say that the complete linear system |L| separates s-jets at x, if the natural
map

H0(L) −→ H0
(
L ⊗OX/m

s+1
x

)

taking sections of L to their s-jets is surjective. By s(L, x) we denote the
maximal number such that |L| separates s-jets at x.

Using above terminology we have the following

Proposition 8 ([5], 5.1.17)
For an ample line bundle L on X

ε(L; x) = lim sup
k→∞

s(kL, x)

k
.

Theorem 4 (Main theorem)
If X is a ruled surface with an invariant e and a polarization L ≡ C0 + µ0f ,
then for every point x ∈ X the Seshadri constant ε(L; x) = 1.

Proof. Since L ≡ C0 + µ0f is ample, then from Theorem 2 it follows that:

(a) µ0 ≥ e + 1 for e ≥ 0;

(b) µ0 ≥ 1
2e + 1 for e < 0 and e even;

(c) µ0 ≥ 1
2 (e + 1) for e < 0 and e odd.

Fix a point x ∈ X . Let D ≡ aC0 + bf with a, b ∈ Z, be an irreducible curve
on X different from C0 and a fiber f . By m we denote the multiplicity of D at
the point x. Since D is a-secant it must be m ≤ a.

To calculate the Seshadri constant in cases (a) and (b), it is enough to study

the Seshadri quotients i.e. L.D
m

= b+a(µ0−e)
m

.
By assumption D is an irreducible curve. By Theorem 2 we have two cases

to consider.

Case a > 0 and b ≥ ae.
This implies
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L.D

m
≥ a(e + 1)

m
≥ e + 1 ≥ 1.

Case (a = 1 and b > 0) or (a ≥ 2 and b ≥ 1
2ae).

If a = 1 then also m = 1 and we have

L.D

m
≥ 1 − 1

2
e > 1.

Also it is easy to check that for a ≥ 2 and b ≥ 1
2ae the Seshadri quotient

satisfies
L.D

m
≥ a

m
≥ 1.

Thus we showed that ε(L; x) ≥ 1.

For any ruled surface X and a unisecant line bundle L we have L.Pf
multx Pf

= 1,

where Pf is the fiber through x. Thus ε(L; x) = 1 and Pf computes the
Seshadri constant.

Using the same method in the case (c) we have:
for a = 1 and b > 0 the quotient

L.D

m
≥ 1

2
− 1

2
e ≥ 1,

but for a ≥ 2 and b ≥ 1
2ae it follows only that:

L.D

m
≥ 1

2
,

and it means that we still do not know the value of the Seshadri constant at
the point x.

To prove that ε(L; x) = 1 for e < 0 and e odd, we use a different method.
Let p be a point on X such that p 6= x and p not a base point of |L|. Apply

the elementary transformation at the point p. Since x 6= p, then ν−1(x) = x.
Moreover from Proposition 7 it follows that L′ is an ample line bundle on the
surface X ′ with even invariant e′. By (2) we have that ε(L′; x) = 1. Separating
s-jets at x is a local property of L at x and the elementary transformation
change the surface X only in the neighborhood of the fiber through p. It
means that we can choose p such that s(L; x) = s(L′; x). Note that there is
an obvious isomorphism H0(X, L) ∼= H0(X ′, L′). Then Proposition 8 implies
ε(L; x) = ε(L′; x) = 1.
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