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Abstract. In this paper, we study ∗-g-frames in tensor products of Hilbert
C∗-modules. We show that a tensor product of two ∗-g-frames is a ∗-g-frame,
and we get some result.

1. Introduction

Frames for Hilbert spaces were introduced in 1952 by Duffin and Schaefer [9].
They abstracted the fundamental notion of Gabor [11] to study signal processing.
Many generalizations of frames were introduced, frames of subspaces [3], Pseudo-
frames [16], oblique frames [6], g-frames [14], ∗-frame [2] in Hilbert C∗-modules. In
2000, Frank-Larson [10] introduced the notion of frames in Hilbert C∗-modules as
a generalization of frames in Hilbert spaces. Recentely, A. Khosravi and B. Khos-
ravi [14] introduced the g-frame theory in Hilbert C∗-modules, and Alijani, and
Dehghan [2] introduced the g-frame theory in Hilbert C∗-modules. N. Bounader
and S. Kabbaj [4] and A. Alijani [1] introduced the ∗-g-frames which are generaliza-
tions of g-frames in Hilbert C∗-modules. In this article, we study the ∗-g-frames in
tensor products of Hilbert C∗-modules and ∗-g-frames in two Hilbert C∗-modules
with different C∗-algebras. In section 2, we briefly recall the definitions and ba-
sic properties of C∗-algebra, Hilbert C∗-modules, frames, g-frames, ∗-frames and
∗-g-frames in Hilbert C∗-modules. In section 3, we investigate tensor product
of Hilbert C∗-modules, we show that tensor product of ∗-g-frames for Hilbert
C∗-modules H and K, present ∗-g-frames for H ⊗ K, and tensor product of their
∗-g-frame operators is the ∗-g-frame operator of the tensor product of ∗-g-frames.
We also study ∗-g-frames in two Hilbert C∗-modules with different C∗-algebras.
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2. Preliminaries

Let I and J be countable index sets. In this section we briefly recall the defini-
tions and basic properties of C∗-algebra, Hilbert C∗-modules, g-frame, ∗-g-frame
in Hilbert C∗-modules. For information about frames in Hilbert spaces we refer
to [5]. Our reference for C∗-algebras is [8, 7]. For a C∗-algebra A, an element
a ∈ A is positive (a ≥ 0) if a = a∗ and sp(a) ⊂ R+. A+ denotes the set of positive
elements of A.

Definition 2.1 ([13])
Let A be a unital C∗-algebra and H be a left A-module such that the linear struc-
tures of A and H are compatible. H is a pre-Hilbert A-module if H is equipped
with an A-valued inner product 〈., .〉A : H × H → A such that is sesquilinear,
positive definite and respects the module action. In the other words,

(i) 〈x, x〉A ≥ 0 for all x ∈ H and 〈x, x〉A = 0 if and only if x = 0,

(ii) 〈ax+ y, z〉A = a〈x, y〉A + 〈y, z〉A for all a ∈ A and x, y, z ∈ H,

(iii) 〈x, y〉A = 〈y, x〉∗A for all x, y ∈ H.

For x ∈ H, we define ‖x‖ = ‖〈x, x〉A‖
1
2 . If H is complete with ‖.‖, it is called a

Hilbert A-module or a Hilbert C∗-module over A. For every a in C∗-algebra A,
we have |a| = (a∗a) 1

2 and the A-valued norm on H is defined by |x| = 〈x, x〉
1
2
A for

x ∈ H.
Let H and K be two Hilbert A-modules. A map T : H → K is said to be

adjointable if there exists a map T ∗ : K → H such that 〈Tx, y〉A = 〈x, T ∗y〉A for
all x ∈ H and y ∈ K.

From now on, we assume that {Vi}i∈I and {Wj}j∈J are two sequences of
Hilbert A-modules. We also reserve the notation End∗A(H,K) for the set of all
adjointable operators from H to K and End∗A(H,H) is abbreviated to End∗A(H).

Definition 2.2 ([13])
Let H be a Hilbert A-module. A family {xi}i∈I of elements of H is a frame for
H, if there exist two positive constants A, B such that for all x ∈ H,

A〈x, x〉A ≤
∑
i∈I

〈x, xi〉A〈xi, x〉A ≤ B〈x, x〉A. (1)

The numbers A and B are called lower and upper bound of the frame, respectively.
If A = B = λ, the frame is λ-tight. If A = B = 1, it is called a normalized tight
frame or a Parseval frame. If the sum in the middle of (1) is convergent in norm,
the frame is called standard.

Definition 2.3 ([14])
Let H and K be Hilbert A-modules and for each i ∈ I, Vi be a closed submodule of
K. We call a sequence {Λi ∈ End∗A(H, Vi) : i ∈ I} a g-frame in Hilbert A-module
H with respect to {Vi : i ∈ I} if there exist two positive constants C, D such that
for all x ∈ H,

C〈x, x〉A ≤
∑
i∈I

〈Λix,Λix〉A ≤ D〈x, x〉A. (2)
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The numbers C and D are called lower and upper bound of the g-frame, respec-
tively. If C = D = λ, the g-frame is λ-tight. If C = D = 1, it is called a g-Parseval
frame. If the sum in the middle of (2) is convergent in norm, the g-frame is called
standard.

Definition 2.4 ([2])
Let H be a Hilbert A-module. A family {xi}i∈I of elements of H is a ∗-frame for
H, if there exist strictly non-zero elements A, B in A such that for all x ∈ H,

A〈x, x〉AA∗ ≤
∑
i∈I

〈x, xi〉A〈xi, x〉A ≤ B〈x, x〉AB∗. (3)

The numbers A and B are called lower and upper bound of the ∗-frame, respec-
tively. If A = B = λ, the ∗-frame is λ-tight. If A = B = 1, it is called a normalized
tight ∗-frame or a Parseval ∗-frame. If the sum in the middle of (3) is convergent
in norm, the ∗-frame is called standard.

Definition 2.5 ([4])
Let H and K be Hilbert A-modules and for each i ∈ I, Vi be a closed submodule
of K. We call a sequence {Λi ∈ End∗A(H, Vi) : i ∈ I} a ∗-g-frame in Hilbert
A-module H with respect to {Vi : i ∈ I} if there exist strictly non-zero elements
A, B in A such that for all x ∈ H,

A〈x, x〉AA∗ ≤
∑
i∈I

〈Λix,Λix〉A ≤ B〈x, x〉AB∗. (4)

The numbers A and B are called lower and upper bound of the ∗-g-frame, re-
spectively. If A = B = λ, the ∗-g-frame is λ-tight. If A = B = 1, it is called
a ∗-g-Parseval frame. If the sum in the middle of (4) is convergent in norm, the
∗-g-frame is called standard.
The ∗-g-frame operator SΛ is defined by SΛx =

∑
i∈I Λ∗i Λix for all x ∈ H.

3. Main results

Suppose that A,B are C∗-algebras and we take A ⊗ B as the completion of
A ⊗alg B with the spatial norm. A ⊗ B is the spatial tensor product of A and
B, also suppose that H is a Hilbert A-module and K is a Hilbert B-module. We
want to define H⊗K as a Hilbert (A⊗B)-module. Start by forming the algebraic
tensor product H⊗alg K of the vector spaces H, K (over C). This is a left module
over (A ⊗alg B) (the module action being given by (a ⊗ b)(x ⊗ y) = ax ⊗ by
(a ∈ A, b ∈ B, x ∈ H, y ∈ K)). For (x1, x2 ∈ H, y1, y2 ∈ K) we define

〈x1 ⊗ y1, x2 ⊗ y2〉A⊗B = 〈x1, x2〉A ⊗ 〈y1, y2〉B.

We also know that for z =
∑n

i=1 xi ⊗ yi in H ⊗alg K we have 〈z, z〉A⊗B =∑
i,j〈xi, xj〉A⊗〈yi, yj〉B ≥ 0 and 〈z, z〉A⊗B = 0 iff z = 0. This extends by linearity

to an (A⊗alg B)-valued sesquilinear form on H⊗algK, which makes H⊗algK into
a semi-inner-product module over the pre-C∗-algebra (A⊗alg B). The semi-inner-
product on H ⊗alg K is actually an inner product, see [15]. Then H ⊗alg K is an
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inner-product module over the pre-C∗-algebra (A⊗alg B), and we can perform the
double completion discussed in chapter 1 of [15] to conclude that the completion
H⊗K of H⊗algK is a Hilbert (A⊗B)-module. We call H⊗K the exterior tensor
product of H and K. With H, K as above, we wish to investigate the adjointable
operators on H⊗K. Suppose that S ∈ End∗A(H) and T ∈ End∗B(K). We define a
linear operator S ⊗ T on H⊗K by

S ⊗ T (x⊗ y) = Sx⊗ Ty for x ∈ H, y ∈ K.

It is a routine verification that is S∗ ⊗ T ∗ is the adjoint of S ⊗ T , so in fact
S ⊗ T ∈ End∗A⊗B(H ⊗ K). For more details see [8, 15]. We note that if a ∈ A+

and b ∈ B+, then a ⊗ b ∈ (A ⊗ B)+. Plainly if a, b are Hermitian elements of A
and a ≥ b, then for every positive element x of B, we have a⊗ x ≥ b⊗ x.

For the proof of our main results, we need the followings lemma and result.

Lemma 3.1 ([2])
If ϕ : A → B is a ∗-homomorphism between C∗-algebras, then ϕ is increasing, that
is, if a ≤ b, then ϕ(a) ≤ ϕ(b).

Result 3.2 ([13])
If Q ∈ End∗A(H) is an invertible A-linear map then for all z ∈ H ⊗K we have

‖Q∗−1‖−1 · |z| ≤ |(Q∗ ⊗ I)z| ≤ ‖Q‖ · |z|.

Theorem 3.3
Let H and K be two Hilbert C∗-modules over unitary C∗-algebras A and B, respec-
tively. Let {Λi}i∈I ⊂ End∗A(H, Vi) and {Γj}j∈J ⊂ End∗B(K,Wi) be two ∗-g-frames
for H and K with ∗-g-frame operators SΛ and SΓ and ∗-g-frame bounds (A,B) and
(C,D), respectively. Then {Λi⊗Γj}i∈I,j∈J is a ∗-g-frame for Hibert A⊗B-module
H⊗K with ∗-g-frame operator SΛ⊗SΓ and lower and upper ∗-g-frame bounds A⊗C
and B ⊗D, respectively.

Proof. By the definition of ∗-g-frames {Λi}i∈I and {Γj}j∈J we have

A〈x, x〉AA∗ ≤
∑
i∈I

〈Λix,Λix〉A ≤ B〈x, x〉AB∗ for all x ∈ H.

C〈y, y〉BC∗ ≤
∑
j∈J

〈Γjy,Γjy〉B ≤ D〈y, y〉BD∗ for all y ∈ K.

Therefore, for all x ∈ H and all y ∈ K,

(A〈x, x〉AA∗)⊗ (C〈y, y〉BC∗) ≤
∑
i∈I

〈Λix,Λix〉A ⊗
∑
j∈J

〈Γjy,Γjy〉B

≤ (B〈x, x〉AB∗)⊗ (D〈y, y〉BD∗)

Then

(A⊗ C)(〈x, x〉A ⊗ 〈y, y〉B)(A∗ ⊗ C∗) ≤
∑

i∈I,j∈J

〈Λix,Λix〉A ⊗ 〈Γjy,Γjy〉B

≤ (B ⊗D)(〈x, x〉A ⊗ 〈y, y〉B)(B∗ ⊗D∗).
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Consequently,

(A⊗ C)〈x⊗ y, x⊗ y〉A⊗B(A⊗ C)∗ ≤
∑

i∈I,j∈J

〈Λix⊗ Γjy,Λix⊗ Γjy〉A⊗B

≤ (B ⊗D)〈x⊗ y, x⊗ y〉A⊗B(B ⊗D)∗.

Then for all x⊗ y ∈ H ⊗K we have

(A⊗ C)〈x⊗ y, x⊗ y〉A⊗B(A⊗ C)∗

≤
∑

i∈I,j∈J

〈(Λi ⊗ Γj)(x⊗ y), (Λi ⊗ Γj)(x⊗ y)〉A⊗B

≤ (B ⊗D)〈x⊗ y, x⊗ y〉A⊗B(B ⊗D)∗.

The last inequality is satisfied for every finite sum of elements in H ⊗alg K and
then it is satisfied for all z ∈ H ⊗K. It shows that {Λi ⊗ Γj}i∈I,j∈J is ∗-g-frame
for Hibert A ⊗ B-module H ⊗ K with lower and upper ∗-g-frame bounds A ⊗ C
and B ⊗D, respectively.

By the definition of ∗-g-frame operator SΛ and SΓ we have

SΛx =
∑
i∈I

Λ∗i Λix for all x ∈ H

and
SΓy =

∑
j∈J

Γ∗j Γjy for all y ∈ K.

Therefore

(SΛ ⊗ SΓ)(x⊗ y) = SΛx⊗ SΓy

=
∑
i∈I

Λ∗i Λix⊗
∑
j∈J

Γ∗j Γjy

=
∑

i∈I,j∈J

Λ∗i Λix⊗ Γ∗j Γjy

=
∑

i∈I,j∈J

(Λ∗i ⊗ Γ∗j )(Λix⊗ Γjy)

=
∑

i∈I,j∈J

(Λ∗i ⊗ Γ∗j )(Λi ⊗ Γj)(x⊗ y)

=
∑

i∈I,j∈J

(Λi ⊗ Γj)∗)(Λi ⊗ Γj)(x⊗ y).

Now by the uniqueness of ∗-g-frame operator, the last expression is equal to
SΛ⊗Γ(x ⊗ y). Consequently we have (SΛ ⊗ SΓ)(x ⊗ y) = SΛ⊗Γ(x ⊗ y). The
last equality is satisfied for every finite sum of elements in H ⊗alg K and then
it is satisfied for all z ∈ H ⊗K. It shows that (SΛ ⊗ SΓ)(z) = SΛ⊗Γ(z). So
SΛ⊗Γ = SΛ ⊗ SΓ.
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Theorem 3.4
If Q ∈ End∗A(H) is invertible and {Λi}i∈I ⊂ End∗A⊗B(H⊗K) is a ∗-g-frame for
H⊗K with lower and upper ∗-g-frame bounds A and B respectively, and ∗-g-frame
operator S, then {Λi(Q∗ ⊗ I)}i∈I is a ∗-g-frame for H⊗K with lower and up-
per ∗-g-frame bounds ‖Q∗−1‖−1A and ‖Q‖B respectively, and ∗-g-frame operator
(Q⊗ I)S(Q∗ ⊗ I).

Proof. Since Q ∈ End∗A(H), Q⊗ I ∈ End∗A⊗B(H⊗K) with inverse Q−1 ⊗ I. It is
obvious that the adjoint of Q ⊗ I is Q∗ ⊗ I. An easy calculation shows that for
every elementary tensor x⊗ y,

‖(Q⊗ I)(x⊗ y)‖2 = ‖Q(x)⊗ y‖2 = ‖Q(x)‖2‖y‖2 ≤ ‖Q‖2‖x‖2‖y‖2

= ‖Q‖2‖x⊗ y‖2.

So Q ⊗ I is bounded, and therefore it can be extended to H⊗K. Similarly for
Q∗ ⊗ I, hence Q ⊗ I is A⊗ B-linear, adjointable with adjoint Q∗ ⊗ I. Hence for
every z ∈ H ⊗K we have by result 3.2,

‖Q∗−1‖−1 · |z| ≤ |(Q∗ ⊗ I)z| ≤ ‖Q‖ · |z|.

By the definition of ∗-g-frames we have

A〈z, z〉A⊗BA∗ ≤
∑
i∈I

〈Λiz,Λiz〉A⊗B ≤ B〈z, z〉A⊗BB∗.

Then

A〈(Q∗ ⊗ I)z, (Q∗ ⊗ I)z〉A⊗BA∗ ≤
∑
i∈I

〈Λi(Q∗ ⊗ I)z,Λi(Q∗ ⊗ I)z〉A⊗B

≤ B〈(Q∗ ⊗ I)z, (Q∗ ⊗ I)z〉A⊗BB∗.

So

‖Q∗−1‖−1A〈z, z〉A⊗B(‖Q∗−1‖−1A)∗ ≤
∑
i∈I

〈Λi(Q∗ ⊗ I)z,Λi(Q∗ ⊗ I)z〉A⊗B

≤ ‖Q‖B〈z, z〉A⊗B(‖Q‖B)∗.

Now
(Q⊗ I)S(Q∗ ⊗ I) = (Q⊗ I)

(∑
i∈I

Λ∗i Λi

)
(Q∗ ⊗ I)

=
∑
i∈I

(Q⊗ I)Λ∗i Λi(Q∗ ⊗ I)

=
∑
i∈I

(Λi(Q∗ ⊗ I))∗Λi(Q∗ ⊗ I).

Which completes the proof.
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Theorem 3.5
Let (H,A, 〈., .〉A) and (H,B, 〈., .〉B) be two Hilbert C∗-modules and let ϕ : A → B
be a ∗-homomorphism and θ be a map on H such that 〈θx, θy〉B = ϕ(〈x, y〉A) for
all x, y ∈ H. Also, suppose that {Λi}i∈I ⊂ End∗A(H, Vi) (where Vi is a closed
submodule of H for each i in I) is a ∗-g-frame for (H,A, 〈., .〉A) with ∗-g-frame
operator SA and lower and upper ∗-g-frame bounds A, B, respectively. If θ is sur-
jective and θΛi = Λiθ for each i in I, then {Λi}i∈I is a ∗-g-frame for (H,B, 〈., .〉B)
with ∗-g-frame operator SB and lower and upper ∗-g-frame bounds ϕ(A), ϕ(B)
respectively, and 〈SBθx, θy〉B = ϕ(〈SAx, y〉A).

Proof. Let y ∈ H then there exists x ∈ H such that θx = y (θ is surjective). By
the definition of ∗-g-frames we have

A〈x, x〉AA∗ ≤
∑
i∈I

〈Λix,Λix〉A ≤ B〈x, x〉AB∗.

By lemma 3.1 we obtain

ϕ(A〈x, x〉AA∗) ≤ ϕ
(∑

i∈I

〈Λix,Λix〉A
)
≤ ϕ(B〈x, x〉AB∗).

The definition of ∗-homomorphism yields

ϕ(A)ϕ(〈x, x〉A)ϕ(A∗) ≤
∑
i∈I

ϕ(〈Λix,Λix〉A) ≤ ϕ(B)ϕ(〈x, x〉A)ϕ(B∗).

By the relation between θ and ϕ we get

ϕ(A)〈θx, θx〉Bϕ(A)∗ ≤
∑
i∈I

〈θΛix, θΛix〉B ≤ ϕ(B)〈θx, θx〉Bϕ(B)∗.

By the relation between θ and Λi we have

ϕ(A)〈θx, θx〉Bϕ(A)∗ ≤
∑
i∈I

〈Λiθx,Λiθx〉B ≤ ϕ(B)〈θx, θx〉Bϕ(B)∗.

Then
ϕ(A)〈y, y〉B(ϕ(A))∗ ≤

∑
i∈I

〈Λiy,Λiy〉B ≤ ϕ(B)〈y, y〉B(ϕ(B))∗.

for all y ∈ H. On the other hand,

ϕ(〈SAx, y〉A) = ϕ
(〈∑

i∈I

Λ∗i Λix, y
〉
A

)
=
∑
i∈I

ϕ(〈Λix,Λiy〉A)

=
∑
i∈I

〈θΛix, θΛiy〉B =
∑
i∈I

〈Λiθx,Λiθy〉B

=
〈∑

i∈I

Λ∗i Λiθx, θy
〉
B = 〈SBθx, θy〉B.

Which completes the proof.
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In the following, we give an example of the function ϕ in the precedent theorem.

Example 3.6 ([12])
Let X and Y be two locally compact Hausdorff spaces. Let H be a Hilbert space.
Let T be a surjective linear isometry from C0(X,H) onto C0(Y,H), then there
exists a homeomorphism φ : Y → X and for every y ∈ Y there is a unitary
operator h(y) : H → H such that

Tf(y) = h(y)f(φ(y)).

In this case, we have

〈Tf, Tg〉(y) = 〈Tf(y), T g(y)〉 = 〈h(y)f(φ(y)), h(y)g(φ(y))〉
= 〈f(φ(y)), g(φ(y))〉 = 〈f, g〉 ◦ φ(y).

Then
〈Tf, Tg〉 = 〈f, g〉 ◦ φ.

Let ϕ : C0(X)→ C0(Y ) be the ∗-isomorphism defined by ϕ(ψ) = ψφ. Then

〈Tf, Tg〉 = ϕ(〈f, g〉).

The example 3.6 is a consequence of Banach-Stone’s Theorem.

Example 3.7
Let A be a C∗-algebra, then

• A itself is a Hilbert A-module with the inner product 〈a, b〉r := a∗b for
a, b ∈ A,

• A itself is a Hilbert A-module with the inner product 〈a, b〉l := ab∗ for
a, b ∈ A.

Let θ : A → A be the invertible map defined by θ(a) = a∗ and we take ϕ equal to
the identity of L(A). Then

〈θa, θb〉l = θa(θb)∗ = a∗b = 〈a, b〉r = ϕ(〈a, b〉r).
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