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Abstract. In this paper, we study *-g-frames in tensor products of Hilbert
C*-modules. We show that a tensor product of two *-g-frames is a x-g-frame,
and we get some result.

1. Introduction

Frames for Hilbert spaces were introduced in 1952 by Duffin and Schaefer [9].
They abstracted the fundamental notion of Gabor [I1] to study signal processing.
Many generalizations of frames were introduced, frames of subspaces [3], Pseudo-
frames [16], oblique frames [6], g-frames [14], *-frame [2] in Hilbert C*-modules. In
2000, Frank-Larson [10] introduced the notion of frames in Hilbert C*-modules as
a generalization of frames in Hilbert spaces. Recentely, A. Khosravi and B. Khos-
ravi [I4] introduced the g-frame theory in Hilbert C*-modules, and Alijani, and
Dehghan [2] introduced the g-frame theory in Hilbert C*-modules. N. Bounader
and S. Kabbaj [4] and A. Alijani [I] introduced the *-g-frames which are generaliza-
tions of g-frames in Hilbert C*-modules. In this article, we study the *-g-frames in
tensor products of Hilbert C*-modules and *-g-frames in two Hilbert C*-modules
with different C*-algebras. In section 2, we briefly recall the definitions and ba-
sic properties of C*-algebra, Hilbert C*-modules, frames, g-frames, *-frames and
x-g-frames in Hilbert C*-modules. In section 3, we investigate tensor product
of Hilbert C*-modules, we show that tensor product of x-g-frames for Hilbert
C*-modules H and K, present *-g-frames for H ® K, and tensor product of their
x-g-frame operators is the x-g-frame operator of the tensor product of *-g-frames.
We also study *-g-frames in two Hilbert C*-modules with different C*-algebras.
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2. Preliminaries

Let I and J be countable index sets. In this section we briefly recall the defini-
tions and basic properties of C'*-algebra, Hilbert C*-modules, g-frame, *-g-frame
in Hilbert C*-modules. For information about frames in Hilbert spaces we refer
to [B]. Our reference for C*-algebras is [8, [7]. For a C*-algebra A, an element
a € Ais positive (a > 0) if a = a* and sp(a) C R*. AT denotes the set of positive
elements of A.

DEFINITION 2.1 ([13])

Let A be a unital C*-algebra and H be a left .A-module such that the linear struc-
tures of A and ‘H are compatible. H is a pre-Hilbert A-module if H is equipped
with an A-valued inner product (.,.)4 : H x H — A such that is sesquilinear,
positive definite and respects the module action. In the other words,

(i) (z,z)4 > 0for all x € H and (x,z) 4 = 0 if and only if z =0,
(ii) {az +vy,2)a = alz,y)a+ (y,2)4 for alla € A and z,y,z € H,
(iii) (z,y)a = (y,x)% for all z,y € H.

For = € H, we define ||z|| = ||(z,2).4]|2. If H is complete with ||.|, it is called a
Hilbert A-module or a Hilbert C*-module over A. For every a in C*-algebra A,
1

we have |a| = (a*a)? and the A-valued norm on H is defined by |z| = (z,x)?% for
x € H.

Let H and K be two Hilbert A-modules. A map T: H — K is said to be
adjointable if there exists a map T*: K — H such that (Tx,y) 4 = (x,T*y) 4 for
allz € Hand y € K.

From now on, we assume that {V;};c; and {W,};c; are two sequences of
Hilbert A-modules. We also reserve the notation End%(H,K) for the set of all
adjointable operators from H to K and End’ (#H,H) is abbreviated to End’(H).

DEFINITION 2.2 ([13])
Let H be a Hilbert A-module. A family {x;};c; of elements of H is a frame for
‘H, if there exist two positive constants A, B such that for all z € H,

Az, x)a < Z(m,xi>A<xi,x>A < B(z,x)A. (1)
il
The numbers A and B are called lower and upper bound of the frame, respectively.
If A= B = ), the frame is A-tight. If A = B = 1, it is called a normalized tight
frame or a Parseval frame. If the sum in the middle of is convergent in norm,
the frame is called standard.

DEFINITION 2.3 ([14])
Let H and K be Hilbert .A-modules and for each i € I, V; be a closed submodule of
KC. We call a sequence {A; € End%(H,V;) : i € I} a g-frame in Hilbert .A-module
H with respect to {V; : i € I} if there exist two positive constants C', D such that
for all z € H,
Clz,2)a <Y (Aim, Aw)a < D{x,x) . (2)
iel
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The numbers C' and D are called lower and upper bound of the g-frame, respec-
tively. If C' = D = A, the g-frame is A-tight. If C = D =1, it is called a g-Parseval
frame. If the sum in the middle of is convergent in norm, the g-frame is called
standard.

DEFINITION 2.4 ([2])
Let H be a Hilbert A-module. A family {z;};cr of elements of H is a *-frame for
H, if there exist strictly non-zero elements A, B in A such that for all x € H,

Az, ) 4A* < Z(x,xi>A<xi7x>A < B{x,x) 2 B*. (3)
iel

The numbers A and B are called lower and upper bound of the x-frame, respec-
tively. If A = B = A, the *-frame is A-tight. If A = B = 1, it is called a normalized
tight *-frame or a Parseval x-frame. If the sum in the middle of is convergent
in norm, the x-frame is called standard.

DEFINITION 2.5 ([4])

Let H and K be Hilbert A-modules and for each ¢ € I, V; be a closed submodule
of K. We call a sequence {A; € End%(H,V;) : i € I} a xg-frame in Hilbert
A-module H with respect to {V; : i € I} if there exist strictly non-zero elements
A, B in A such that for all x € H,

Az, x) g A" <Y (Aiw, M) 4 < Bz, x) 4 B*. (4)
i€l

The numbers A and B are called lower and upper bound of the x-g-frame, re-
spectively. If A = B = ), the x-g-frame is A-tight. If A = B = 1, it is called
a x-g-Parseval frame. If the sum in the middle of is convergent in norm, the
x-g-frame is called standard.

The *-g-frame operator Sy is defined by Spz = >"._; AfA;z for all z € H.

1€l
3. Main results

Suppose that A, B are C*-algebras and we take A ® B as the completion of
A ®q14 B with the spatial norm. A ® B is the spatial tensor product of A and
B, also suppose that H is a Hilbert A-module and K is a Hilbert B-module. We
want to define H ® KC as a Hilbert (A ® B)-module. Start by forming the algebraic
tensor product H ®q14 K of the vector spaces H, K (over C). This is a left module
over (A ®qy B) (the module action being given by (a ® b)(x ® y) = az ® by
(ae A,be B,x € H,y € K)). For (z1,22 € H,y1,y2 € K) we define

(T1 ® Y1, 22 @ Y2) aeB = (T1,22) 4 @ (Y1,Y2)5-

We also know that for z = > 1" 2; @ y; in H ®uy K we have (z,2) ae8 =
> i (@i ) A®(ys,y5)8 > 0 and (z, 2) ags = 0 iff z = 0. This extends by linearity
to an (A ®a14 B)-valued sesquilinear form on H ®q;4 K, which makes H ®q;4 K into
a semi-inner-product module over the pre-C*-algebra (A ®q14 B). The semi-inner-
product on H ®q4 K is actually an inner product, see [I5]. Then H ®q4 K is an
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inner-product module over the pre-C*-algebra (A ®q4 B), and we can perform the
double completion discussed in chapter 1 of [I5] to conclude that the completion
H @K of H®ae K is a Hilbert (A® B)-module. We call H ® K the exterior tensor
product of H and K. With H, K as above, we wish to investigate the adjointable
operators on H ® KC. Suppose that S € End%(H) and T € Endg(IC). We define a
linear operator S ® T on ‘H ® K by

ST(zy)=SzTy forx € H,y € K.

It is a routine verification that is S* ® T™ is the adjoint of S ® T, so in fact
S®T € Endiygz(H ® K). For more details see [§, [I5]. We note that if a € AT
and b € BT, then a ® b € (A® B)T. Plainly if a, b are Hermitian elements of A
and a > b, then for every positive element z of B, we have a ® z > b ® x.

For the proof of our main results, we need the followings lemma and result.

LeMmMA 3.1 ([2])
If o: A — B is a x-homomorphism between C*-algebras, then ¢ is increasing, that
is, if a < b, then p(a) < ¢(b).

REesuLT 3.2 ([13])
If @ € End’(H) is an invertible A-linear map then for all z € H ® KC we have

Q"I - el < Q™ @ D)2 < |Q]l - |21

THEOREM 3.3

Let H and KC be two Hilbert C*-modules over unitary C*-algebras A and B, respec-
tively. Let {A;}icr C Endy(H,V;) and {T';};cs C Endg(KC,W;) be two *-g-frames
for H and K with x-g-frame operators Sy and St and x-g-frame bounds (A, B) and
(C, D), respectively. Then {A;®@T;}icr jes is a *-g-frame for Hibert A® B-module
HKRK with x-g-frame operator SAQSr and lower and upper x-g-frame bounds AQC
and B ® D, respectively.

Proof. By the definition of *-g-frames {A;}icr and {I';}jc; we have

Az, z) 4 A" < Z(Aix, ANz) 4 < Blx,z) 4B* for all z € H.
iel
Cly,y)sC* <> Ty, Tjy)s < D(y,y)sD*  forall y € K.
JjeJ
Therefore, for all x € ‘H and all y € K,
(Alz, 2)4A%) ® (Cly,y)sC*) <Y (Ax, Aiz)a @ Y (T, T5y)5
iel jeJ
< (B{z,2)aB") @ (D(y,y)sD")
Then
(A2 C)((z,2)4® (y,y)B) (A" @ C*) < Y (Aw, M) 4 ® (T;y,Tjy)
iel,jet
< (B®D)({(z,z)a © (y,y))(B" @ D).
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Consequently,

(AR C)(z@y,22yaes(A0C) < Y (Ne@ Ty, Az Tiy) aen
iel,jed

<(BeD)(z®@y,x®@y)aes(B @ D)".
Then for all x ® y € H ® K we have

(A2C)r®y,r0y)aes(A®C)”
< Z (AMieT))(zey), MoT))(z®Y))ass
ieljeJ
< (B@D)(x®y,zQy)azn(B® D)".

The last inequality is satisfied for every finite sum of elements in H ®q;, £ and
then it is satisfied for all z € H ® K. It shows that {A; ® [';}icr jes is *-g-frame
for Hibert A ® B-module H ® K with lower and upper *-g-frame bounds A ® C'
and B ® D, respectively.

By the definition of %-g-frame operator Sy and St we have

SAx:ZA;‘Aix forallz € H

el
and
Sry=>» TiT;y  forallyeKk.
jeJ
Therefore

(52 ® Sr)(z @ y) = Sax @ Sry

=> AAzed Tily

i€l jeJ

= ) AMAzeTiTy
el jed

— Z (A; @ T5)(Aiz @ Tyy)
iel,jed

= ) (AeT)Nel;)(zoy)
icl,jed

= > (MeT))NeT)(zey).
el,jed

Now by the uniqueness of *-g-frame operator, the last expression is equal to
Saer(z ® y). Consequently we have (Spy ® Sr)(x ® y) = Sper(z ® y). The
last equality is satisfied for every finite sum of elements in H ®qiy K and then
it is satisfied for all z € H® K. It shows that (Sy ® Sr)(z) = Sagr(z). So
Saer = SA ® St.
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THEOREM 3.4

If Q € End(H) is invertible and {A;}ier C Endlygs(H ® K) is a *-g-frame for
H @ K with lower and upper x-g-frame bounds A and B respectively, and *-g-frame
operator S, then {A;(Q* ® I)}icr is a x-g-frame for H ® K with lower and up-
per *-g-frame bounds ||Q* 1|71 A and |Q||B respectively, and *-g-frame operator

QeNS@Q 1)

Proof. Since Q € End(H), Q®1 € End’gyz(H ® K) with inverse Q™' ®@ I. It is
obvious that the adjoint of Q ® I is Q* ® I. An easy calculation shows that for
every elementary tensor x ® y,

Qe Dxey)l*=Q) @yll* = 1Q@)*Iyl* < QI |l=[ly]*
= [QI|lz ® y|I>.
So @ ® I is bounded, and therefore it can be extended to H ® K. Similarly for

QR* ® I, hence Q ® I is A ® B-linear, adjointable with adjoint Q* ® I. Hence for
every z € H ® K we have by result [3.2]

IQ*HITH - |2l < (@ @ Dzl < [1Q] - |2-

By the definition of *-g-frames we have

Az, 2) agA* < Z(AiZ,A¢Z>A®B < B{(z,z) aeBB*.
el

Then

A((Q" ® 1)z, (Q" ®@ I)2) agA™ < Z<Ai(Q* ® 1)z, Ai(Q" @ I)2) ass
icl
<B(Q"® 1)z, (Q"®@1)z) aesB™.

So

Q17 A, 2 aes (1@ A4) < Y (M(Q" ® D2, AQ” @ 1)2) aos
i€l

<1QIB(z, 2) aes(|Ql B)".

Now

(QeDS@ ®) =@ D(Y AA)Q @)
el
=Y (Q®NAA(Q ®1)
el
=> (M(Q @) A(Q* R ).
el

Which completes the proof.
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THEOREM 3.5

Let (H, A, {.,.)4) and (H,B,{.,.)8) be two Hilbert C*-modules and let ¢: A — B
be a x-homomorphism and 6 be a map on H such that (0z,0y)s = ¢((z,y)4) for
all z,y € H. Also, suppose that {A;}icr C Endy(H,V;) (where V; is a closed
submodule of H for each i in I) is a *-g-frame for (H,A,(.,.)4) with x-g-frame
operator S and lower and upper x-g-frame bounds A, B, respectively. If 0 is sur-
jective and OA; = N;0 for each i in I, then {A;}icr is a *-g-frame for (H, B, (.,.)5)
with x-g-frame operator Sg and lower and upper x-g-frame bounds p(A), ¢(B)
respectively, and (Sgfx,0y)p = ©((Saz,y)4).

Proof. Let y € H then there exists x € H such that 0z = y (0 is surjective). By
the definition of *-g-frames we have

Az, x) 4 A* < Z(Aﬂ?, Axy 4 < Blx,x) 4 B*.
iel
By lemma [3.I] we obtain
(A, 2)aA") < o YAz, M) a) < p(Bla,a) 4B").
iel
The definition of *-homomorphism yields
P(A)p({z,2)A)p(A7) <Y (N, Aiz) ) < (B)p((w, 2).4)(B).
iel
By the relation between 6 and ¢ we get
o(A) Oz, 0z)gp(A)" < Z(GAix,GAiajﬂ; < p(B){(0z, 0x)pp(B)".
icl
By the relation between 6 and A; we have
e(A)(Oz, 0z)pp(A)" < Z(Azﬂx,/\i@@g < @(B){0z,0x)pp(B)".
icl

Then

P(A)(y, v)(e(A)" <> (Ay, Ay)s < @(B)(y, y)s((B))".
iel
for all y € H. On the other hand,

L)0(<S¢4$7y>¢4) = (,0(< ZAfAix7y>_A) = Z (P(<Ai'r7 Aiy>A)

icl el
= (0Aiz, 0A ) =Y (Mibz, Aiby)s
el el
= (> AjAibz,0y), = (Ssbx,0y)s.
el

Which completes the proof.
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In the following, we give an example of the function ¢ in the precedent theorem.

ExaMPLE 3.6 ([12])

Let X and Y be two locally compact Hausdorff spaces. Let H be a Hilbert space.
Let T be a surjective linear isometry from Cy(X, H) onto Cy(Y, H), then there
exists a homeomorphism ¢: Y — X and for every y € Y there is a unitary
operator h(y): H — H such that

Then
(Tf,Tg) =(f9) 0 ¢-
Let ¢: Cop(X) — Cop(Y) be the x-isomorphism defined by ¢(v) = ¥¢. Then

(Tf, Tg) = ([ 9))

The example 3.6 is a consequence of Banach-Stone’s Theorem.

EXAMPLE 3.7
Let A be a C*-algebra, then

o A itself is a Hilbert A-module with the inner product (a,b), := a*b for
a,be A,

o A itself is a Hilbert A-module with the inner product {a,b); := ab* for
a,be A

Let : A — A be the invertible map defined by 6(a) = a* and we take ¢ equal to
the identity of L(.A). Then

(fa,0b); = 0a(0b)" = a™b = {(a,b), = ¢({a,b),).
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