

FOLIA 233

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XVII (2018)

Mohamed Rossafi^{*} and Samir Kabbaj *-g-frames in tensor products of Hilbert C^* -modules

Communicated by Justyna Szpond

Abstract. In this paper, we study *-g-frames in tensor products of Hilbert C^* -modules. We show that a tensor product of two *-g-frames is a *-g-frame, and we get some result.

1. Introduction

Frames for Hilbert spaces were introduced in 1952 by Duffin and Schaefer [9]. They abstracted the fundamental notion of Gabor [11] to study signal processing. Many generalizations of frames were introduced, frames of subspaces [3], Pseudoframes [16], oblique frames [6], g-frames [14], *-frame [2] in Hilbert C^* -modules. In 2000, Frank-Larson [10] introduced the notion of frames in Hilbert C^* -modules as a generalization of frames in Hilbert spaces. Recentely, A. Khosravi and B. Khosravi [14] introduced the g-frame theory in Hilbert C^* -modules, and Alijani, and Dehghan [2] introduced the g-frame theory in Hilbert C^* -modules. N. Bounader and S. Kabbaj [4] and A. Alijani [1] introduced the *-g-frames which are generalizations of g-frames in Hilbert C^* -modules. In this article, we study the *-g-frames in tensor products of Hilbert C^* -modules and *-g-frames in two Hilbert C^* -modules with different C^* -algebras. In section 2, we briefly recall the definitions and basic properties of C^* -algebra, Hilbert C^* -modules, frames, g-frames, *-frames and *-g-frames in Hilbert C^* -modules. In section 3, we investigate tensor product of Hilbert C^* -modules, we show that tensor product of *-g-frames for Hilbert C^* -modules \mathcal{H} and \mathcal{K} , present *-g-frames for $\mathcal{H} \otimes \mathcal{K}$, and tensor product of their *-g-frame operators is the *-g-frame operator of the tensor product of *-g-frames. We also study *-g-frames in two Hilbert C^* -modules with different C^* -algebras.

AMS (2010) Subject Classification: 42C15, 46L05.

Keywords and phrases: g-frame, *-g-frame, C^* -algebra, Hilbert C^* -modules.

^{*} Corresponding author.

2. Preliminaries

Let I and J be countable index sets. In this section we briefly recall the definitions and basic properties of C^* -algebra, Hilbert C^* -modules, g-frame, *-g-frame in Hilbert C^* -modules. For information about frames in Hilbert spaces we refer to [5]. Our reference for C^* -algebras is [8, 7]. For a C^* -algebra \mathcal{A} , an element $a \in \mathcal{A}$ is positive $(a \ge 0)$ if $a = a^*$ and $sp(a) \subset \mathbf{R}^+$. \mathcal{A}^+ denotes the set of positive elements of \mathcal{A} .

Definition 2.1 ([13])

Let \mathcal{A} be a unital C^* -algebra and \mathcal{H} be a left \mathcal{A} -module such that the linear structures of \mathcal{A} and \mathcal{H} are compatible. \mathcal{H} is a pre-Hilbert \mathcal{A} -module if \mathcal{H} is equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle_{\mathcal{A}} : \mathcal{H} \times \mathcal{H} \to \mathcal{A}$ such that is sesquilinear, positive definite and respects the module action. In the other words,

- (i) $\langle x, x \rangle_{\mathcal{A}} \ge 0$ for all $x \in \mathcal{H}$ and $\langle x, x \rangle_{\mathcal{A}} = 0$ if and only if x = 0,
- (ii) $\langle ax + y, z \rangle_{\mathcal{A}} = a \langle x, y \rangle_{\mathcal{A}} + \langle y, z \rangle_{\mathcal{A}}$ for all $a \in \mathcal{A}$ and $x, y, z \in \mathcal{H}$,
- (iii) $\langle x, y \rangle_{\mathcal{A}} = \langle y, x \rangle_{\mathcal{A}}^*$ for all $x, y \in \mathcal{H}$.

For $x \in \mathcal{H}$, we define $||x|| = ||\langle x, x \rangle_{\mathcal{A}}||^{\frac{1}{2}}$. If \mathcal{H} is complete with ||.||, it is called a Hilbert \mathcal{A} -module or a Hilbert C^* -module over \mathcal{A} . For every a in C^* -algebra \mathcal{A} , we have $|a| = (a^*a)^{\frac{1}{2}}$ and the \mathcal{A} -valued norm on \mathcal{H} is defined by $|x| = \langle x, x \rangle_{\mathcal{A}}^{\frac{1}{2}}$ for $x \in \mathcal{H}$.

Let \mathcal{H} and \mathcal{K} be two Hilbert \mathcal{A} -modules. A map $T: \mathcal{H} \to \mathcal{K}$ is said to be adjointable if there exists a map $T^*: \mathcal{K} \to \mathcal{H}$ such that $\langle Tx, y \rangle_{\mathcal{A}} = \langle x, T^*y \rangle_{\mathcal{A}}$ for all $x \in \mathcal{H}$ and $y \in \mathcal{K}$.

From now on, we assume that $\{V_i\}_{i\in I}$ and $\{W_j\}_{j\in J}$ are two sequences of Hilbert \mathcal{A} -modules. We also reserve the notation $End^*_{\mathcal{A}}(\mathcal{H},\mathcal{K})$ for the set of all adjointable operators from \mathcal{H} to \mathcal{K} and $End^*_{\mathcal{A}}(\mathcal{H},\mathcal{H})$ is abbreviated to $End^*_{\mathcal{A}}(\mathcal{H})$.

Definition 2.2 ([13])

Let \mathcal{H} be a Hilbert \mathcal{A} -module. A family $\{x_i\}_{i \in I}$ of elements of \mathcal{H} is a frame for \mathcal{H} , if there exist two positive constants A, B such that for all $x \in \mathcal{H}$,

$$A\langle x, x \rangle_{\mathcal{A}} \le \sum_{i \in I} \langle x, x_i \rangle_{\mathcal{A}} \langle x_i, x \rangle_{\mathcal{A}} \le B\langle x, x \rangle_{\mathcal{A}}.$$
 (1)

The numbers A and B are called lower and upper bound of the frame, respectively. If $A = B = \lambda$, the frame is λ -tight. If A = B = 1, it is called a normalized tight frame or a Parseval frame. If the sum in the middle of (1) is convergent in norm, the frame is called standard.

Definition 2.3 ([14])

Let \mathcal{H} and \mathcal{K} be Hilbert \mathcal{A} -modules and for each $i \in I$, V_i be a closed submodule of \mathcal{K} . We call a sequence $\{\Lambda_i \in End^*_{\mathcal{A}}(\mathcal{H}, V_i) : i \in I\}$ a g-frame in Hilbert \mathcal{A} -module \mathcal{H} with respect to $\{V_i : i \in I\}$ if there exist two positive constants C, D such that for all $x \in \mathcal{H}$,

$$C\langle x, x \rangle_{\mathcal{A}} \le \sum_{i \in I} \langle \Lambda_i x, \Lambda_i x \rangle_{\mathcal{A}} \le D\langle x, x \rangle_{\mathcal{A}}.$$
 (2)

[18]

-g-frames in tensor products of Hilbert C^ -modules

The numbers C and D are called lower and upper bound of the g-frame, respectively. If $C = D = \lambda$, the g-frame is λ -tight. If C = D = 1, it is called a g-Parseval frame. If the sum in the middle of (2) is convergent in norm, the g-frame is called standard.

Definition 2.4 ([2])

Let \mathcal{H} be a Hilbert \mathcal{A} -module. A family $\{x_i\}_{i \in I}$ of elements of \mathcal{H} is a *-frame for \mathcal{H} , if there exist strictly non-zero elements A, B in \mathcal{A} such that for all $x \in \mathcal{H}$,

$$A\langle x, x \rangle_{\mathcal{A}} A^* \le \sum_{i \in I} \langle x, x_i \rangle_{\mathcal{A}} \langle x_i, x \rangle_{\mathcal{A}} \le B \langle x, x \rangle_{\mathcal{A}} B^*.$$
(3)

The numbers A and B are called lower and upper bound of the *-frame, respectively. If $A = B = \lambda$, the *-frame is λ -tight. If A = B = 1, it is called a normalized tight *-frame or a Parseval *-frame. If the sum in the middle of (3) is convergent in norm, the *-frame is called standard.

Definition 2.5 ([4])

Let \mathcal{H} and \mathcal{K} be Hilbert \mathcal{A} -modules and for each $i \in I$, V_i be a closed submodule of \mathcal{K} . We call a sequence $\{\Lambda_i \in End^*_{\mathcal{A}}(\mathcal{H}, V_i) : i \in I\}$ a *-g-frame in Hilbert \mathcal{A} -module \mathcal{H} with respect to $\{V_i : i \in I\}$ if there exist strictly non-zero elements A, B in \mathcal{A} such that for all $x \in \mathcal{H}$,

$$A\langle x, x \rangle_{\mathcal{A}} A^* \le \sum_{i \in I} \langle \Lambda_i x, \Lambda_i x \rangle_{\mathcal{A}} \le B\langle x, x \rangle_{\mathcal{A}} B^*.$$
(4)

The numbers A and B are called lower and upper bound of the *-g-frame, respectively. If $A = B = \lambda$, the *-g-frame is λ -tight. If A = B = 1, it is called a *-g-Parseval frame. If the sum in the middle of (4) is convergent in norm, the *-g-frame is called standard.

The *-g-frame operator S_{Λ} is defined by $S_{\Lambda}x = \sum_{i \in I} \Lambda_i^* \Lambda_i x$ for all $x \in \mathcal{H}$.

3. Main results

Suppose that \mathcal{A}, \mathcal{B} are C^* -algebras and we take $\mathcal{A} \otimes \mathcal{B}$ as the completion of $\mathcal{A} \otimes_{alg} \mathcal{B}$ with the spatial norm. $\mathcal{A} \otimes \mathcal{B}$ is the spatial tensor product of \mathcal{A} and \mathcal{B} , also suppose that \mathcal{H} is a Hilbert \mathcal{A} -module and \mathcal{K} is a Hilbert \mathcal{B} -module. We want to define $\mathcal{H} \otimes \mathcal{K}$ as a Hilbert $(\mathcal{A} \otimes \mathcal{B})$ -module. Start by forming the algebraic tensor product $\mathcal{H} \otimes_{alg} \mathcal{K}$ of the vector spaces \mathcal{H}, \mathcal{K} (over \mathbb{C}). This is a left module over $(\mathcal{A} \otimes_{alg} \mathcal{B})$ (the module action being given by $(a \otimes b)(x \otimes y) = ax \otimes by$ $(a \in \mathcal{A}, b \in \mathcal{B}, x \in \mathcal{H}, y \in \mathcal{K})$). For $(x_1, x_2 \in \mathcal{H}, y_1, y_2 \in \mathcal{K})$ we define

$$\langle x_1 \otimes y_1, x_2 \otimes y_2 \rangle_{\mathcal{A} \otimes \mathcal{B}} = \langle x_1, x_2 \rangle_{\mathcal{A}} \otimes \langle y_1, y_2 \rangle_{\mathcal{B}}.$$

We also know that for $z = \sum_{i=1}^{n} x_i \otimes y_i$ in $\mathcal{H} \otimes_{alg} \mathcal{K}$ we have $\langle z, z \rangle_{\mathcal{A} \otimes \mathcal{B}} = \sum_{i,j} \langle x_i, x_j \rangle_{\mathcal{A}} \otimes \langle y_i, y_j \rangle_{\mathcal{B}} \geq 0$ and $\langle z, z \rangle_{\mathcal{A} \otimes \mathcal{B}} = 0$ iff z = 0. This extends by linearity to an $(\mathcal{A} \otimes_{alg} \mathcal{B})$ -valued sesquilinear form on $\mathcal{H} \otimes_{alg} \mathcal{K}$, which makes $\mathcal{H} \otimes_{alg} \mathcal{K}$ into a semi-inner-product module over the pre- \mathcal{C}^* -algebra $(\mathcal{A} \otimes_{alg} \mathcal{B})$. The semi-inner-product on $\mathcal{H} \otimes_{alg} \mathcal{K}$ is actually an inner product, see [15]. Then $\mathcal{H} \otimes_{alg} \mathcal{K}$ is an

inner-product module over the pre- \mathcal{C}^* -algebra $(\mathcal{A} \otimes_{alg} \mathcal{B})$, and we can perform the double completion discussed in chapter 1 of [15] to conclude that the completion $\mathcal{H} \otimes \mathcal{K}$ of $\mathcal{H} \otimes_{alg} \mathcal{K}$ is a Hilbert $(\mathcal{A} \otimes \mathcal{B})$ -module. We call $\mathcal{H} \otimes \mathcal{K}$ the exterior tensor product of \mathcal{H} and \mathcal{K} . With \mathcal{H} , \mathcal{K} as above, we wish to investigate the adjointable operators on $\mathcal{H} \otimes \mathcal{K}$. Suppose that $S \in End^*_{\mathcal{A}}(\mathcal{H})$ and $T \in End^*_{\mathcal{B}}(\mathcal{K})$. We define a linear operator $S \otimes T$ on $\mathcal{H} \otimes \mathcal{K}$ by

$$S \otimes T(x \otimes y) = Sx \otimes Ty$$
 for $x \in \mathcal{H}, y \in \mathcal{K}$.

It is a routine verification that is $S^* \otimes T^*$ is the adjoint of $S \otimes T$, so in fact $S \otimes T \in End^*_{\mathcal{A} \otimes \mathcal{B}}(\mathcal{H} \otimes \mathcal{K})$. For more details see [8, 15]. We note that if $a \in \mathcal{A}^+$ and $b \in \mathcal{B}^+$, then $a \otimes b \in (\mathcal{A} \otimes \mathcal{B})^+$. Plainly if a, b are Hermitian elements of \mathcal{A} and $a \geq b$, then for every positive element x of \mathcal{B} , we have $a \otimes x \geq b \otimes x$.

For the proof of our main results, we need the followings lemma and result.

LEMMA 3.1 ([2]) If $\varphi \colon \mathcal{A} \to \mathcal{B}$ is a *-homomorphism between \mathcal{C}^* -algebras, then φ is increasing, that is, if $a \leq b$, then $\varphi(a) \leq \varphi(b)$.

RESULT 3.2 ([13]) If $Q \in End^*_{\mathcal{A}}(\mathcal{H})$ is an invertible \mathcal{A} -linear map then for all $z \in \mathcal{H} \otimes \mathcal{K}$ we have

$$||Q^{*-1}||^{-1} \cdot |z| \le |(Q^* \otimes I)z| \le ||Q|| \cdot |z|.$$

Theorem 3.3

Let \mathcal{H} and \mathcal{K} be two Hilbert C^* -modules over unitary C^* -algebras \mathcal{A} and \mathcal{B} , respectively. Let $\{\Lambda_i\}_{i\in I} \subset End^*_{\mathcal{A}}(\mathcal{H}, V_i)$ and $\{\Gamma_j\}_{j\in J} \subset End^*_{\mathcal{B}}(\mathcal{K}, W_i)$ be two *-g-frames for \mathcal{H} and \mathcal{K} with *-g-frame operators S_{Λ} and S_{Γ} and *-g-frame bounds (A, B) and (C, D), respectively. Then $\{\Lambda_i \otimes \Gamma_j\}_{i\in I, j\in J}$ is a *-g-frame for Hibert $\mathcal{A} \otimes \mathcal{B}$ -module $\mathcal{H} \otimes \mathcal{K}$ with *-g-frame operator $S_{\Lambda} \otimes S_{\Gamma}$ and lower and upper *-g-frame bounds $A \otimes C$ and $B \otimes D$, respectively.

Proof. By the definition of *-g-frames $\{\Lambda_i\}_{i\in I}$ and $\{\Gamma_j\}_{j\in J}$ we have

$$\begin{split} A\langle x, x\rangle_{\mathcal{A}} A^* &\leq \sum_{i \in I} \langle \Lambda_i x, \Lambda_i x\rangle_{\mathcal{A}} \leq B\langle x, x\rangle_{\mathcal{A}} B^* \qquad \text{for all } x \in \mathcal{H}.\\ C\langle y, y\rangle_{\mathcal{B}} C^* &\leq \sum_{j \in J} \langle \Gamma_j y, \Gamma_j y\rangle_{\mathcal{B}} \leq D\langle y, y\rangle_{\mathcal{B}} D^* \qquad \text{for all } y \in \mathcal{K}. \end{split}$$

Therefore, for all $x \in \mathcal{H}$ and all $y \in \mathcal{K}$,

$$(A\langle x, x\rangle_{\mathcal{A}}A^*) \otimes (C\langle y, y\rangle_{\mathcal{B}}C^*) \leq \sum_{i \in I} \langle \Lambda_i x, \Lambda_i x\rangle_{\mathcal{A}} \otimes \sum_{j \in J} \langle \Gamma_j y, \Gamma_j y\rangle_{\mathcal{B}}$$
$$\leq (B\langle x, x\rangle_{\mathcal{A}}B^*) \otimes (D\langle y, y\rangle_{\mathcal{B}}D^*)$$

Then

$$(A \otimes C)(\langle x, x \rangle_{\mathcal{A}} \otimes \langle y, y \rangle_{\mathcal{B}})(A^* \otimes C^*) \leq \sum_{i \in I, j \in J} \langle \Lambda_i x, \Lambda_i x \rangle_{\mathcal{A}} \otimes \langle \Gamma_j y, \Gamma_j y \rangle_{\mathcal{B}}$$
$$\leq (B \otimes D)(\langle x, x \rangle_{\mathcal{A}} \otimes \langle y, y \rangle_{\mathcal{B}})(B^* \otimes D^*).$$

-g-frames in tensor products of Hilbert C^ -modules

Consequently,

$$(A \otimes C) \langle x \otimes y, x \otimes y \rangle_{\mathcal{A} \otimes \mathcal{B}} (A \otimes C)^* \leq \sum_{i \in I, j \in J} \langle \Lambda_i x \otimes \Gamma_j y, \Lambda_i x \otimes \Gamma_j y \rangle_{\mathcal{A} \otimes \mathcal{B}}$$
$$\leq (B \otimes D) \langle x \otimes y, x \otimes y \rangle_{\mathcal{A} \otimes \mathcal{B}} (B \otimes D)^*.$$

Then for all $x \otimes y \in \mathcal{H} \otimes \mathcal{K}$ we have

$$(A \otimes C) \langle x \otimes y, x \otimes y \rangle_{\mathcal{A} \otimes \mathcal{B}} (A \otimes C)^* \\ \leq \sum_{i \in I, j \in J} \langle (\Lambda_i \otimes \Gamma_j) (x \otimes y), (\Lambda_i \otimes \Gamma_j) (x \otimes y) \rangle_{\mathcal{A} \otimes \mathcal{B}} \\ \leq (B \otimes D) \langle x \otimes y, x \otimes y \rangle_{\mathcal{A} \otimes \mathcal{B}} (B \otimes D)^*.$$

The last inequality is satisfied for every finite sum of elements in $\mathcal{H} \otimes_{alg} \mathcal{K}$ and then it is satisfied for all $z \in \mathcal{H} \otimes \mathcal{K}$. It shows that $\{\Lambda_i \otimes \Gamma_j\}_{i \in I, j \in J}$ is *-g-frame for Hibert $\mathcal{A} \otimes \mathcal{B}$ -module $\mathcal{H} \otimes \mathcal{K}$ with lower and upper *-g-frame bounds $A \otimes C$ and $B \otimes D$, respectively.

By the definition of *-g-frame operator S_{Λ} and S_{Γ} we have

$$S_{\Lambda}x = \sum_{i \in I} \Lambda_i^* \Lambda_i x \quad \text{for all } x \in \mathcal{H}$$

and

$$S_{\Gamma}y = \sum_{j \in J} \Gamma_j^* \Gamma_j y$$
 for all $y \in \mathcal{K}$.

Therefore

$$(S_{\Lambda} \otimes S_{\Gamma})(x \otimes y) = S_{\Lambda}x \otimes S_{\Gamma}y$$

= $\sum_{i \in I} \Lambda_i^* \Lambda_i x \otimes \sum_{j \in J} \Gamma_j^* \Gamma_j y$
= $\sum_{i \in I, j \in J} \Lambda_i^* \Lambda_i x \otimes \Gamma_j^* \Gamma_j y$
= $\sum_{i \in I, j \in J} (\Lambda_i^* \otimes \Gamma_j^*)(\Lambda_i x \otimes \Gamma_j y)$
= $\sum_{i \in I, j \in J} (\Lambda_i^* \otimes \Gamma_j^*)(\Lambda_i \otimes \Gamma_j)(x \otimes y)$
= $\sum_{i \in I, j \in J} (\Lambda_i \otimes \Gamma_j)^*)(\Lambda_i \otimes \Gamma_j)(x \otimes y).$

Now by the uniqueness of *-g-frame operator, the last expression is equal to $S_{\Lambda\otimes\Gamma}(x\otimes y)$. Consequently we have $(S_{\Lambda}\otimes S_{\Gamma})(x\otimes y) = S_{\Lambda\otimes\Gamma}(x\otimes y)$. The last equality is satisfied for every finite sum of elements in $\mathcal{H} \otimes_{alg} \mathcal{K}$ and then it is satisfied for all $z \in \mathcal{H} \otimes \mathcal{K}$. It shows that $(S_{\Lambda} \otimes S_{\Gamma})(z) = S_{\Lambda\otimes\Gamma}(z)$. So $S_{\Lambda\otimes\Gamma} = S_{\Lambda} \otimes S_{\Gamma}$.

Theorem 3.4

If $Q \in End^*_{\mathcal{A}}(\mathcal{H})$ is invertible and $\{\Lambda_i\}_{i \in I} \subset End^*_{\mathcal{A} \otimes \mathcal{B}}(\mathcal{H} \otimes \mathcal{K})$ is a *-g-frame for $\mathcal{H} \otimes \mathcal{K}$ with lower and upper *-g-frame bounds A and B respectively, and *-g-frame operator S, then $\{\Lambda_i(Q^* \otimes I)\}_{i \in I}$ is a *-g-frame for $\mathcal{H} \otimes \mathcal{K}$ with lower and upper *-g-frame bounds $\|Q^{*-1}\|^{-1}A$ and $\|Q\|B$ respectively, and *-g-frame operator $(Q \otimes I)S(Q^* \otimes I)$.

Proof. Since $Q \in End^*_{\mathcal{A}}(\mathcal{H})$, $Q \otimes I \in End^*_{\mathcal{A} \otimes \mathcal{B}}(\mathcal{H} \otimes \mathcal{K})$ with inverse $Q^{-1} \otimes I$. It is obvious that the adjoint of $Q \otimes I$ is $Q^* \otimes I$. An easy calculation shows that for every elementary tensor $x \otimes y$,

$$\begin{split} \|(Q \otimes I)(x \otimes y)\|^2 &= \|Q(x) \otimes y\|^2 = \|Q(x)\|^2 \|y\|^2 \le \|Q\|^2 \|x\|^2 \|y\|^2 \\ &= \|Q\|^2 \|x \otimes y\|^2. \end{split}$$

So $Q \otimes I$ is bounded, and therefore it can be extended to $\mathcal{H} \otimes \mathcal{K}$. Similarly for $Q^* \otimes I$, hence $Q \otimes I$ is $\mathcal{A} \otimes \mathcal{B}$ -linear, adjointable with adjoint $Q^* \otimes I$. Hence for every $z \in \mathcal{H} \otimes \mathcal{K}$ we have by result 3.2,

$$||Q^{*-1}||^{-1} \cdot |z| \le |(Q^* \otimes I)z| \le ||Q|| \cdot |z|.$$

By the definition of *-g-frames we have

$$A\langle z,z\rangle_{\mathcal{A}\otimes\mathcal{B}}A^* \leq \sum_{i\in I} \langle \Lambda_i z, \Lambda_i z\rangle_{\mathcal{A}\otimes\mathcal{B}} \leq B\langle z,z\rangle_{\mathcal{A}\otimes\mathcal{B}}B^*.$$

Then

$$\begin{aligned} A\langle (Q^* \otimes I)z, (Q^* \otimes I)z \rangle_{\mathcal{A} \otimes \mathcal{B}} A^* &\leq \sum_{i \in I} \langle \Lambda_i (Q^* \otimes I)z, \Lambda_i (Q^* \otimes I)z \rangle_{\mathcal{A} \otimes \mathcal{B}} \\ &\leq B\langle (Q^* \otimes I)z, (Q^* \otimes I)z \rangle_{\mathcal{A} \otimes \mathcal{B}} B^*. \end{aligned}$$

 So

$$\begin{aligned} \|Q^{*-1}\|^{-1}A\langle z,z\rangle_{\mathcal{A}\otimes\mathcal{B}}(\|Q^{*-1}\|^{-1}A)^* &\leq \sum_{i\in I} \langle \Lambda_i(Q^*\otimes I)z,\Lambda_i(Q^*\otimes I)z\rangle_{\mathcal{A}\otimes\mathcal{B}}\\ &\leq \|Q\|B\langle z,z\rangle_{\mathcal{A}\otimes\mathcal{B}}(\|Q\|B)^*. \end{aligned}$$

Now

$$(Q \otimes I)S(Q^* \otimes I) = (Q \otimes I) \left(\sum_{i \in I} \Lambda_i^* \Lambda_i\right) (Q^* \otimes I)$$
$$= \sum_{i \in I} (Q \otimes I) \Lambda_i^* \Lambda_i (Q^* \otimes I)$$
$$= \sum_{i \in I} (\Lambda_i (Q^* \otimes I))^* \Lambda_i (Q^* \otimes I).$$

Which completes the proof.

[22]

Theorem 3.5

Let $(\mathcal{H}, \mathcal{A}, \langle ., . \rangle_{\mathcal{A}})$ and $(\mathcal{H}, \mathcal{B}, \langle ., . \rangle_{\mathcal{B}})$ be two Hilbert \mathcal{C}^* -modules and let $\varphi : \mathcal{A} \to \mathcal{B}$ be a *-homomorphism and θ be a map on \mathcal{H} such that $\langle \theta x, \theta y \rangle_{\mathcal{B}} = \varphi(\langle x, y \rangle_{\mathcal{A}})$ for all $x, y \in \mathcal{H}$. Also, suppose that $\{\Lambda_i\}_{i \in I} \subset \operatorname{End}^*_{\mathcal{A}}(\mathcal{H}, V_i)$ (where V_i is a closed submodule of \mathcal{H} for each i in I) is a *-g-frame for $(\mathcal{H}, \mathcal{A}, \langle ., . \rangle_{\mathcal{A}})$ with *-g-frame operator $S_{\mathcal{A}}$ and lower and upper *-g-frame bounds \mathcal{A} , \mathcal{B} , respectively. If θ is surjective and $\theta\Lambda_i = \Lambda_i\theta$ for each i in I, then $\{\Lambda_i\}_{i \in I}$ is a *-g-frame for $(\mathcal{H}, \mathcal{B}, \langle ., . \rangle_{\mathcal{B}})$ with *-g-frame operator $S_{\mathcal{B}}$ and lower and upper *-g-frame bounds $\varphi(\mathcal{A}), \varphi(\mathcal{B})$ respectively, and $\langle S_{\mathcal{B}}\theta x, \theta y \rangle_{\mathcal{B}} = \varphi(\langle S_{\mathcal{A}} x, y \rangle_{\mathcal{A}})$.

Proof. Let $y \in \mathcal{H}$ then there exists $x \in \mathcal{H}$ such that $\theta x = y$ (θ is surjective). By the definition of *-g-frames we have

$$A\langle x,x\rangle_{\mathcal{A}}A^* \leq \sum_{i\in I} \langle \Lambda_i x, \Lambda_i x\rangle_{\mathcal{A}} \leq B\langle x,x\rangle_{\mathcal{A}}B^*.$$

By lemma 3.1 we obtain

$$\varphi(A\langle x, x\rangle_{\mathcal{A}}A^*) \leq \varphi\Big(\sum_{i \in I} \langle \Lambda_i x, \Lambda_i x\rangle_{\mathcal{A}}\Big) \leq \varphi(B\langle x, x\rangle_{\mathcal{A}}B^*).$$

The definition of *-homomorphism yields

$$\varphi(A)\varphi(\langle x,x\rangle_{\mathcal{A}})\varphi(A^*) \leq \sum_{i\in I}\varphi(\langle\Lambda_i x,\Lambda_i x\rangle_{\mathcal{A}}) \leq \varphi(B)\varphi(\langle x,x\rangle_{\mathcal{A}})\varphi(B^*).$$

By the relation between θ and φ we get

$$\varphi(A)\langle \theta x, \theta x \rangle_{\mathcal{B}} \varphi(A)^* \leq \sum_{i \in I} \langle \theta \Lambda_i x, \theta \Lambda_i x \rangle_{\mathcal{B}} \leq \varphi(B) \langle \theta x, \theta x \rangle_{\mathcal{B}} \varphi(B)^*.$$

By the relation between θ and Λ_i we have

$$\varphi(A)\langle \theta x, \theta x \rangle_{\mathcal{B}} \varphi(A)^* \leq \sum_{i \in I} \langle \Lambda_i \theta x, \Lambda_i \theta x \rangle_{\mathcal{B}} \leq \varphi(B) \langle \theta x, \theta x \rangle_{\mathcal{B}} \varphi(B)^*.$$

Then

$$\varphi(A)\langle y, y\rangle_{\mathcal{B}}(\varphi(A))^* \leq \sum_{i \in I} \langle \Lambda_i y, \Lambda_i y\rangle_{\mathcal{B}} \leq \varphi(B)\langle y, y\rangle_{\mathcal{B}}(\varphi(B))^*.$$

for all $y \in \mathcal{H}$. On the other hand,

$$\varphi(\langle S_{\mathcal{A}}x, y \rangle_{\mathcal{A}}) = \varphi(\langle \sum_{i \in I} \Lambda_i^* \Lambda_i x, y \rangle_{\mathcal{A}}) = \sum_{i \in I} \varphi(\langle \Lambda_i x, \Lambda_i y \rangle_{\mathcal{A}})$$
$$= \sum_{i \in I} \langle \theta \Lambda_i x, \theta \Lambda_i y \rangle_{\mathcal{B}} = \sum_{i \in I} \langle \Lambda_i \theta x, \Lambda_i \theta y \rangle_{\mathcal{B}}$$
$$= \langle \sum_{i \in I} \Lambda_i^* \Lambda_i \theta x, \theta y \rangle_{\mathcal{B}} = \langle S_{\mathcal{B}} \theta x, \theta y \rangle_{\mathcal{B}}.$$

Which completes the proof.

In the following, we give an example of the function φ in the precedent theorem.

Example 3.6 ([12])

Let X and Y be two locally compact Hausdorff spaces. Let H be a Hilbert space. Let T be a surjective linear isometry from $C_0(X, H)$ onto $C_0(Y, H)$, then there exists a homeomorphism $\phi: Y \to X$ and for every $y \in Y$ there is a unitary operator $h(y): H \to H$ such that

$$Tf(y) = h(y)f(\phi(y)).$$

In this case, we have

$$\begin{split} \langle Tf, Tg \rangle(y) &= \langle Tf(y), Tg(y) \rangle = \langle h(y)f(\phi(y)), h(y)g(\phi(y)) \rangle \\ &= \langle f(\phi(y)), g(\phi(y)) \rangle = \langle f, g \rangle \circ \phi(y). \end{split}$$

Then

$$\langle Tf, Tg \rangle = \langle f, g \rangle \circ \phi.$$

Let $\varphi \colon C_0(X) \to C_0(Y)$ be the *-isomorphism defined by $\varphi(\psi) = \psi \phi$. Then

$$\langle Tf, Tg \rangle = \varphi(\langle f, g \rangle).$$

The example 3.6 is a consequence of Banach-Stone's Theorem.

EXAMPLE 3.7 Let \mathcal{A} be a C^* -algebra, then

- \mathcal{A} itself is a Hilbert \mathcal{A} -module with the inner product $\langle a, b \rangle_r := a^* b$ for $a, b \in \mathcal{A}$,
- \mathcal{A} itself is a Hilbert \mathcal{A} -module with the inner product $\langle a, b \rangle_l := ab^*$ for $a, b \in \mathcal{A}$.

Let $\theta: \mathcal{A} \to \mathcal{A}$ be the invertible map defined by $\theta(a) = a^*$ and we take φ equal to the identity of $L(\mathcal{A})$. Then

$$\langle \theta a, \theta b \rangle_l = \theta a(\theta b)^* = a^* b = \langle a, b \rangle_r = \varphi(\langle a, b \rangle_r).$$

References

- Alijani, Azadeh. "Generalized frames with C*-valued bounds and their operator duals." *Filomat* 29, no. 7 (2015): 1469–1479. Cited on 17.
- [2] Alijani, Azadeh, and Mohammad Ali Dehghan. "*G*-frames and their duals for Hilbert C*-modules. Bull. Iranian Math. Soc. 38, no. 3 (2012): 567–580. Cited on 17, 19 and 20.
- [3] Asgari, Mohammad Sadegh, and Amir Khosravi. "Frames and bases of subspaces in Hilbert spaces." J. Math. Anal. Appl. 308, no. 2 (2005): 541–553. Cited on 17.
- Bounader, Nordine, and Samir Kabbaj. "*-g-frames in hilbert C*-modules." J. Math. Comput. Sci. 4, no. 2 (2014) 246–256. Cited on 17 and 19.

[24]

-g-frames in tensor products of Hilbert C^ -modules

- [5] Christensen, Ole. An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis. Boston, MA: Birkhäuser Boston, Inc. 2003. Cited on 18.
- [6] Christensen, Ole, and Yonina C. Eldar. "Oblique dual frames and shift-invariant spaces." Appl. Comput. Harmon. Anal. 17, no. 1 (2004): 48–68. Cited on 17.
- [7] Conway, John B. A course in operator theory. Vol. 21 of Graduate Studies in Mathematics. Providence, RI: American Mathematical Society, 2000. Cited on 18.
- [8] Davidson, Kenneth R. C^{*}-algebras by example. Vol. 6 of Fields Institute Monographs. Providence, RI: American Mathematical Society, 1996. Cited on 18 and 20.
- [9] Duffin, Richard J., and A. C. Schaeffer. "A class of nonharmonic Fourier series." Trans. Amer. Math. Soc. 72 (1952): 341–366. Cited on 17.
- [10] Frank, Michael, and David R. Larson. "A module frame concept for Hilbert C^{*}modules." In *Contemp. Math.*247, 207–233. Providence, RI: Amer. Math. Soc., 1999. Cited on 17.
- [11] Gabor, Denis. "Theory of communications." Journal of the Institution of Electrical Engineers 93 (1946): 429–457. Cited on 17.
- [12] Hsu, Ming-Hsiu, and Ngai-Ching Wong. "Inner products and module maps of Hilbert C*-modules." Matimyas Matematika 34, no. 1-2 (2011): 56–62. Cited on 24.
- [13] Khosravi, Amir, and Behrooz Khosravi. "Frames and bases in tensor products of Hilbert spaces and Hilbert C*-modules." Proc. Indian Acad. Sci. Math. Sci. 117, no. 1 (2007): 1–12. Cited on 18 and 20.
- [14] Khosravi, Amir, and Behrooz Khosravi. "Fusion frames and g-frames in Hilbert C*-modules." Int. J. Wavelets Multiresolut. Inf. Process. 6, no. 3 (2008): 433–446. Cited on 17 and 18.
- [15] Lance, E. Christopher. Hilbert C*-modules. A toolkit for operator algebraists. Vol 210 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 1995. Cited on 19 and 20.
- [16] Li, Shidong, and Hidemitsu Ogawa. "Pseudoframes for subspaces with applications." J. Fourier Anal. Appl. 10, no. 4 (2004): 409–431. Cited on 17.

Mohamed Rossafi Department of Mathematics University of Ibn Tofail Kenitra Morocco E-mail: rossafimohamed@gmail.com

Samir Kabbaj Department of Mathematics University of Ibn Tofail Kenitra Morocco

Received: July 18, 2017; final version: February 12, 2018; available online: April 3, 2018.