Annales Academiae Paedagogicae Cracoviensis

Folia 23

Andrzej Smajdor, Wilhelmina Smajdor
Local analytic solutions of a functional equation

Dedicated to Professor Andrzej Zajtz on the occasion of his 70th birthday

Abstract. All analytic solutions of the functional equation

$$
|f(r \exp (i \theta))|^{2}+|f(1)|^{2}=|f(r)|^{2}+|f(\exp (i \theta))|^{2}
$$

in the annulus

$$
P:=\{z \in \mathbb{C}: 1-\epsilon<|z|<1+\epsilon\}
$$

and in the domain

$$
D:=\left\{z=r e^{i \theta} \in \mathbb{C}: 1-\epsilon<r<1+\epsilon, \theta \in(-\delta, \delta)\right\},
$$

are found.

1. Introduction

Hiroshi Haruki in [1] studied the following functional equations

$$
\begin{equation*}
|f(r \exp (i \theta))|^{2}+|f(1)|^{2}=|f(r)|^{2}+|f(\exp (i \theta))|^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(r \exp (i \theta))|=|f(r)|, \tag{2}
\end{equation*}
$$

where $r>0, \theta$ are real. Equation (1) can be obtained from (2). In fact, let us put $r=1$ in (2). Then we have

$$
\begin{equation*}
|f(\exp (i \theta))|=|f(1)| \tag{3}
\end{equation*}
$$

for $\theta \in \mathbb{R}$. Next squaring (2) and (3) and adding them together we infer (1). Thus (1) is a generalization of (2), i.e., if f is a solution of (2), then it is a solution of (1). In paper [1] H. Haruki showed that all analytic solutions in $\mathbb{C} \backslash\{0\}$ of (1) which are analytic at 0 or have a pole at this point can be written as follows

$$
\begin{equation*}
f(z)=A z^{p}+B z^{-p}, \tag{4}
\end{equation*}
$$

where A, B are complex constants and p is an integer.
AMS (2000) Subject Classification: 39B32, 30D05.

We are going to prove that the functions of the form (4) are unique analytic solutions of (1) in the annulus

$$
P:=\{z \in \mathbb{C}: 1-\epsilon<|z|<1+\epsilon\}
$$

where $0<\epsilon \leq 1$ is a constant. We shall also find all analytic solutions of (1) in the domain

$$
D:=\left\{z=r e^{i \theta} \in \mathbb{C}: 1-\epsilon<r<1+\epsilon, \theta \in(-\delta, \delta)\right\}
$$

where $0<\epsilon \leq 1$ and $0<\delta \leq \pi$ are given constants. Moreover, we shall determinate all analytic solutions in P and in D of (2) and of the equation

$$
\begin{equation*}
|f(r \exp (i \theta))|=|f(\exp (i \theta))| . \tag{5}
\end{equation*}
$$

Of course, (1) is also a generalization of (5).

2. Solutions of (1), (2) and (5) in P

In this section we will be concerned with analytic solutions of equations (1), (2) and (5) in the annulus P.

Theorem 1

If f is an analytic solution of (1) in P, then there exist complex constants A, B and an integer p such that (4) is valid. Conversely, for every complex constants A, B and for every integer p, f given by (4) is a solution of (1).

Proof. It is easy to check that f given by (4) satisfies (1). The function $f(z) \equiv 0$ in P is a solution of (1) of the form (4). Suppose that an analytic function f is a solution of (1) and $f \not \equiv 0$. Of course,

$$
\begin{equation*}
f\left(r e^{i \theta}\right) \overline{f\left(r e^{i \theta}\right)}+|f(1)|^{2}=|f(r)|^{2}+\left|f\left(e^{i \theta}\right)\right|^{2} \tag{6}
\end{equation*}
$$

for $\theta \in \mathbb{R}$ and $r \in(1-\epsilon, 1+\epsilon)$. Differentiating (6) at first with respect to r and then with respect to θ we successively infer

$$
e^{i \theta} f^{\prime}\left(r e^{i \theta}\right) \overline{f\left(r e^{i \theta}\right)}+e^{-i \theta} f\left(r e^{i \theta}\right) \overline{f^{\prime}\left(r e^{i \theta}\right)}=\frac{d}{d r}|f(r)|^{2}
$$

and

$$
\begin{aligned}
r e^{2 i \theta} & f^{\prime \prime}\left(r e^{i \theta}\right) \overline{f\left(r e^{i \theta}\right)}-r e^{-2 i \theta} f\left(r e^{i \theta}\right) \overline{f^{\prime \prime}\left(r e^{i \theta}\right)}+e^{i \theta} f^{\prime}\left(r e^{i \theta}\right) \overline{f\left(r e^{i \theta}\right)} \\
& \quad-e^{-i \theta} f\left(r e^{i \theta}\right) \overline{f^{\prime}\left(r e^{i \theta}\right)} \\
& =0
\end{aligned}
$$

Let us multiply the obtained equality by r and replace $r e^{i \theta}$ by z. Then
i.e.,

$$
z^{2} f^{\prime \prime}(z) \overline{f(z)}-\bar{z}^{2} f(z) \overline{f^{\prime \prime}(z)}+z f^{\prime}(z) \overline{f(z)}-\bar{z} f(z) \overline{f^{\prime}(z)}=0
$$

$$
\begin{equation*}
\Im\left[z^{2} f^{\prime \prime}(z) \overline{f(z)}+z f^{\prime}(z) \overline{f(z)}\right]=0 \tag{7}
\end{equation*}
$$

for all $z \in P$. Since $f \not \equiv 0$, we can find a disc $V \subset P$ such that $f(z) \neq 0$ for all $z \in V$. The equality $\overline{f(z)}=\frac{|f(z)|^{2}}{f(z)}$, valid in this disc, and (7) imply

$$
\Im\left[\frac{z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)}{f(z)}\right]=0
$$

for all $z \in V$. Since an analytic function preserves domains, there exists a real constant k such that

$$
\begin{equation*}
z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)-k f(z)=0 \tag{8}
\end{equation*}
$$

for all $z \in V$. By the Identity Theorem formula (8) remains valid in P. (The above part of the proof is due to H. Haruki, see [1], pp. 130-131). We can find complex numbers $a_{n}, n \in \mathbb{Z}$ such that for all $z \in P$,

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}
$$

Since

$$
f^{\prime}(z)=\sum_{n=-\infty}^{\infty} n a_{n} z^{n-1}, \quad f^{\prime \prime}(z)=\sum_{n=-\infty}^{\infty} n(n-1) a_{n} z^{n-2}
$$

we conclude that

$$
0=z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)-k f(z)=\sum_{n=-\infty}^{\infty}[n(n-1)+n-k] a_{n} z^{n}
$$

whence

$$
\begin{equation*}
\left(n^{2}-k\right) a_{n}=0 \quad \text { for all } n \in \mathbb{Z} \tag{9}
\end{equation*}
$$

We choose $p \in \mathbb{Z}$ such that $a_{p} \neq 0$. It is possible as $f \neq 0$. From (9) we get that $p^{2}=k$ and

$$
\left(n^{2}-p^{2}\right) a_{n}=0 \quad \text { for all } n \in \mathbb{Z}
$$

So, if $n^{2} \neq p^{2}$, then $a_{n}=0$, whence it follows that $a_{n}=0$ for all $n \neq p$ and $n \neq-p$. Thus

$$
f(z)=a_{p} z^{p}+a_{-p} z^{-p}
$$

for $z \in P$, as desired.
The following two lemmas are quite obvious.
Lemma 1
If the equality

$$
A e^{i a \theta}+\bar{A} e^{-i a \theta}=A+\bar{A}
$$

holds true for all $\theta \in(-\delta, \delta)$, where A is a complex constant, $a \neq 0$ is a real one, then $A=0$.

Lemma 2
If the equality

$$
\alpha e^{a \theta}+\beta e^{-a \theta}=\alpha+\beta
$$

holds true for all $\theta \in(-\delta, \delta)$, where $a \neq 0, \alpha, \beta$ are real constants, then $\alpha=\beta=0$.

Now we will consider equation (2). As we mentioned above, every solution of (2) is a solution of (1). Thus if f is an analytic solution of (2), then f has to be of form (4) for some complex constants A, B and some integer p. Assume that $p \neq 0$. Substituting (4) to (2) we get

$$
A \bar{B} e^{2 i p \theta}+\bar{A} B e^{-2 i p \theta}=A \bar{B}+\bar{A} B, \quad \theta \in \mathbb{R}
$$

Lemma 1 yields $A=0$ or $B=0$. Thus we have

Theorem 2

If f is an analytic solution of (2) in the annulus P, then there exist a complex constant A and an integer p such that

$$
\begin{equation*}
f(z)=A z^{p} . \tag{10}
\end{equation*}
$$

Conversely, for every complex constant A and for every integer p, the function f given by (10) is a solution of (2).

Theorem 3

Every analytic solution of (5) in the annulus P is a constant function.

Proof. Suppose that f is a solution of (5). Then f has to be of form (4). We may assume that $p \neq 0$. Combining (4) with (5) we obtain

$$
|A|^{2} r^{2 p}+|B|^{2} r^{-2 p}=|A|^{2}+|B|^{2} \quad \text { for all } r \in(1-\epsilon, 1+\epsilon) .
$$

Lemma 2 shows that $A=B=0$, which completes the proof.

3. Solutions of (1), (2) and (5) in D

In this part of the paper we shall find all analytic solutions of equations (1), (2) and (5) in the domain $D:=\left\{r e^{i \theta}: 1-\epsilon<r<1+\epsilon, \theta \in(-\delta, \delta)\right\}$, where $0<\epsilon \leq 1$ and $0<\delta \leq \pi$. In the sequel z^{a} denotes the principal branch
of the power in D and $\log z$ is the principal branch of the $\operatorname{logarithm}$ of z, i.e., $z^{a}=\exp (a \log z)$ and $\log z=\log |z|+i \arg z$ for $z \in D$, where $\arg z \in(-\delta, \delta)$.

Theorem 4
If an analytic function f satisfies (1) in D, then there exist complex constants A, B and $a \in \mathbb{R}$ or $a \in i \mathbb{R}$ such that

$$
\begin{equation*}
f(z)=A z^{a}+B z^{-a} . \tag{11}
\end{equation*}
$$

Conversely, every function f of form (11) with arbitrary complex constants A, B and arbitrary real or purely imaginary constant a is a solution of (1).

Proof. We may repeat the argument of the proof of Theorem 1. Thus we observe that if an analytic function f satisfies (1) in D, then it has to be a solution of the differential equation

$$
\begin{equation*}
z^{2} f^{\prime \prime}(z)+z f^{\prime}(z)-k f(z)=0, \quad z \in D \tag{12}
\end{equation*}
$$

where k is a real constant. Let

$$
G=\{\log z: z \in D\} .
$$

Of course, G is a domain. We define a function $g: G \longrightarrow \mathbb{C}$ as follows

$$
g(u):=f\left(e^{u}\right)
$$

g is analytic, $f(z)=g(\log z)$ for $z \in D$ and

$$
\begin{equation*}
e^{u} f^{\prime}\left(e^{u}\right)=g^{\prime}(u), \quad e^{2 u} f^{\prime \prime}\left(e^{u}\right)=g^{\prime \prime}(u)-g^{\prime}(u), \quad u \in G . \tag{13}
\end{equation*}
$$

It follows from (12) that

$$
e^{2 u} f^{\prime \prime}\left(e^{u}\right)+e^{u} f^{\prime}\left(e^{u}\right)-k f\left(e^{u}\right)=0 \quad \text { for all } u \in G,
$$

whence by (13)

$$
g^{\prime \prime}(u)-k g(u)=0, \quad u \in G .
$$

Solving this differential equation we get

$$
g(u)=A e^{a u}+B e^{-a u}
$$

where A, B are suitable complex constants and $a^{2}=k$. So a is a real constant or $a=i c$, where $c \in \mathbb{R}$. Putting $u=\log z$ we obtain (11). The first assertion of the theorem follows.

For the second conclusion, let us take arbitrarily $a \in \mathbb{R}, A, B \in \mathbb{C}$ and let f be given by (11). We observe that

$$
\begin{aligned}
f\left(r e^{i \theta}\right) & =A r^{a} e^{i \theta a}+B r^{-a} e^{-i \theta a}, & f\left(e^{i \theta}\right) & =A e^{i \theta a}+B e^{-i \theta a}, \\
f(r) & =A r^{a}+B r^{-a}, & f(1) & =A+B .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left|f\left(r e^{i \theta}\right)\right|^{2}+|f(1)|^{2} \\
& \quad=\left(A r^{a} e^{i \theta a}+B r^{-a} e^{-i \theta a}\right)\left(\bar{A} r^{a} e^{-i \theta a}+\bar{B} r^{-a} e^{i \theta a}\right)+(A+B)(\bar{A}+\bar{B}) \\
& \quad=|A|^{2} r^{2 a}+|B|^{2} r^{-2 a}+A \bar{B} e^{2 i \theta a}+\bar{A} B e^{-2 i \theta a}+|A|^{2}+|B|^{2}+A \bar{B}+\bar{A} B
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|f\left(e^{i \theta}\right)\right|^{2}+|f(r)|^{2} \\
& \quad=\left(A e^{i \theta a}+B e^{-i \theta a}\right)\left(\bar{A} e^{-i \theta a}+\bar{B} e^{i \theta a}\right)+\left(A r^{a}+B r^{-a}\right)\left(\bar{A} r^{a}+\bar{B} r^{-a}\right) \\
& \quad=|A|^{2}+|B|^{2}+A \bar{B} e^{2 i \theta a}+\bar{A} B e^{-2 i \theta a}+|A|^{2} r^{2 a}+|B|^{2} r^{-2 a}+A \bar{B}+\bar{A} B
\end{aligned}
$$

Now we assume that $a=i c$, where $c \in R$. Then

$$
\begin{aligned}
f\left(r e^{i \theta}\right) & =A e^{i c(\log r+i \theta)}+B e^{-i c(\log r+i \theta)} \\
& =A e^{-c \theta} e^{i c \log r}+B e^{c \theta} e^{-i c \log r}, \\
f\left(e^{i \theta}\right) & =A e^{-c \theta}+B e^{c \theta}, \\
f(r) & =A e^{i c \log r}+B e^{-i c \log r}, \\
f(1) & =A+B .
\end{aligned}
$$

These formulas lead to

$$
\begin{aligned}
&\left|f\left(r e^{i \theta}\right)\right|^{2}+|f(1)|^{2} \\
&=\left(A e^{-c \theta} e^{i c \log r}+B e^{c \theta} e^{-i c \log r}\right)\left(\bar{A} e^{-c \theta} e^{-i c \log r}+\bar{B} e^{c \theta} e^{i c \log r}\right)+|A+B|^{2} \\
&=|A|^{2} e^{-2 c \theta}+|B|^{2} e^{2 c \theta}+A \bar{B} e^{2 i c \log r}+\bar{A} B e^{-2 i c \log r} \\
& \quad+|A|^{2}+|B|^{2}+A \bar{B}+\bar{A} B
\end{aligned}
$$

and

$$
\begin{aligned}
\left|f\left(e^{i \theta}\right)\right|^{2}+|f(r)|^{2}= & \left(A e^{-c \theta}+B e^{c \theta}\right)\left(\bar{A} e^{-c \theta}+\bar{B} e^{c \theta}\right) \\
& +\left(A e^{i c \log r}+B e^{-i c \log r}\right)\left(\bar{A} e^{-i c \log r}+\bar{B} e^{i c \log r}\right) \\
= & |A|^{2} e^{-2 c \theta}+|B|^{2} e^{2 c \theta}+A \bar{B}+\bar{A} B+|A|^{2}+|B|^{2} \\
& +A \bar{B} e^{2 i c \log r}+\bar{A} B e^{-2 i c \log r} .
\end{aligned}
$$

So in both cases the function f given by (11) satisfies (1), as required.

Theorem 5

All analytic solutions of (2) in D are of the form

$$
\begin{equation*}
f(z)=A z^{a}, \tag{14}
\end{equation*}
$$

where A is a complex constant and a is a real one.
Proof. Suppose that f is a non-constant analytic solution of (2) in D. Since (1) is a generalization of (2) we can apply Theorem 4. Thus there exist complex constants A, B and real or purely imaginary $a \neq 0$ such that f is given by (11). At first we assume that a is real. Substituting (11) in (2) after some easy calculations we obtain

$$
\bar{A} B \exp (-2 i a \theta)+A \bar{B} \exp (2 i a \theta)=\bar{A} B+A \bar{B}
$$

for $\theta \in(-\delta, \delta)$. Lemma 1 yields $A=0$ or $B=0$ and f is of the form (14), as required.

Now, we assume that $a=i c$, where c is real. Replacing in (2), $f(z)$ by (11) we infer the equality

$$
|A|^{2} \exp (-2 c \theta)+|B|^{2} \exp (2 c \theta)=|A|^{2}+|B|^{2}
$$

This together with Lemma 2 yields $A=B=0$.
Theorem 6
All analytic solutions of (5) in D are given by the formula

$$
\begin{equation*}
f(z)=A z^{i c}, \tag{15}
\end{equation*}
$$

where A is a complex constant and c is a real one.
Proof. We argue as in the preceding proof. Suppose that f is a nonconstant analytic solution of (5) in $D . f$ has to be given by (11). Assume that a is a real constant. Substituting (11) in (5) we get

$$
|A|^{2} r^{2 a}+|B|^{2} r^{-2 a}=|A|^{2}+|B|^{2}
$$

for all $r \in(1-\epsilon, 1+\epsilon)$. From Lemma 2 we infer that $A=B=0$. It remains to consider $a=i c$, where c is real. Again substituting (11) in (5) we can obtain

$$
A \bar{B} \exp (2 i c \log r)+\bar{A} B \exp (-2 i c \log r)=A \bar{B}+\bar{A} B
$$

The above formula and Lemma 1 yield (15).

References

[1] H. Haruki, A new functional characterizing generalized Joukowski transformations, Aequationes Math. 32 (1987), 327-335.

Institute of Mathematics
Pedagogical University
Podchorażych 2
PL-30-084 Kraków
Poland
E-mail: asmajdor@ap.krakow.pl
Institute of Mathematics
Silesian University of Technology
Kaszubska 23
PL-44-100 Gliwice
Poland
E-mail: w.smajdor@polsl.pl

