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Abstract. All analytic solutions of the functional equation

|f (rexp(i0))]* + | f()* = £ (r)[* + | f(exp(if)) |
in the annulus
P={zeC: 1—e<|z|<1+¢€}
and in the domain

Di={z=re €cC: 1—e<r<l+e 0c (=60},

are found.

1. Introduction

Hiroshi Haruki in [1] studied the following functional equations

|f(rexp(i0))|* + [F(D)> = [F(r)]* + | f(exp(i6))|?, (1)
and

|f (rexp(i))| = [ £ (r)]; (2)
where 7 > 0, 6 are real. Equation (1) can be obtained from (2). In fact, let us
put 7 =1 in (2). Then we have

[/ (exp(i6)) = [f(1)] 3)

for @ € R. Next squaring (2) and (3) and adding them together we infer (1).
Thus (1) is a generalization of (2), i.e., if f is a solution of (2), then it is a
solution of (1). In paper [1] H. Haruki showed that all analytic solutions in
C\ {0} of (1) which are analytic at 0 or have a pole at this point can be written
as follows

f(z)=AzP + Bz7P, (4)

where A, B are complex constants and p is an integer.

AMS (2000) Subject Classification: 39B32, 30D05.



204  Andrzej Smajdor, Wilhelmina Smajdor

We are going to prove that the functions of the form (4) are unique analytic
solutions of (1) in the annulus

P={zcC: 1—e<|z| <1+¢€},

where 0 < € <1 is a constant. We shall also find all analytic solutions of (1)
in the domain

D::{z:rewe(c: l—e<r<l+4e 0e(=4,0)},

where 0 < € < 1 and 0 < § < m are given constants. Moreover, we shall
determinate all analytic solutions in P and in D of (2) and of the equation

|f (rexp (i0))] = | f (exp (i6))] ()

Of course, (1) is also a generalization of (5).

2. Solutions of (1), (2) and (5)in P

In this section we will be concerned with analytic solutions of equations (1),
(2) and (5) in the annulus P.

THEOREM 1

If f is an analytic solution of (1) in P, then there exist complex constants
A, B and an integer p such that (4) is valid. Conversely, for every complex
constants A, B and for every integer p, f given by (4) is a solution of (1).

Proof. Tt is easy to check that f given by (4) satisfies (1). The function
f(z) =0 1in P is a solution of (1) of the form (4). Suppose that an analytic
function f is a solution of (1) and f # 0. Of course,

Flre®) f(re®) + 1)1 = 1F(r)]* + £ (6)

for 6 € R and r € (1 —¢,1+ €). Differentiating (6) at first with respect to r
and then with respect to 8 we successively infer

& (e 4+ e f e ) = (1)
and
7,621'0](-//(“31'9)% o T’G_Qiaf(”f’ew)m + eigf'(rew)w
—e O f(re”) fre?)
=0.

Let us multiply the obtained equality by r and replace re? by z. Then
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2f(2)f(2) =2 f(2)["(2) + 2f'(2) f(2) = Z2f (2) ['(2) = 0,

ie.,

SE2f"(2)f(2) + 21 (2)f(2)] =0 (7)
for all z € P. Since f # 0, we can find a disc V' C P such that f(z) # 0 for all

z € V. The equality f(z) = “}((ZZ))F, valid in this disc, and (7) imply

o[22+ 21'(2)
f(z)
for all z € V. Since an analytic function preserves domains, there exists a real
constant k such that

=0

2f(2) +2f'(2) — kf(z) =0 (8)

for all z € V. By the Identity Theorem formula (8) remains valid in P. (The
above part of the proof is due to H. Haruki, see [1], pp. 130-131). We can find
complex numbers a,, n € Z such that for all z € P,

f(z) = Z anz".

Since T
fl(z) = i nanz" !, 1'(z) = i n(n —1)a,z" 2
we conclude that
0= 20"(2) 42/ ()~ ki) = 3 (i — 1)+ n— Klan=",
whence T
(n* —k)a, =0  forallncZ 9)

We choose p € Z such that a, # 0. It is possible as f # 0. From (9) we get
that p? = k and

(n2 —p2) anp =0 for all n € Z.

So, if n? # p?, then a,, = 0, whence it follows that a,, = 0 for all n # p and
n # —p. Thus

f(z) =apz? +a_pz7?
for z € P, as desired.

The following two lemmas are quite obvious.

LEMMA 1
If the equality

Aeiae _’_Zefiae :A+Z
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holds true for all 8 € (=46,0), where A is a complex constant, a # 0 is a real
one, then A = 0.

LEMMA 2
If the equality

ae® + ﬁefae =a+p

holds true for all 8 € (—6,0), where a # 0, a, B are real constants, then
a=p=0.

Now we will consider equation (2). As we mentioned above, every solution
of (2) is a solution of (1). Thus if f is an analytic solution of (2), then f has to
be of form (4) for some complex constants A, B and some integer p. Assume
that p # 0. Substituting (4) to (2) we get

ABe??’ + ABe~?" = AB + AB, 6 cR.
Lemma 1 yields A =0 or B = 0. Thus we have

THEOREM 2
If f is an analytic solution of (2) in the annulus P, then there exist a complex
constant A and an integer p such that

f(z) = AzP. (10)

Conwversely, for every complex constant A and for every integer p, the function
f given by (10) is a solution of (2).

THEOREM 3
Every analytic solution of (5) in the annulus P is a constant function.

Proof. Suppose that f is a solution of (5). Then f has to be of form (4).
We may assume that p # 0. Combining (4) with (5) we obtain

|A]*r?P + |B|>r—2 = |A|? + |B|? forallr € (1 —¢€,1+4¢€).

Lemma 2 shows that A = B = 0, which completes the proof.

3. Solutions of (1), (2) and (S5) in D

In this part of the paper we shall find all analytic solutions of equations
(1), (2) and (5) in the domain D := {re?? : 1 —e <r <1+e¢, 6 € (=5,0)},
where 0 < e < 1 and 0 < § < 7. In the sequel z* denotes the principal branch
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of the power in D and log z is the principal branch of the logarithm of z, i.e.,
2% = exp (alog z) and log z = log |z| + i arg z for z € D, where argz € (=4, 9).

THEOREM 4
If an analytic function f satisfies (1) in D, then there exist complex constants
A, B and a € R or a € iR such that

f(z) = Az* + Bz (11)

Conversely, every function f of form (11) with arbitrary complex constants A,
B and arbitrary real or purely imaginary constant a is a solution of (1).

Proof. We may repeat the argument of the proof of Theorem 1. Thus we
observe that if an analytic function f satisfies (1) in D , then it has to be a
solution of the differential equation

2f(2)+ 2f'(2) — kf(z) =0, z€D, (12)
where k is a real constant. Let
G ={logz: z € D}.

Of course, G is a domain. We define a function g : G — C as follows

g(u) == f(e*).
g is analytic, f(z) = g(logz) for z € D and
ef(e") =g'(u), €f"(e")=¢"(u)~g'(u), ued. (13)

It follows from (12) that
2 (") e f(e") —kf(e*) =0  foralluc G,
whence by (13)
g"(u) — kg(u) =0, ue G.
Solving this differential equation we get
g(u) = Ae*™ + Be™ ",

where A, B are suitable complex constants and a? = k. So a is a real constant
or a = ic, where ¢ € R. Putting u = logz we obtain (11). The first assertion
of the theorem follows.

For the second conclusion, let us take arbitrarily a € R, A, B € C and let f
be given by (11). We observe that

f(rew) —_ Araeiea +Br7aefi0a’ f(ew) _ Aewa +B€7i0a,
f(r) = Ar® + Br=e, f(1)=A+ B.
Thus
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[f(re) | + £ (1)
= (Ar®e®® 4 Br=%e= ") (Ar®e="% 4 Br=¢"*) 4 (A + B)(A + B)
= |A>r®* + |B*r2* + ABe*Y* + ABe=?"%* 1 |A> + |B|?> + AB + AB
and
[F(eD)?+1f(r)?
_ (Aeiea + Befwa)(zefiea +§ei0a) + (ATa +B7”7a)(ZT‘a +§7,7a)
= |A]? + |B]* + ABe?"* + ABe™ %% 1| A*r** + |B|*r~%* + AB + AB.
Now we assume that a = ic, where ¢ € R. Then
f (reie) — Aeic(longriH) + Be*ic(logr+i9)
_ Ae—ceeiclogr + Becee—iclog'r"
f (ew) _ Aefce +Bec9,
f(’l“) _ Aeiclogr+Be—iclog7',
f(1)=A+B.
These formulas lead to
[f(re®) P+ (D)
_ (Aefceeiclogr +Beceeficlogr)(zefceeficlogr +§eceeiclogr) + |A+B|2
_ |A|2672CG + |B|26250 +A§62iclogr +ZB€72iClOgT
+|A|* + |B|* + AB + AB
and
FE)? 4 1) = (A~ + Be)(@e" + Be)
+ (Aeiclog'r + Be—iclogr)(ze—iclogr +§eiclogr)
= [APe™? + |B[*¢*’ + AB + AB + |A” + |B|?
+A§62iclog7'_i_ZBe—Qiclogr.
So in both cases the function f given by (11) satisfies (1), as required.

THEOREM 5
All analytic solutions of (2) in D are of the form

flz) = Az7, (14)

where A is a complex constant and a is a real one.

Proof. Suppose that f is a non-constant analytic solution of (2) in D.
Since (1) is a generalization of (2) we can apply Theorem 4. Thus there exist
complex constants A, B and real or purely imaginary a # 0 such that f is
given by (11). At first we assume that a is real. Substituting (11) in (2) after
some easy calculations we obtain



Local analytic solutions of a functional equation 209

ABexp (—2iaf) + ABexp (2ial) = AB + AB
for 6 € (—0,9). Lemma 1 yields A =0 or B =0 and f is of the form (14), as
required.
Now, we assume that a = ic, where c is real. Replacing in (2), f(z) by (11)
we infer the equality

|A|? exp (—2c0) + | B|* exp (2¢) = |A|* + |B)?.
This together with Lemma 2 yields A = B = 0.

THEOREM 6
All analytic solutions of (5) in D are given by the formula

f(z) = Az, (15)
where A is a complex constant and c is a real one.

Proof. We argue as in the preceding proof. Suppose that f is a non-
constant analytic solution of (5) in D. f has to be given by (11). Assume that
a is a real constant. Substituting (11) in (5) we get

AP 4 B2 = |AP + |BP

forall r € (1—¢,14¢€). From Lemma 2 we infer that A = B = 0. It remains to
consider a = ic, where ¢ is real. Again substituting (11) in (5) we can obtain

ABexp (2iclogr) + ABexp (—2iclogr) = AB + AB.
The above formula and Lemma 1 yield (15).
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