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Abstract. This paper is devoted to the study of a multi-step method with
divided differences for solving nonlinear equations in Banach spaces. In
earlier studies, hypotheses on the Fréchet derivative up to the sixth order
of the operator under consideration is used to prove the convergence of the
method. That restricts the applicability of the method. In this paper we
extended the applicability of the sixth-order multi-step method by using only
hypotheses on the first derivative of the operator involved. Our convergence
conditions are weaker than the conditions used in earlier studies. Numerical
examples where earlier results cannot be applied to solve equations but our
results can be applied are also given in this study.

1. Introduction

Grau et. al. in [12], studied a sixth-order multi-step method defined for each
n = 0, 1, 2, . . . by

yn = xn −A−1
n F (xn),

zn = yn −B−1
n F (yn), (1)

xn+1 = zn −B−1
n F (zn),

where An = [un, vn;F ], Bn = 2[yn, xn;F ] − [un, vn;F ], un = xn + F (xn) and
vn = xn − F (xn), for approximating a solution x∗ of the equation

F (x) = 0, (2)
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where F : D ⊆ B1 → B2 is a Fréchet differentiable operator between Banach
spaces B1,B2 and [., .;F ] is a divided difference of order one on D2. Due to the
wide applications, finding a solution for (2) is an important problem in applied
mathematics. Most of the solution methods for solving (2) are iterative and for
iterative methods order of convergence is an important issue. Convergence analysis
of higher order iterative methods require assumptions on the higher order Fréchet
derivatives of the operator F . That restricts the applicability of these methods.

Notice that in [12] B1 = B2 = Ri (i a natural integer). However, we study
method (2) in the more general setting of a Banach space. We also provide com-
putable radius of convergence and error bounds on ‖xn − x∗‖ based on Lipschitz
constants not given in [12]. The study of the local convergence in this way is also
important because it provides the difficulty in choosing the initial points. Other-
wise as in the earlier studies the choice of the initial point is a shot in the dark.
Throughout this paper L(B2,B1) denotes the set of bounded linear operators be-
tween B1 and B2 and B(z, ρ), B̄(z, ρ) stand, respectively for the open and closed
balls in B1 with center z ∈ B1 and of radius ρ > 0.

Convergence analysis in [12] is based on the assumptions on the Fréchet deriva-
tive F up to the order six. In this study we use only assumptions on the first
Fréchet derivative of the operator F in our convergence analysis, so that the
method (1) can be applied to solve equations but the earlier results cannot be
applied [1, 2, 3, 4, 5, 18, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 9, 19, 20, 21, 22] (see
Example 3.2).

The rest of the paper is structured as follows. In Section 2 we present the local
convergence analysis of the method (1). We also provide a radius of convergence,
computable error bounds and a uniqueness result. Numerical examples are given
in the last section.

2. Local convergence

The local convergence analysis of (1) is based on some parameters and scalar
functions. Let α ≥ 0, β ≥ 0 be parameters and ω0 : [0,+∞)2 → [0,+∞) be
a continuous nondecreasing function satisfying ω0(0, 0) = 0. Define parameter r0
by

r0 = sup{t ≥ 0 : ω0(αt, βt) < 1}. (3)

Let ϕ0 : [0, r0) → [0,+∞), ω, ω1 : [0, r0)2 → [0,+∞) be continuous and nonde-
creasing functions. Define functions g1 and h1 on the interval [0, r0) by

g1(t) = ω1(ϕ0(t)t, ϕ0(t)t)
1− ω0(αt, βt)

and
h1(t) = g1(t)− 1.

Suppose that
ω1(0, 0) < 1. (4)
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We have by (4) that

h1(0) = ω1(0, 0)
1− ω0(0, 0) − 1 < 0, (ω0(0, 0) = 0)

and by (3) h1(t) → +∞ as t → r−0 . The intermediate value theorem assures the
existence of a solution for equation h1(t) = 0 in (0, r0). Denote by r1 the smallest
such solution. Define also functions p and hp on [0, r0) by

p(t) = ω0(g1(t)t, t) + ω((g1(t) + α)t, ϕ0(t)t)

and
hp(t) = p(t)− 1.

Suppose that
ω(0, 0) < 1. (5)

We get
hp(0) = ω0(0, 0) + ω(0, 0)− 1 < 0

and hp(t) → +∞ as t → r−0 . Denote by rp the smallest solution of equation
hp(t) = 0. Let ϕ : [0, rp) → [0,+∞) be a continuous and nondecreasing function.
Define functions g2 and h2 on the interval [0, rp) by

g2(t) =
(

1 + ϕ(g1(t)t)
1− p(t)

)
g1(t)

and
h2(t) = g2(t)− 1.

Suppose that (
1 + ϕ(0)

1− p(0)

)
ω1(0, 0) < 1.

We obtain that h2(0) < 0 and h2(t)→ +∞ as t→ r−p . Denote by r2 the smallest
solution of equation h2(t) = 0 on the interval (0, rp). Let ω : [0, r0)2 → [0,+∞)
be a continuous and nondecreasing function. Define functions g3 and h3 on the
interval [0, rp) by

g3(t) =
(

1 + ϕ(g2(t)t)
1− p(t)

)
g2(t)

and
h3(t) = g3(t)− 1.

Suppose that (
1 + ϕ(0)

1− p(0)

)(
1 + ϕ(0)

)
ω1(0, 0) < 1. (6)

We get by (6) that h3(0) < 0 and h3(t) → +∞ as t → r−0 . Denote by r3 the
smallest solution of equation h3(t) = 0. Define the radius of convergence r by

r = min{ri, i = 1, 2, 3}. (7)
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Then, for each t ∈ [0, r) we have

0 ≤ gi(t) < 1 (8)

and
0 ≤ p(t) < 1 (9)

Define parameter R∗ by
R∗ = max{αr, βr, r}. (10)

The local convergence analysis of method (1) follows under the previous nota-
tion.
Theorem 2.1
Let F : Ω ⊂ B1 → B2 be a continuously Fréchet differentiable operator and let
[., .;F ] : Ω2 → L(B1,B2) be a divided difference of order one on Ω2 for F . Sup-
pose there exists x∗ ∈ Ω and function ω0 : [0,+∞)2 → [0,+∞) continuous and
nondecreasing with ω0(0, 0) = 0, such that for each x, y ∈ Ω,

F (x∗) = 0, F ′(x∗) is invertible (11)

and
‖F ′(x∗)−1([x, y;F ]− F ′(x∗))‖ ≤ ω0(‖x− x∗‖, ‖y − x∗‖). (12)

Let Ω0 = Ω ∩ B(x∗, r0). There exist α ≥ 0, β ≥ 0, functions ω, ω1 : [0, r0)2 →
[0,+∞), ϕ0, ϕ : [0, r0)→ [0,+∞) continuous and nondecreasing such that for each
x, y, u ∈ Ω0,

‖F ′(x∗)−1([x, y;F ]− [u, x∗;F ])‖ ≤ ω1(‖x− u‖, ‖y − x∗‖), (13)
‖F ′(x∗)−1([x, y;F ]− [u, z;F ])‖ ≤ ω(‖x− u‖, ‖y − z‖), (14)

‖[x, x∗;F ]‖ ≤ ϕ0(‖x− x∗‖), (15)
‖F ′(x∗)−1[x, x∗;F ]‖ ≤ ϕ(‖x− x∗‖), (16)

B̄(x∗, R∗) ⊆ Ω, (17)
‖I + [x, x∗;F ]‖ ≤ α,
‖I − [x, x∗;F ]‖ ≤ β

and conditions (5), (6) hold, where r0, r, R∗ are defined by (3), (7) and (10),
respectively. Then, the sequence {xn} generated for x0 ∈ U(x∗, r)−{x∗} by method
(1) is well defined, remains in B(x∗, r) for each n = 0, 1, 2, . . . and converges to
x∗. Moreover, the following estimates hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (18)
‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (19)

‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (20)

where the functions gi for i = 1, 2, 3 are defined previously. Furthermore, if there
exists R1 ≥ r such that

ω0(R1, 0) < 1 or ω0(0, R1) < 1,

then the limit point x∗ is the only solution of equation F (x) = 0 in Ω1 := Ω ∩
B(x∗, R1).
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Proof. The estimates (18)–(20) shall be shown using induction. First we show
that A0 is invertible, so y0 is then well defined by the first substep of method (1)
for n = 0. Using (3), (11) and (12), we have that

‖F ′(x∗)−1(A0 − F ′(x∗))‖
≤ ω0(‖x0 − x∗ − F (x0)‖, ‖x0 − x∗ + F (x0)‖)
≤ ω0(‖(I + [x0, x

∗;F ])(x0 − x∗)‖, ‖(I − [x0, x
∗;F ])(x0 − x∗)‖) (21)

≤ ω0(α‖x0 − x∗‖, β‖x0 − x∗‖)
≤ ω0(αr0, βr0) < 1.

By (21) and the Banach perturbation lemma [2, 3], we deduce that A0 is invertible
and

‖A−1
0 F ′(x∗)‖ ≤ 1

1− ω0(α‖x0 − x∗‖, β‖x0 − x∗‖)
. (22)

We can write by method (1) that

y0 − x∗ = x0 − x∗ −A−1
0 F (x0)

= A−1
0 F ′(x∗)F ′(x∗)−1([u0, v0;F ]− [x0, x

∗;F ])‖x0 − x∗‖.
(23)

In view of (7), (8) (for i = 1), (13), (15), (22) and (23), we get in turn that

‖y0 − x∗‖ ≤ ‖A−1
0 F ′(x∗)‖‖F ′(x∗)−1([u0, v0;F ]− [x0, x

∗;F ])‖‖x0 − x∗‖

≤ ω1(‖u0 − x0‖, ‖v0 − x∗‖)‖x0 − x∗‖
1− ω0(α‖x0 − x∗‖, β‖x0 − x∗‖)

≤ ω1(‖F (x0)‖, ‖F (x0)‖)
1− ω0(α‖x0 − x∗‖, β‖x0 − x∗‖)

≤ ω1(‖[x0, x
∗;F ](x0 − x∗)‖, ‖[x0, x

∗;F ](x0 − x∗)‖)
1− ω0(α‖x0 − x∗‖, β‖x0 − x∗‖)

≤ ω1(v0(‖x0 − x∗‖)‖x0 − x∗‖, v0(‖x0 − x∗‖)‖x0 − x∗‖)
1− ω0(α‖x0 − x∗‖, β‖x0 − x∗‖)

= g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖
< r,

(24)

which shows (18) for n = 0 and y0 ∈ B(x∗, r), where we also used

‖u0 − x∗‖ = ‖x0 − x∗ + F (x0)‖
= ‖(I + [x0, x

∗;F ])(x0 − x∗)‖
≤ ‖I + [x0, x

∗;F ]‖‖x0 − x∗‖
≤ αr

and ‖v0 − x∗‖ ≤ ‖I − [x0, x
∗;F ]‖x0 − x∗‖ ≤ βr so u0, v0 ∈ B(x∗, r) (by (17)).

Next, we must show B0 is invertible, which will make z0 well defined by the second
substep of method (1) for n = 0. Using (3), (7), (9), (12), (14) and (24), we get
in turn that
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‖F ′(x∗)−1(B0 − F ′(x∗))‖
≤ ‖F ′(x∗)−1([y0, x0;F ]− F ′(x∗))‖+ ‖F ′(x∗)−1([y0, x0;F ]− [u0, v0;F ])‖
≤ ω0(‖y0 − x∗‖, ‖x0 − x∗‖) + ω(‖y0 − u0‖, ‖x0 − v0‖)
≤ ω0(g1(‖x0 − x∗‖)‖x0 − x∗‖, ‖x0 − x∗‖)

+ ω(‖y0 − x∗‖+ ‖u0 − x∗‖, ‖F (x0)‖)
≤ ω0(g1(‖x0 − x∗‖)‖x0 − x∗‖, ‖x0 − x∗‖)

+ ω(g1(‖x0 − x∗‖+ α)‖x0 − x∗‖, ϕ0(‖x0 − x∗‖)‖x0 − x∗‖)
= p(‖x0 − x∗‖) ≤ p(r)
< 1,

so B0 is invertible and

‖B−1
0 F ′(x∗)‖ ≤ 1

1− p(‖x0 − x∗‖)
. (25)

It follows that z0 and x1 are well defined by method (2). Then, by the second
substep of method (1) for n = 0, (1), (8) (for i = 2), (16), (24) and (25), we have
in turn that

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+ ‖B−1
0 F ′(x∗)‖‖F ′(x∗)−1F (y0)‖

≤
(

1 + ϕ(‖y0 − x∗‖)
1− p(‖x0 − x∗‖)

)
‖y0 − x∗‖

≤
(

1 + ϕ(g1(‖x0 − x∗‖)‖x0 − x∗‖)
1− p(‖x0 − x∗‖)

)
g1(‖x0 − x∗‖)‖x0 − x∗‖

= g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖
< r,

so (19) holds for n = 0 and z0 ∈ B(x∗, r). Then, from the last substep of method
(1) for n = 0, (8) (for i = 3) and (25), we get in turn that

‖x1 − x∗‖ ≤ ‖z0 − x∗‖+ ‖B−1
0 F ′(x∗)‖‖F ′(x∗)−1F (z0)‖

≤
(

1 + ϕ(‖z0 − x∗‖)
1− p(‖x0 − x∗‖)

)
‖z0 − x∗‖

≤
(

1 + ϕ(g2(‖x0 − x∗‖)‖x0 − x∗‖)
1− p(‖x0 − x∗‖)

)
g2(‖x0 − x∗‖)‖x0 − x∗‖

= g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖
< r,

which shows (20) and x1 ∈ B(x∗, r). The induction for (18)–(20) is completed
in an analogous way, if we replace x0, y0, u0, v0, z0, x1 by xk, yk, uk, vk, zk, xk+1,
respectively in the previous estimates. Then, from the estimate

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ < r,

where c = g3(‖x0 − x ∗ ‖) ∈ [0, 1), we deduce that limk→∞ xk = x∗ and xk+1 ∈
B(x∗, r). The uniqueness part is shown by assuming y∗ ∈ Ω1 with F (y∗) = 0.
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Define linear operator T by T = [y∗, x∗;F ]. Using (12) and (21), we have in turn
that

‖F ′(x∗)−1(T − F ′(x∗))‖ ≤ ω0(0, ‖y∗ − x∗‖) ≤ ω0(0, R1) < 1,

so T is invertible. If then follows from the identity 0 = F (y∗)−F (x∗) = T (y∗−x∗)
that x∗ = y∗.

Remark 2.2
Method (1) is not changing if we use the new instead of the old conditions [10, 11].
Moreover, for the error bounds in practice we can use the computational order of
convergence (COC) [22]

ξ =
ln ‖xn+2−x∗‖
‖xn+1−x∗‖

ln ‖xn+1−x∗‖
‖xn−x∗‖

for each n = 1, 2, . . .

or the approximate computational order of convergence (ACOC)

ξ∗ =
ln ‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

for each n = 0, 1, 2, . . .

instead of the error bounds obtained in Theorem 2.1.

3. Numerical Examples

The numerical examples are presented in this section. We choose

[x, y;F ] =
∫ 1

0
F ′(y + θ(x− y)) dθ.

In the first example, we compute the convergence radius and (COC) not given
in [12].

Example 3.1
Let B1 = B2 = R3, Ω = Ū(0, 1), x∗ = (0, 0, 0)T . Define function F on D for
w = (x, y, z)T by

F (w) =
(
ex − 1, e− 1

2 y2 + y, z
)T

.

Then, x∗ = (0, 0, 0)T and the Fréchet-derivative is given by

F ′(v) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that using the (10) conditions, we get ω0(s, t) = L0

2 (s+t), ω1(s, t) = Ls+L0t
2 ,

ω(s, t) = 1
2L(s+ t), ϕ0(t) = ϕ(t) = 1

2 (1+e
1

L0 ), α = β = 1+ 1
2 (1+e

1
L0 ), L0 = e−1,

L = e. The parameters are

r1 = 0.1524, r2 = 0.7499, r3 = 0.0578 = r, ξ = 4.9984.
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The work in [10, 11, 12] cannot be used in the next example, since B1 = B2 6=
Ri. This example is also used to show how to compute the convergence radii in
abstract space setting.

Example 3.2
Let B1 = B2 = C[0, 1], Ω = Ū(x∗, 1) and consider the nonlinear integral equation
of the mixed Hammerstein-type [4, 6, 20] defined by

x(s) =
∫ 1

0
K(s, t)x(t)2

2 dt,

where the kernel K is the Green’s function defined on the interval [0, 1]× [0, 1] by

K(s, t) =
{

(1− s)t, t ≤ s,
s(1− t), s ≤ t.

The solution x∗(s) = 0 is the same as the solution of equation (2), where
F : C[0, 1]→ C[0, 1]) is defined by

F (x)(s) = x(s)−
∫ 1

0
K(s, t)x(t)2

2 dt.

Notice that ∥∥∥∥ ∫ 1

0
K(s, t) dt

∥∥∥∥ ≤ 1
8 .

Then, we have that

F ′(x)y(s) = y(s)−
∫ 1

0
K(s, t)x(t) dt,

and F ′(x∗(s)) = I,

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ 1
8‖x− y‖.

We can choose ω0(t, s) = ω1(t, s) = ω(s, t) = t+s
16 , ϕ0(t) = ϕ(t) = 9

16 and α = β =
25
16 . The parameters are

r1 = 0.6124, r2 = 0.1898, r3 = 0.1214 = r.
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