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Abstract. In the present paper, we define a notion of an m2-topological space
by introducing a count of openness of a multiset (mset in short) and study
the properties of m2-subspaces, mgp-maps etc. Decomposition theorems
involving m-topologies and m2-topologies are established. The behaviour
of the functional image and functional preimage of an m2-topologies, the
continuity of the identity mapping and a constant mapping in m2-topologies
are also examined.

1. Introduction

A classical set is a collection of objects where an object can occur only once.
But there are a number of situations in science and real life where the repetition
of an object is significant. Allowing repetition of elements, N. G. de Bruijn [4]
first suggested to generalize classical sets to multisets (msets in short) in a private
communication to D. E. Knuth. These sets are very useful structures arising in
many areas of mathematics and computer science such as in prime factorization of
integers, invariants of matrices in canonical form, zeros and poles of meromorphic
functions, multicriteria decision making, knowledge representation in data based
systems, biological systems membrane computing etc. Several researchers have
worked in variety of terms viz. list, heap, bunch, bag, sample, weighted set,
occurrence set and fireset used in different contexts but conveying synonymity
with mset. Many authors like Yager [23], Miyamoto [17], Hickman [13], Blizard
[3], Girish and John [6, 7], Hallez et al. [10] etc., have studied the set theoretic
properties of msets. Some hybridizations of msets may be found in [1, 2, 12, 16].
Structural study, such as topological, are found in [8, 9, 20, 22], algebraic in
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[18, 19]. Note that the m-topology defined on msets by Girish and John [8, 9]
as actually an ordinary set τ of some msets. In this paper, an attempt has been
made in allowing the repetition of members of m-topology τ . A definition of
type-2 m-topology is introduced which will be called m2-topology. The relevance
of this approach in fuzzy setting have been done by A. S̆ostak [21], M. S. Ying
[24], U. Höhle and A. S̆ostak [14], T. Kubiak [15], and Hazra, Chattopadhyay
and Samanta [5, 11]. In brief, in this paper, we have defined a notion of an m2-
topological space by introducing a count of openness of an mset, m2-cotopological
space by introducing a count of closedness of an mset. Moreover, m2-subspaces,
mgp-mappings and some of their important properties are studied. Decomposition
theorems involving m-topologies and m2-topologies are established. The behaviour
of functional image and functional preimage of an m2-topology, the continuity of
the identity mapping and a constant mapping in m2-topologies are also examined.

2. Preliminaries

This section consists of some definitions and results of msets and m-topologies
which will be used in the main works of the paper. Unless otherwise stated, X
will be assumed to be an initial universal set and N represents the set of all non
negative integers.

2.1. Multi sets (or msets)

Definition 2.1 ([7])
An mset M drawn from the universal set X is represented by a count function
CM defined as CM : X → N, where N represents the set of non negative integers.
Here CM (x) is the number of occurrences of the element x in the mset M . The
presentation of the mset M drawn from X = {x1, x2, . . . , xn} will be as M =
{x1/m1, x2/m2, . . . , xn/mn}, wheremi is the number of occurrences of the element
xi,i = 1, 2, . . . , n in the mset M . Also here for any positive integer w, [X]w is the
set of all msets whose elements are in X such that no element in the mset occurs
more than w times and [X]∞ is the set of all msets whose elements are in X such
that there is no limit on the number of occurrences of an element in an mset. As
in [7], [X]w and [X]∞ will be referred to as mset spaces. MS(X) denotes the set
of all msets drawn from X.

Definition 2.2 ([7])
Let M1 and M2 be two msets drawn from a set X. Then M1 is said to be submset
of M2 if CM1(x) ≤ CM2(x) for all x ∈ X. This relation is denoted by M1 ⊆ M2.
Set M1 is said to be equal to M2 if CM1(x) = CM2(x) for all x ∈ X, which will be
denoted by M1 = M2.
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Definition 2.3 ([7])
Let w be a positive integer and {Mi; i ∈ I} be a non-empty family of msets in
[X]w. Then

(a) the intersection of the sets Mi, is a set denoted by
⋂
i∈IMi, such that

C⋂
i∈I

Mi
(x) =

∧
i∈I

CMi
(x) for all x ∈ X;

(b) the union of the sets Mi, is a set denoted by
⋃
i∈IMi, such that

C⋃
i∈I

Mi
(x) =

∨
i∈I

CMi
(x) for all x ∈ X;

(c) the complement of any mset Mi in [X]w is a set denoted by M c
i , such that

CMc
i
(x) = w − CMi

(x) for all x ∈ X.

Definition 2.4 ([18])
Let X and Y be two non-empty sets and f : X → Y be a mapping. Then

(i) the image of an mset M ∈ [X]w under the mapping f is a set denoted by
f(M), such that

Cf(M)(y) =
{ ∨

f(x)=y CM (x), if f−1(y) 6= φ,

0, otherwise;

(ii) the inverse image of an mset N ∈ [Y ]w under the mapping f is a set denoted
by f−1(N), such that Cf−1(N)(x) = CN [f(x)].

Proposition 2.5 ([18])
Let X, Y and Z be three non-empty sets and f : X → Y , g : Y → Z be two
mappings. If Mi ∈ [X]w, Ni ∈ [Y ]w, i ∈ I then

(i) M1 ⊆M2 ⇒ f(M1) ⊆ f(M2);

(ii) f
[⋃

i∈IMi

]
=
⋃
i∈I f [Mi];

(iii) N1 ⊆ N2 ⇒ f−1(N1) ⊆ f−1(N2);

(iv) f−1[⋃
i∈IMi

]
=
⋃
i∈I f

−1[Mi];

(v) f−1[⋂
i∈IMi

]
=
⋂
i∈I f

−1[Mi];

(vi) f(Mi) ⊆ Nj ⇒Mi ⊆ f−1[Nj ];

(vii) g[f(Mi)] = [gf ](Mi) and f−1[g−1(Nj)] = [gf ]−1(Nj).
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Proposition 2.6 ([18])
Let X and Y be two non-empty sets and f : X → Y be a mapping. If M ∈ [X]w
and N ∈ [Y ]w, then

(i) M ⊆ f−1[f(M)];

(ii) f−1[f(M)] = M, if f is injective;

(iii) f [f−1(N)] ⊆ N;

(iv) f [f−1(N)] = N, if f is surjective.

Definition 2.7 ([18])
Let P ⊆ X. Then for each n ∈ N, we define an mset nP over X, where C

nP (x) = n
for all x ∈ P . This msets are called level msets.

2.2. Msets topology

Definition 2.8 ([8])
Let M ∈ [X]w be a multiset and P ∗(M) be the collection of all submsets of M .
A subcollection τ of P ∗(M) is said to be a multiset topology (m-topology in short)
on M if

(i) M, ∅ ∈ τ ;

(ii) the intersection of any two msets in τ belongs to τ ;

(iii) the union of any number of msets in τ belongs to τ .

The pair (M, τ) is called an m-topological space on M .

Definition 2.9 ([9])
Let (M, τ) be an m-topological space and N be a submset of M . The collection
τN = {N ∩ U : U ∈ τ} is an m-topology on N , called a subspace m-topology.

Definition 2.10 ([9])
Let M and N be two m-topological spaces. The mset function f : M → N is
said to be continuous if for each open submset V of N , the mset f−1(V ) is an
open submset of M , where f−1(V ) is the mset of all points x/m in M for which
f(x/m) ∈ nV for some n.

3. m2-topological spaces

In this section, we introduce a count of openness, a count of closedness, m2-
topological spaces, m2-cotopological spaces, m2-subspaces, mgp-maps and some
of their important properties are studied. Decomposition theorems involving m-
topologies and m2-topologies are established. The behaviour of the functional
image and the functional preimage of an m2-topology, the continuity of the identity
mapping and a constant mapping in m2-topologies are also examined.

Unless otherwise stated, X denotes a non-empty set, w is a positive integer,
N denotes the set of all non negative integers, Nw is the set of all non negative
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integers not greater than w and [X]w is the collection of all those msets whose
elements are in X such that no element in the mset occurs more than w times.

Definition 3.1
A mapping τ : [X]w → Nw is called a count of openness (CO) or an m2-topology
on [X]w if it satisfies the following conditions:

(O1) τ(0X) = τ(wX) = w;

(O2) τ(M1 ∩M2) ≥ τ(M1) ∧ τ(M2) for M1,M2 ∈ [X]w,

(O3) τ
[⋃

i∈∆Mi

]
≥ ∧i∈∆τ(Mi) for any Mi ∈ [X]w, i ∈ ∆.

The pair ([X]w, τ) is called an m2-topological space (m2ts).

Example 3.2
Let τ0 : [X]w → Nw, τw : [X]w → Nw be two mappings defined by τ0(0X) =
τ0(wX) = w, τ0(M) = 0 for all M ∈ [[X]w − {0X,wX}] and τw(M) = w for all
M ∈ [X]w. Then τ0 and τw are two m2-topologies on [X]w.

Definition 3.3
A mapping F : [X]w → Nw is called a count of closedness (CC) on [X]w if it
satisfies the following conditions:

(C1) F(0X) = F(wX) = w;

(C2) F(M1 ∪M2) ≥ F(M1) ∧ F(M2) for M1,M2 ∈ [X]w;

(C3) F
[⋂

i∈∆Mi

]
≥ ∧i∈∆F(Mi) for any Mi ∈ [X]w, i ∈ ∆.

The pair ([X]w,F) is called an m2-cotopological space.

Proposition 3.4
Let τ and F be a count of openness and a count of closedness of [X]w, respectively.
Then the mapping Fτ : [X]w → Nw, defined by Fτ (M) = τ(M c) is a count of
closedness on [X]w.

Proof. Let τ , F be a count of openness and a count of closedness of [X]w respec-
tively and Fτ : [X]w → Nw be a mapping defined by Fτ (M) = τ(M c). Since
(0X)c = wX and (wX)c = 0X, it follows that Fτ (0X) = τ(wX) = w and
Fτ (wX) = τ(0X) = w.

Next let M1, M2 be any two members of [X]w. Then

Fτ (M1 ∪M2) = τ([M1 ∪M2]c) = τ(M c
1 ∩M c

2 )
≥ τ(M c

1 ) ∧ τ(M c
2 ) = Fτ (M1) ∧ Fτ (M2).

Again let Mi, i ∈ ∆ be any collection of members of [X]w. Then

Fτ (
⋂
i∈∆Mi) = τ

(
[
⋂
i∈∆Mi]c

)
= τ

(⋃
i∈∆M c

i

)
≥ ∧i∈∆τ(M c

i ) = ∧i∈∆Fτ (Mi).

Therefore, the mapping Fτ : [X]w → Nw, defined by Fτ (M) = τ(M c), is a count
of closedness on [X]w.
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Proposition 3.5
Let τ and F be a count of openness and a count of closedness of [X]w, respectively.
Then the mapping τF : [X]w → Nw defined by τF (M) = F(M c) is a count of
openness on [X]w.

Proof. Proof is similar to that of Proposition 3.4.

Proposition 3.6
Let τ and F be a count of openness and a count of closedness on [X]w, respectively.
Then τFτ = τ and FτF = F .

Proof. Proof is straightforward.

Proposition 3.7
Let τ1 and τ2 be two counts of openness on [X]w. Then τ = τ1 ∩ τ2 defined by
τ(M) = τ1(M) ∧ τ2(M) is a count of openness on [X]w.

Proof. Clearly τ(0X) = τ(wX) = w. Next, let M1, M2 be any two members of
[X]w. Then

τ(M1 ∩M2) = τ1(M1 ∩M2) ∧ τ2(M1 ∩M2)
≥ [τ1(M1) ∧ τ1(M2)] ∧ [τ2(M1) ∧ τ2(M2)]
= [τ1 ∩ τ2](M1) ∧ [τ1 ∩ τ2](M2)
= τ(M1) ∧ τ(M2).

Again let Mi, i ∈ ∆ be any collection of members of [X]w. Then

τ
(⋃

i∈∆Mi

)
= τ1

(⋂
i∈∆Mi

)
∧ τ2

(⋂
i∈∆Mi

)
≥ [∧i∈∆τ1(Mi)] ∧ [∧i∈∆τ2(Mi)]
= ∧i∈∆[τ1 ∩ τ2](Mi)
= ∧i∈∆τ(Mi).

Therefore, τ = τ1 ∩ τ2, defined by τ(M) = τ1(M) ∧ τ2(M), is a count of openness
on [X]w.

Remark 3.8
If {τi, i ∈ ∆} is any arbitrary family of counts of openness on [X]w, then their
intersection τ =

⋂
i∈∆ τi, defined by τ(M) = ∧i∈∆τi(M) for all M ∈ [X]w, is a

count of openness on [X]w.

Definition 3.9
Let τ1 and τ2 be two counts of openness on [X]w. Define

τ1 ≤ τ2 iff τ1(M) ≤ τ2(M) for all M ∈ [X]w.

If τ1 ≤ τ2 then we say that τ1 is coarser or weaker or smaller than τ2 and τ2 is
finer or stronger or larger than τ1.
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Proposition 3.10
Let T be the collection of all counts of openness on [X]w. Then (T ,≤) is a complete
lattice.

Proof. Let τ0, τw be two counts of openness on [X]w defined in Example 3.2. Then
τ0 ≤ τ ≤ τw for all τ ∈ T . Note that τ1 ∩ τ2 is the greatest lower bound (glb) of
τ1 and τ2 for all τ1, τ2 ∈ T .

Moreover,
⋂
{τ ∈ T : τ1 ≤ τ and τ2 ≤ τ} is the least upper bound (lub) of τ1

and τ2 for all τ1, τ2 ∈ T (we note that there exists at least one count of openness
viz. τw, which is finer than both τ1 and τ2). Therefore, (T ,≤) is a complete
lattice.

Proposition 3.11 (First Decomposition Theorem)
Let ([X]w, τ) be an m-topological space, where τ is a count of openness on [X]w.
Then for each r(∈ Nw) ≤ w, τ r = {M ∈ [X]w : τ(M) ≥ r} is a multiset topology
on wX.

Proof. Since τ(0X) = τ(wX) = w ≥ r, it follows that 0X,wX ∈ τr. Next let
M1,M2 ∈ [X]w be any two members of τ r. Then τ r(M1) ≥ r and τ r(M2) ≥ r.
Since τ is a count of openness on [X]w, it follows that τ(M1 ∩M2) ≥ [τ(M1) ∧
τ(M2)] ≥ r. Hence M1 ∩M2 ∈ τ r.

Furthermore let, {Mi ∈ [X]w, i ∈ ∆} be any collection of members of τ r. Then
τ(Mi) ≥ r for all i ∈ ∆. So, τ

(⋃
i∈∆Mi

)
≥ ∧i∈∆τ(Mi) ≥ r. Thus,

⋃
i∈∆Mi ∈ τ r.

Therefore, τr is an m-topology on wX.

Definition 3.12
For each r(∈ Nw) ≤ w, the family τ r, defined in Proposition 3.11, is called the
r-level m-topology on wX with respect to the count of openness τ .

Proposition 3.13
Let ([X]w, τ) be an m-topological space and {τ r : r ≤ w} be the family of all
r-level m-topologies with respect to τ . Then this family is a descending family of
m-topologies.

Proof. Let r ≥ s and M ∈ τ r. Then τ(M) ≥ r ≥ s, hence M ∈ τs. Thus τ r ⊆ τs

and hence the family {τ r : r ≤ w} is descending family of m-topologies.

Definition 3.14
Let τ be a count of openness on [X]w. Then supp(τ) = {M ∈ [X]w : τ(M) > 0}
is called the support set of τ .

It is clear that supp(τ) is an m-topology on wX.

Definition 3.15
Let T be an m-topology on wX. Then a count of openness τ on [X]w is said to be
compatible with T if supp(τ) = T .

Proposition 3.16
Let T be an m-topology on wX. Then for each r ≤ w there exists a count of
openness T r on [X]w compatible with T .
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Proof. For each r ≤ w we define a mapping T r : [X]w → Nw by

T r(M) =

 w, if M ∈ {0X,wX},
r, if M ∈ T − {0X,wX},
0, otherwise.

Then, clearly T r is a count of openness on [X]w compatible with T .

Proposition 3.17 (Second Decomposition Theorem)
Let {Tr : r ≤ w} be a non-empty descending family of m-topologies on wX. Then
the mapping τ : [X]w → Nw defined by τ(M) = ∨{r ≤ w : M ∈ Tr} is a count of
openness on [X]w and Tr = τ r holds for all r ≤ w.

Proof. Since 0X,wX ∈ Tr for all r ≤ w, it follows that τ(0X) = τ(wX) = w. Let
M1, M2 be any two members of [X]w and let τ(Mi) =: ki for i = 1, 2. If ki = 0
for some i, then obviously τ(M1 ∩M2) ≥ τ(M1) ∧ τ(M2).

Assume now that k1 6= 0, k1 6= 0 and k = k1 ∧ k2. Since {Tr : r ≤ W}
is a descending family of m-topologies, it follows that M1,M2 ∈ Tk and hence
M1 ∩M2 ∈ Tk. Thus

τ(M1 ∩M2) = ∨{r ≤ w : (M1 ∩M2) ∈ Tr} ≥ k
= k1 ∧ k2 = τ(M1) ∧ τ(M2).

Moreover, let Mi for i ∈ ∆ be any collection of members of [X]w and let
τ(Mi) =: li for i ∈ ∆. If li = 0 for some i ∈ ∆, then obviously

τ
(⋃

i∈∆Mi

)
≥ ∧i∈∆τ(Mi).

Now let li 6= 0 for all i ∈ ∆ and l = ∧i∈∆li. Since {Tr : r ≤ w} is a descending
family of m-topologies, it follows that Mi ∈ Tl, i ∈ ∆ and hence

⋃
i∈∆Mi ∈ Tl.

Thus

τ
(⋃

i∈∆Mi

)
= ∨

{
r ≤ w :

⋃
i∈∆Mi ∈ Tr

}
≥ l = ∧i∈∆li = ∧i∈∆τ(Mi).

Therefore, the mapping τ : [X]w → Nw defined by τ(M) = ∨{r ≤ w : M ∈ Tr} is
a count of openness on [X]w.

For second part, let us assume first that M ∈ Tr. Then τ(M) ≥ r and hence
M ∈ τ r. Thus

Tr ⊆ τ r. (1)

Next let M ∈ τ r. Then τ(M) ≥ r this implies that there exists s ≥ r such that
M ∈ Ts. Since {Tr : r ≤ w} is a descending family of m-topologies and s ≥ r, it
follows that M ∈ Tr. Thus

τ r ⊆ Tr. (2)

From (1) and (2), we have Tr = τ r.

Proposition 3.18
Let τ1 and τ2 be two counts of openness on [X]w. Then τ1 = τ2 if and only if,
τ r1 = τ r2 for all r ≤ w.
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Proof. First let τ1 = τ2. Then τ1(M) = τ2(M) for all M ∈ [X]w, so for each
r ≤ w, τ r1 = {M ∈ [X]w : τ1(M) ≥ r} = {M ∈ [X]w : τ2(M) ≥ r}. Thus τ r1 = τ r2
for all r ≤ w.

Next let τ r1 = τ r2 for all r ≤ w. If τ1 6= τ2, then there exists an M ∈ [X]w such
that τ1(M) 6= τ2(M). Let τ1(M) = s1, τ2(M) = s2 and s1 < s2. Then M ∈ τs1+1

2
but M 6∈ τs1+1

1 , which contradicts our assumption that τ r1 = τ r2 for all r ≤ w.
Therefore τ1 = τ2.

Proposition 3.19
Let T be an m-topology on wX. For each r ≤ w define a mapping T r : [X]w → Nw
by

T r(M) =

 w, if M ∈ {0X,wX},
r, if M ∈ T − {0X,wX},
0, otherwise.

Then T r a count of openness on [X]w such that (T r)r = T .

Proof. Proof follows from Proposition 3.16.

Definition 3.20
Let T be an m-topology on wX. Then T r, defined in Proposition 3.19, is called
an r-th count on wX and ([X]w, T r) is called an r-th count m2-topological spaces.

Definition 3.21
Let M ∈ [X]w and let τ be a CO on [X]w. Let τ rM := {M ∩ P : P ∈ τ r} for
r ≤ w. Then {τ rM : r ≤ w} is a descending family of subspace m-topology on M .

Definition 3.22
Let X be a non-empty set and M(6= 0X) ∈ [X]w. A mapping τM : [X]w → Nw
is called a subspace m2-topology or a subspace count of openness (briefly SCO) on
M if it satisfies the following conditions:

(i) τM (M ∩ 0X) = τM (M ∩ wX) = w;

(ii) if M1,M2, . . . ,Mn ⊆M , then τM (
⋂n
i=1Mi) ≥ ∧ni=1τ

M (Mi);

(iii) if Mi ⊆M , i ∈ ∆, then τM (
⋃n
i∈∆Mi) ≥ ∧i∈∆τ

M (Mi).

The pair (M, τM ) is called an m2-subspace of ([X]w, τ).

Proposition 3.23
Let X be a non-empty set, τ be a CO on X and M( 6= 0X) ∈ [X]w. A mapping
τM : [X]w → Nw defined by

τM (P ) =
{
∨{τ(Q) : Q ∩M = P, Q ∈ [X]w}, if P ⊆M,
0, if P 6⊆M

is an SCO on M .



[86] Sk. Nazmul

Proof. From the fact that 0X,wX ∈ [X]w and τ(0X) = τ(wX) = w, it follows that
τM (0X ∩M) = τ(0X) = w and τM (wX ∩M) ≥ τ(wX) = w. Also τM (wX) ≤ w.
Hence τM (wX ∩M) = w.

Next let M1,M2, . . . ,Mn ⊆ M and A =
⋂n
i=1Mi. Let Ni be an arbitrary

member of [X]w such that Ni ∩M = Mi. Then

(
⋂n
i=1Ni) ∩M =

⋂n
i=1(Ni ∩M) =

⋂n
i=1Mi = A.

Thus,
τM (A) ≥ τ(

⋂n
i=1Ni) ≥ ∧ni=1τ(Ni)

and hence

τM (A) ≥ ∨{Ni∈[X]w: Ni∩M=Mi} ∧
n
i=1 τ(Ni)

= ∧ni=1 ∨{Ni∈[X]w: Ni∩M=Mi} τ(Ni)
= ∧ni=1τ

M (Mi).

Assume now that Mi ⊆ M for i ∈ ∆ and A =
⋃
i∈∆Mi. Let βi = {N ∈ [X]w :

N ∩M = Mi}, i ∈ ∆. For any Ni ∈ βi, i ∈ ∆, we have

(
⋃
i∈∆Ni) ∩M =

⋃
i∈∆(Ni ∩M) =

⋃
i∈∆Mi = A,

we also have
τM (Mi) = ∨{τ(N) : N ∈ βi}, i ∈ ∆.

Thus τM (
⋃
i∈∆Mi) ≥ τ(

⋃
i∈∆Ni) ≥ ∧i∈∆τ(Ni). Therefore τM (

⋃
i∈∆Mi) ≥

∧i∈∆τ
M (Mi) (similarly as above). Hence τM is an SCO on M .

Proposition 3.24
Let X, Y be two non-empty sets, f : X → Y be a mapping and τ be a CO on [X]w.
Then f(τ) : [Y ]w → Nw defined by [f(τ)](N) = τ(f−1(N)), N ∈ [Y ]w is a CO on
[Y ]w.

Proof. Since f−1(0Y ) = 0X and f−1(wY ) = wX, it follows that

[f(τ)](0Y ) = [f(τ)](wY ) = w.

Now let N1, N2, . . . , Nn ∈ [Y ]w and N =
⋂n
i=1Ni. Then

[f(τ)](N) = τ [f−1(N)] = τ [
⋂n
i=1(f−1(Ni))]

≥ ∧ni=1τ [f−1(Ni)] = ∧ni=1[f(τ)](Ni).

Finally, let Ni ∈ [Y ]w, i ∈ ∆ and N =
⋃
i∈∆Ni. Then

[f(τ)](N) = τ [f−1(N)] = τ [
⋃
i∈∆(f−1(Ni))]

≥ ∧i∈∆τ [f−1(Ni)] = ∧i∈∆[f(τ)](Ni).

Therefore f(τ) is a CO on [Y ]w.
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Proposition 3.25
Let X, Y be two non-empty sets, f : X → Y be an onto mapping and ν be a CO on
[Y ]w. Then f−1(ν) : [X]w → Nw defined by [f−1(ν)](M) = ν[f(M)], M ∈ [X]w is
a CO on [X]w.

Proof. From the fact f(0X) = 0Y , it follows that [f−1(ν)](0X) = w. AS f is
onto, we have f−1(wY ) = wX and hence [f−1(ν)](wX) = w. Assume that
M1,M2, . . . ,Mn ∈ [X]w and M =

⋂n
i=1Mi. Then

[f−1(ν)](M) = ν[f(N)] = ν[
⋂n
i=1(f(Mi))]

≥ ∧ni=1ν[f(Mi)] = ∧ni=1[f−1(ν)](Mi).

Now let Mi ∈ [Y ]w, i ∈ ∆ and M =
⋃
i∈∆Mi. Then

[f−1(ν)](M) = ν[f(M)] = ν[
⋃
i∈∆(f(Mi))]

≥ ∧i∈∆ν[f(Mi)] = ∧i∈∆[f−1(ν)](Mi).

Therefore f−1(ν) is a CO on [X]w.

Proposition 3.26
Let X, Y be two non-empty sets, f : X → Y be an onto mapping and τ be a CO
on [X]w. Then [f(τ)]N (P ) = τf

−1(N)[f−1(P )] for all N ∈ [Y ]w and P ⊆ N .

Proof. Let N ∈ [Y ]w and P ⊆ N . Then

[f(τ)]N (P ) = ∨{[f(τ)](Q) : Q ∩N = P} = ∨{τ [f−1(Q)] : Q ∩N = P}
= ∨{τ [f−1(Q)] : f−1(Q ∩N) = f−1(P )} (as f is onto)
= ∨{τ [f−1(Q)] : f−1(Q) ∩ f−1(N) = f−1(P )}
= ∨{τ [M ] : M ∈ [X]w and M ∩ f−1(N) = f−1(P )} (as f is onto)

= τf
−1(N)[f−1(P )].

Proposition 3.27
Let X, Y be two non-empty sets, f : X → Y be a one-one mapping and ν be a CO
on [Y ]w. Then [f−1(ν)]M (P ) ≤ νf(M)[f(P )] for all M ∈ [X]w and P ⊆M .

Proof. Let M ∈ [X]w and P ⊆M . Then

[f−1(ν)]M (P ) = ∨{[f−1(ν)](Q) : Q ∩M = P} = ∨{ν[f(Q)] : Q ∩M = P}
= ∨{ν[f(Q)] : f(Q ∩M) = f(P )} (since f is one-one)
= ∨{ν[f(Q)] : f(Q) ∩ f(M) = f(P )}
≤ ∨{ν[N ] : N ∈ [Y ]w such that N ∩ f(M) = f(P )}
= νf(M)[f(P )].
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Proposition 3.28
Let τ be a count of openness on [X]w and A ⊆ X. If τA : [A]w → Nw is a mapping
defined by

τA(N) = ∨{τ(M) : M ∈ [X]w, M ∩ wA = N}, N ∈ [A]w.

Then τA is a count of openness on [A]w.
Proof. Since 0A = wA ∩ 0X, wA = wA ∩ wX and τ(0X) = τ(wX) = w, it follows
that τA(0A) = τA(wA) = w.

Let N1, N2 be any two members of [A]w. Then we find M1,M2 ∈ [X]w such
that N1 = M1 ∩w Y and N2 = M2 ∩ wA. Hence N1 ∩N2 = (M1 ∩M2) ∩ wA and
τA(N1 ∩N2) ≥ τ(M1 ∩M2) ≥ τ(M1) ∧ τ(M2).

Thus

τA(N1 ∩N2) ≥ ∨{τ(M1) ∧ τ(M2) : M1,M2 ∈ [X]w

such that N1 = M1 ∩ wA,N2 = M2 ∩ wA}
≥ ∨{∨{τ(M1) ∧ τ(M2) : M2 ∩ wA = N2} : M1 ∩ wA = N1}
= ∨{τ(M1) ∧ τA(N2) : M1 ∩ wA = N1}
= τA(N1) ∧ τA(N2).

Now let Ni, i ∈ ∆ be any collection of members of [A]w. Then we find
Mi ∈ [X]w, i ∈ ∆ such that Ni = Mi ∩ wA, i ∈ ∆. It follows that

⋃
i∈∆Ni =

(
⋃
i∈∆Mi) ∩ wA and similarly as above we have

τA(
⋃
i∈∆Ni) ≥ τ(

⋃
i∈∆Mi) ≥ ∧i∈∆τ(Mi) ≥ ∧i∈∆τA(Ni).

Therefore, τA is a count of openness on [A]w.

Proposition 3.29
Let ([A]w, τA) be an m-subspace of the m-topological space ([X]w, τ) and N ∈ [A]w.
Then
(i) FτA(N) = {Fτ (M) : M ∈ [X]w, M ∩ wA = N};

(ii) if B ⊆ A ⊆ X, then τB = (τA)B.
Proof. (i) Let ([A]w, τA) be an m-subspace of the m-topological space ([X]w, τ)
and N ∈ [A]w. Then

FτA(N)τA(N c) = ∨{τ(M) : M ∈ [X]w, M ∩ wA = N c}
= ∨{τ(M) : M c ∈ [X]w, M c ∩ wA = N}
= ∨{Fτ (M c) : M c ∈ [X]w, M c ∩ wA = N}
= ∨{Fτ (M) : M ∈ [X]w, M ∩ wA = N}.

(ii) Let P ∈ [B]w. Then

(τA)B(P ) = ∨{τA(N) : N ∈ [A]w, N ∩ wB = P}
= ∨{∨{τ(M) : M ∈ [X]w, M ∩ wA = N} : N ∈ [A]w, N ∩ wB = P}
= ∨{τ(M) : M ∈ [X]w, M ∩ wB = P} = τB(P ).

Therefore, if B ⊆ A ⊆ X, then τB = (τA)B .
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Definition 3.30
Let ([X]w, τ) and ([Y ]w, ν) be two m2-topological spaces and f : ([X]w, τ) →
([Y ]w, ν) be a mapping. Then f is called a count preserving map or an mgp-map
if τ(f−1(N)) ≥ ν(N) for each N ∈ [Y ]w.
Proposition 3.31
Let ([X]w, τ) be an m-topological space. Then the identity mapping f : ([X]w, τ)→
([X]w, τ) is an mgp-map.
Proof. Since f is the identity mapping, it follows that f−1(N) = N for all N ∈
[X]w and hence τ(f−1(N)) = τ(N).

Remark 3.32
Let ([X]w, τ) and ([Y ]w, ν) be two m2-topological spaces and f : ([X]w, τ) →
([Y ]w, ν) be a constant mapping. Then f is not an mgp-map in general, which
shows the following example.
Example 3.33
Let X = {x, y, z}, Y = {a, b, c, d} and w = 3. Let τ : [X]w → Nw, ν : [Y ]w → Nw
be two mappings defined by τ(0X) = τ(wX) = w, τ(M) = 0 for all M ∈ [[X]w −
{0X,wX}] and ν(N) = w for all N ∈ [Y ]w. Then τ and ν are two m2-topologies
on [X]w, [Y ]w, respectively.

Moreover, let f : ([X]w, τ) → ([Y ]w, ν) be a constant mapping, defined by
f(x) = a for all x ∈ X. If N = {a, a, b, c} ∈ [Y ]3, then f−1(N) = 2X and

τ [f−1(N)] = τ(2X) = 0 6≥ 3 = w = ν(N).

Therefore, the mapping f is not an mgp-map.
Proposition 3.34
Let ([X]w, τ) and ([Y ]w, ν) be two m2-topological spaces. If τ(kX) = w for all
k(≤ w) ∈ N, then the constant mapping f : ([X]w, τ)→ ([Y ]w, ν) is an mgp-map.
Proof. Let f be a constant mapping and assume that there exists y0 ∈ Y such
that f(x) = y0 for all x ∈ X. Then for any N ∈ [Y ]w, f−1(N) = kX for some
k(≤ w) ∈ N. Hence τ(f−1(N)) = τ(kX) = w ≥ ν(N). Therefore, the constant
mapping f : ([X]w, τ)→ ([Y ]w, ν) is an mgp-map.

Proposition 3.35
Let ([X]w, τ) and ([Y ]w, ν) be two m2-topological spaces and let f : ([X]w, τ) →
([Y ]w, ν) be a mapping. Then f is a mgp-map iff f : (wX, τr) → (wY, νr) is m-
continuous for all r ≤ w.
Proof. First let f : ([X]w, τ) → ([Y ]w, ν) be an mgp-map, r ≤ w and N ∈ νr.
Then N ∈ [Y ]w and ν(N) ≥ r. Since f is an mgp-map, it follows that

τ(f−1(N)) ≥ ν(N) ≥ r

and hence f−1(N) ∈ τr. Therefore, f : (wX, τr)→ (wY, νr) is m-continuous.
Conversely, let f : (wX, τr) → (wY, νr) for all r ≤ w be m-continuous and

N ∈ [Y ]w. Let moreover ν(N) = r. If r = 0, then obviously τ(f−1(N)) ≥
ν(N), otherwise N ∈ νr and hence f−1(N) ∈ τr. Thus, τ(f−1(N)) ≥ r = ν(N).
Therefore, f : ([X]w, τ)→ ([Y ]w, ν) is an mgp-map.
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Proposition 3.36
Let (wX,T ) and (wY, T ′) be two m-topological spaces. Then f : (wX,T )→ (wY, T ′)
is m-continuous iff f : ([X]w, T r) → ([Y ]w, (T ′)r) is an mgp-map for each r ≤ w,
where T r, (T ′)r are determined as in Proposition 3.19.

Proof. First let f : (wX,T ) → (wY, T ′) be m-continuous and N ∈ [Y ]w. Then we
have the following three possibilities:

(i) N = 0Y or N = wY ;

(ii) N ∈ T ′;

(iii) N 6∈ T ′.

In the case (i), f−1(0Y ) = 0X and f−1(wY ) = wX. Hence,

T r(f−1(0Y )) = T r(0X) = w ≥ (T ′)r(0Y )
and

T r(f−1(wY )) = T r(wX) = w ≥ (T ′)r(wY ).

In the case (ii), N ∈ T ′ ⇒ (T ′)r(N) = r. Since f : (wX,T ) → (wY, T ′)
be m-continuous, it implies that f−1(N) ∈ T and hence T r(f−1(N)) = r. So,
T r(f−1(N)) ≥ (T ′)r(N).

In the case (iii), N ∈ T ′ → (T ′)r(N) = 0 and hence T r(f−1(N)) ≥ 0 =
(T ′)r(N). Therefore, f : ([X]w, T r)→ ([Y ]w, (T ′)r) is an mgp-map for each r ≤ w.
Converse part follows from Proposition 3.19 and Proposition 3.35.

Proposition 3.37
Let ([X]w, τ), ([Y ]w, τ ′) and ([Z]w, τ ′′) be m2-topological spaces, where τ , τ ′ and τ ′′
are m-gradtions of openness on [X]w, [Y ]w and [Z]w, respectively. If f : ([X]w, τ)→
([Y ]w, τ ′) and g : ([Y ]w, τ ′) → ([Z]w, τ ′′) are mgp-maps, then g ◦ f : ([X]w, τ) →
([Z]w, τ ′′) is an mgp-map.

Proof. Proof is straightforward.

Definition 3.38
Let ([X]w, τ) and ([Y ]w, ν) be two m2-topological spaces where τ and ν are counts
of openness on [X]w and [Y ]w, respectively. Let M ∈ [X]w, N ∈ [Y ]w and
τM , νN be m-subspace gradations of openness on M and N , respectively. Then
f : (M, τM )→ (N, νN ) is said to be an mgp-map if

τM (f−1(P ) ∩M) ≥ νN (P ) for any P ⊆ N.

Proposition 3.39
Let ([X]w, τ) and ([Y ]w, ν) be two m2-topological spaces, where τ and ν are counts
of openness on [X]w and [Y ]w, respectively. Let M ∈ [X]w, N ∈ [Y ]w and τM , νN
be m-subspace gradations of openness on M and N , respectively. If f : ([X]w, τ)→
([Y ]w, ν) is an mgp-map and f(M) ⊆ N , then f : (M, τM )→ (N, νN ) is an mgp-
map.
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Proof. Let P ⊆ N and A be any member of [Y ]w such that P = A ∩ N . Since
f : ([X]w, τ)→ ([Y ]w, ν) is an mgp-map, it follows that

τ(f−1(A)) ≥ ν(A). (3)

Now f−1(P ) = f−1(A ∩N) = f−1(A) ∩ f−1(N). Thus, f−1(P ) ∩M = f−1(A) ∩
f−1(N) ∩ M = f−1(A) ∩ M , since M ⊆ f−1(f(M)) ⊆ f−1(N). So, by (3),
τM (f−1(P ) ∩M) = τM (f−1(A) ∩M) ≥ τ(f−1(A)) ≥ ν(A). Hence,

τM (f−1(P ) ∩M) ≥ ∨{ν(A) : A ∩N = P} = νN (P ).

Therefore f : (M, τM )→ (N, νN ) is an mgp-map.

Proposition 3.40
Let ([X]w, τ), ([Y ]w, ν) and ([Z]w, ω) be three m2-topological spaces where τ , ν and
ω are counts of openness on [X]w, [Y ]w and [Z]w, respectively. Let M ∈ [X]w,
N ∈ [Y ]w, P ∈ [Z]w and τM , νN , ωP be m-subspace gradations of openness on
M , N and P , respectively. If f : (M, τM ) → (N, νN ) and g : (N, νN ) → (P, ωP )
are mgp-maps and f(M) ⊆ N , then the composition mapping g ◦ f : (M, τM ) →
(P, ωP ) is an mgp-map.

Proof. Let A ⊆ P . Since g is an mgp-map, it follows that

νN (g−1(A) ∩N) ≥ ωP (A). (4)

Again since [g−1(A) ∩N ] ⊆ N , f is an mgp-map, we have

τMM ∩ f−1(g−1(A) ∩N)) ≥ νN (g−1(A) ∩N).

This in view of (4) gives

τM (M ∩ f−1(g−1(A)) ∩ f−1(N)) ≥ ωP (A)

and, since M ⊆ f−1(N),

τM (M ∩ (g ◦ f)−1(A)) ≥ ωP (A).

Therefore, g ◦ f is an mgp-map.

4. Conclusion and future work

In this paper, the concepts of a count of openness, a subspace count of open-
ness, an mgp-maps are introduced. We define a generalized m-topological space
which is called m2-topological space. We have shown that such a count is gener-
ated by a descending family of m-topologies and vice versa. The behaviour of the
functional image and the functional preimage of an m2-topology, the continuity of
the identity mapping and a constant mapping in m2-topologies are also examined.
The concepts of topological structures and their generalizations are one of the most
powerful notions in branches of science and information systems. It is the gener-
alized methods for measuring the similarity and dissimilarity between the objects



[92] Sk. Nazmul

in msets as universe. In this sense, this work has a great importance. There is a
wide scope for further research to extend it in topological groups theory, which has
many applications in abstract integration theory viz. Haar measure, Haar integral
etc. and also in manifolds theory through the development of Lie groups.
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