FOLIA 182

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XV (2016)

Naga Vijay Krishna Dasari, Jakub Kabat
 Several observations about Maneeals - a peculiar system of lines

$$
\begin{aligned}
& \text { Abstract. For an arbitrary triangle } A B C \text { and an integer } n \text { we define points } \\
& D_{n}, E_{n}, F_{n} \text { on the sides } B C, C A, A B \text { respectively, in such a manner that } \\
& \qquad \frac{|A C|^{n}}{|A B|^{n}}=\frac{\left|C D_{n}\right|}{\left|B D_{n}\right|}, \quad \frac{|A B|^{n}}{|B C|^{n}}=\frac{\left|A E_{n}\right|}{\left|C E_{n}\right|}, \quad \frac{|B C|^{n}}{|A C|^{n}}=\frac{\left|B F_{n}\right|}{\left|A F_{n}\right|} . \\
& \text { Cevians } A D_{n}, B E_{n}, C F_{n} \text { are said to be the Maneeals of order } n \text {. In this } \\
& \text { paper we discuss some properties of the Maneeals and related objects. }
\end{aligned}
$$

1. Introduction

Given an arbitrary triangle $A B C$ we consider certain cevians [1] defined (for given integral n) in the following way.

Definition 1.1
Let $A B C$ be a triangle and let n be an integer. There are points D_{n}, E_{n}, F_{n} on the sides $B C, C A, A B$ respectively, satisfying

$$
\frac{|A C|^{n}}{|A B|^{n}}=\frac{\left|C D_{n}\right|}{\left|B D_{n}\right|}, \quad \frac{|A B|^{n}}{|B C|^{n}}=\frac{\left|A E_{n}\right|}{\left|C E_{n}\right|}, \quad \frac{|B C|^{n}}{|A C|^{n}}=\frac{\left|B F_{n}\right|}{\left|A F_{n}\right|}
$$

We call the cevians $A D_{n}, B E_{n}, C F_{n}$ the order n Maneeals of the triangle $A B C$.
It is easy to check, that medians, bisectors and symmedians of a triangle are examples of the Maneeals with integer $n=0, n=1, n=2$ respectively. Furthermore, for the given triangle $A B C$, the points D_{n}, E_{n}, F_{n} (uniquely determined by the integer n), are vertices of a new triangle, which is said to be the Maneeal's

[^0]triangle of order n. For Maneeals $A D_{n}, B E_{n}, C F_{n}$ we can use the Ceva's theorem in order to prove that they are concurrent. Their point of intersection M_{n} is said to be the Maneeal's point of order n. For given M_{n} we can choose points P_{n}, Q_{n}, R_{n} on the sides $B C, C A, A B$ respectively, in such a manner that line segments $M_{n} P_{n}, M_{n} Q_{n}, M_{n} R_{n}$ are perpendicular to the corresponding sides of the triangle $A B C$. Points P_{n}, Q_{n}, R_{n} are the vertices of a next triangle [11], which is said to be the Maneeal's pedal triangle of order n.

In the present note we investigate properties of Maneeal's points and pedal triangles.

In this paper, for a given triangle $A B C$ and an integer n the points D_{n}, E_{n}, $F_{n}, P_{n}, Q_{n}, R_{n}$ should be always understood in accordance with the definitions given above. Furthermore, we will use the following notation:
$|A B|=c,|B C|=a,|C A|=b, \quad q_{n}=a^{n}+b^{n}+c^{n}$,
$\Delta_{X Y Z}$ - the area of triangle $X Y Z$,
$\Delta=\Delta_{A B C}, \Delta_{n}=\Delta_{D_{n} E_{n} F_{n}}, \Delta_{n}^{\prime}=\Delta_{P_{n} Q_{n} R_{n}}$,
R - the radius of the circumcircle of triangle $A B C$, S - circumcenter of triangle $A B C$.

2. First properties

Theorem 2.1 (Ceva's Theorem [4, [5])
For a given triangle with vertices A, B, and C and non-collinear points D, E, and F on lines $B C, A C, A B$ respectively, a necessary and sufficient condition for the cevians $A D, B E$, and $C F$ to be concurrent (intersect in a single point) is that $|B D| \cdot|C E| \cdot|A F|=|D C| \cdot|E A| \cdot|F B|$.

Theorem 2.2 (Maneeal's points)
Maneeals of order n are always concurrent.
Proof. Since the points D_{n}, E_{n}, F_{n} lie always between the vertices A, B, C, they cannot be collinear. The equality

$$
\frac{\left|B D_{n}\right|}{\left|C D_{n}\right|} \cdot \frac{\left|C E_{n}\right|}{\left|A E_{n}\right|} \cdot \frac{\left|A F_{n}\right|}{\left|B F_{n}\right|}=\frac{b^{n}}{c^{n}} \cdot \frac{c^{n}}{a^{n}} \cdot \frac{a^{n}}{c^{n}}=1
$$

together with Theorem 2.1 proves the assertion.

In the next Lemma we collect a number of properties connected with Maneeals and related objects.

LEmma 2.3
The lenghts of the segments of Maneeal's triangle of order n are given by the following formulas:

$$
\begin{aligned}
& \left|E_{n} F_{n}\right|^{2} \\
& \quad=\frac{b^{2 n} c^{2}\left(a^{n}+c^{n}\right)^{2}+b^{2} c^{2 n}\left(a^{n}+b^{n}\right)^{2}-b^{n} c^{n}\left(a^{n}+b^{n}\right)\left(a^{n}+c^{n}\right)\left(b^{2}+c^{2}-a^{2}\right)}{\left(a^{n}+b^{n}\right)^{2}\left(a^{n}+c^{n}\right)^{2}}, \\
& \left|E_{n} D_{n}\right|^{2} \\
& \quad=\frac{a^{2 n} b^{2}\left(c^{n}+b^{n}\right)^{2}+a^{2} b^{2 n}\left(c^{n}+a^{n}\right)^{2}-a^{n} b^{n}\left(c^{n}+a^{n}\right)\left(c^{n}+b^{n}\right)\left(a^{2}+b^{2}-c^{2}\right)}{\left(c^{n}+b^{n}\right)^{2}\left(c^{n}+a^{n}\right)^{2}}, \\
& \left|F_{n} D_{n}\right|^{2} \\
& \quad=\frac{a^{2 n} c^{2}\left(b^{n}+c^{n}\right)^{2}+a^{2} c^{2 n}\left(b^{n}+a^{n}\right)^{2}-a^{n} c^{n}\left(b^{n}+a^{n}\right)\left(b^{n}+c^{n}\right)\left(a^{2}+c^{2}-b^{2}\right)}{\left(b^{n}+c^{n}\right)^{2}\left(b^{n}+a^{n}\right)^{2}} .
\end{aligned}
$$

Lemma 2.4
The lenghts of the segments in which the Manneals of order n divide the sides of the triangle are given by the following formulas:

$$
\begin{aligned}
\left|B D_{n}\right|=\frac{c^{n} \cdot a}{b^{n}+c^{n}}, & & \left|C D_{n}\right|=\frac{b^{n} \cdot a}{b^{n}+c^{n}} \\
\left|C E_{n}\right|=\frac{a^{n} \cdot b}{c^{n}+a^{n}}, & & \left|A E_{n}\right|=\frac{c^{n} \cdot b}{c^{n}+a^{n}} \\
\left|A F_{n}\right|=\frac{b^{n} \cdot c}{b^{n}+a^{n}}, & & \left|B F_{n}\right|=\frac{a^{n} \cdot c}{b^{n}+a^{n}}
\end{aligned}
$$

Lemma 2.5
The Manneal's point M_{n} of order n divides the Manneal's segments of order n in the following ratios:

$$
\frac{\left|A M_{n}\right|}{\left|M_{n} D_{n}\right|}=\frac{c^{n}+b^{n}}{a^{n}}, \quad \frac{\left|B M_{n}\right|}{\left|M_{n} E_{n}\right|}=\frac{c^{n}+a^{n}}{b^{n}}, \quad \frac{\left|C M_{n}\right|}{\left|M_{n} F_{n}\right|}=\frac{a^{n}+b^{n}}{c^{n}} .
$$

Lemma 2.6
It is also convenient to keep, for further reference, record of the following identities:

$$
\begin{array}{ll}
\frac{\left|A M_{n}\right|}{\left|A D_{n}\right|}=\frac{c^{n}+b^{n}}{q_{n}}, & \frac{\left|M_{n} D_{n}\right|}{\left|A D_{n}\right|}=\frac{a^{n}}{q_{n}} \\
\frac{\left|B M_{n}\right|}{\left|B E_{n}\right|}=\frac{c^{n}+a^{n}}{q_{n}}, & \frac{\left|M_{n} E_{n}\right|}{\left|B E_{n}\right|}=\frac{b^{n}}{q_{n}} \tag{1}\\
\frac{\left|C M_{n}\right|}{\left|C F_{n}\right|}=\frac{a^{n}+b^{n}}{q_{n}}, & \frac{\left|M_{n} F_{n}\right|}{\left|C F_{n}\right|}=\frac{c^{n}}{q_{n}}
\end{array}
$$

and

$$
\begin{align*}
& \left|A D_{n}\right|^{2}=\frac{b^{2} c^{2}}{\left(b^{n}+c^{n}\right)^{2}}\left[\left(b^{n}+c^{n}\right)\left(b^{n-2}+c^{n-2}\right)-a^{2} b^{n-2} c^{n-2}\right], \\
& \left|B E_{n}\right|^{2}=\frac{a^{2} c^{2}}{\left(a^{n}+c^{n}\right)^{2}}\left[\left(a^{n}+c^{n}\right)\left(a^{n-2}+c^{n-2}\right)-b^{2} a^{n-2} c^{n-2}\right], \tag{2}\\
& \left|C F_{n}\right|^{2}=\frac{b^{2} a^{2}}{\left(b^{n}+a^{n}\right)^{2}}\left[\left(b^{n}+a^{n}\right)\left(b^{n-2}+a^{n-2}\right)-c^{2} b^{n-2} a^{n-2}\right] .
\end{align*}
$$

Lemma 2.7
The Maneeal's point of order n and every pair of vertices of the given triangle $A B C$ determine new triangles. Areas of these triangles are related to the areas of the triangle $A B C$ in the following way:

$$
\begin{equation*}
\Delta_{B M_{n} C}=\frac{a^{n}}{q_{n}} \cdot \Delta, \quad \Delta_{C M_{n} A}=\frac{b^{n}}{q_{n}} \cdot \Delta, \quad \Delta_{B M_{n} A}=\frac{c^{n}}{q_{n}} \cdot \Delta . \tag{3}
\end{equation*}
$$

We can also consider the triangles determined by pairs of points D_{n}, E_{n}, F_{n} and one of the vertices of the triangle $A B C$. Their areas are given by the following formulas:

$$
\begin{align*}
\Delta_{B D_{n} F_{n}} & =\frac{a^{n} c^{n}}{\left(b^{n}+c^{n}\right)\left(b^{n}+a^{n}\right)} \cdot \Delta \\
\Delta_{C D_{n} E_{n}} & =\frac{a^{n} b^{n}}{\left(c^{n}+b^{n}\right)\left(c^{n}+a^{n}\right)} \cdot \Delta \tag{4}\\
\Delta_{A E_{n} F_{n}} & =\frac{b^{n} c^{n}}{\left(a^{n}+c^{n}\right)\left(a^{n}+b^{n}\right)} \cdot \Delta
\end{align*}
$$

Lemma 2.8
It is also worth to note some properties connected with the lengths of line segments between the vertices of pedal Maneeals triangles of order n, the Maneeals points of order n, and vertices of the triangle $A B C$.

$$
\begin{align*}
\left|M_{n} P_{n}\right| & =\frac{2 \Delta a^{n-1}}{q_{n}}, \quad\left|M_{n} Q_{n}\right|=\frac{2 \Delta b^{n-1}}{q_{n}}, \quad\left|M_{n} R_{n}\right|=\frac{2 \Delta c^{n-1}}{q_{n}} \tag{5}\\
\left|B P_{n}\right| & =\frac{1}{q_{n}} \cdot \sqrt{a^{2} c^{2}\left(a^{n}+c^{n}\right)\left(a^{n-2}+c^{n-2}\right)-b^{2} a^{n} c^{n}-4 a^{2 n-2} \Delta^{2}} \\
\left|B R_{n}\right| & =\frac{1}{q_{n}} \cdot \sqrt{a^{2} c^{2}\left(a^{n}+c^{n}\right)\left(a^{n-2}+c^{n-2}\right)-b^{2} a^{n} c^{n}-4 c^{2 n-2} \Delta^{2}} \\
\left|C P_{n}\right| & =\frac{1}{q_{n}} \cdot \sqrt{a^{2} b^{2}\left(a^{n}+b^{n}\right)\left(a^{n-2}+b^{n-2}\right)-c^{2} a^{n} b^{n}-4 a^{2 n-2} \Delta^{2}} \tag{6}\\
\left|C Q_{n}\right| & =\frac{1}{q_{n}} \cdot \sqrt{a^{2} b^{2}\left(a^{n}+b^{n}\right)\left(a^{n-2}+b^{n-2}\right)-c^{2} a^{n} b^{n}-4 b^{2 n-2} \Delta^{2}} \\
\left|A Q_{n}\right| & =\frac{1}{q_{n}} \cdot \sqrt{c^{2} b^{2}\left(c^{n}+b^{n}\right)\left(c^{n-2}+b^{n-2}\right)-a^{2} c^{n} b^{n}-4 b^{2 n-2} \Delta^{2}} \\
\left|A R_{n}\right| & =\frac{1}{q_{n}} \cdot \sqrt{c^{2} b^{2}\left(c^{n}+b^{n}\right)\left(c^{n-2}+b^{n-2}\right)-a^{2} c^{n} b^{n}-4 c^{2 n-2} \Delta^{2}}
\end{align*}
$$

Corollary 2.9
By definition we have $\left|B P_{n}\right|+\left|C P_{n}\right|=a,\left|C Q_{n}\right|+\left|A Q_{n}\right|=b,\left|B R_{n}\right|+\left|A R_{n}\right|=c$. Hence, by adding all equations in (6), we get

$$
\begin{aligned}
&(a+b+c) \cdot\left(a^{n}+b^{n}+c^{n}\right) \\
&= \sqrt{a^{2} c^{2}\left(a^{n}+c^{n}\right)\left(a^{n-2}+c^{n-2}\right)-b^{2} a^{n} c^{n}-4 a^{2 n-2} \Delta^{2}} \\
&+\sqrt{a^{2} c^{2}\left(a^{n}+c^{n}\right)\left(a^{n-2}+c^{n-2}\right)-b^{2} a^{n} c^{n}-4 c^{2 n-2} \Delta^{2}} \\
&+\sqrt{a^{2} b^{2}\left(a^{n}+b^{n}\right)\left(a^{n-2}+b^{n-2}\right)-c^{2} a^{n} b^{n}-4 a^{2 n-2} \Delta^{2}} \\
&+\sqrt{a^{2} b^{2}\left(a^{n}+b^{n}\right)\left(a^{n-2}+b^{n-2}\right)-c^{2} a^{n} b^{n}-4 b^{2 n-2} \Delta^{2}} \\
&+\sqrt{c^{2} b^{2}\left(c^{n}+b^{n}\right)\left(c^{n-2}+b^{n-2}\right)-a^{2} c^{n} b^{n}-4 b^{2 n-2} \Delta^{2}} \\
&+\sqrt{c^{2} b^{2}\left(c^{n}+b^{n}\right)\left(c^{n-2}+b^{n-2}\right)-a^{2} c^{n} b^{n}-4 c^{2 n-2} \Delta^{2}} .
\end{aligned}
$$

Now we are in a position to prove the following new identity.
Theorem 2.10

$$
\begin{aligned}
\Delta_{n} & =2 \cdot \frac{a^{n} b^{n} c^{n}}{\left(a^{n}+b^{n}\right)\left(b^{n}+c^{n}\right)\left(c^{n}+a^{n}\right)} \cdot \Delta \\
\Delta_{-n} & =\Delta_{n}
\end{aligned}
$$

Proof. We will start with simple consequences of the definition of Maneeals:

From Lemma 2.4 we obtain

$$
\frac{\left|A E_{n}\right|}{|A C|}=\frac{c^{n}}{c^{n}+a^{n}}, \quad \frac{\left|B F_{n}\right|}{|B A|}=\frac{a^{n}}{a^{n}+b^{n}}
$$

On the other hand we can observe, that

$$
\frac{\left|A E_{n}\right|}{|A C|}=\frac{\Delta A B E_{n}}{\Delta} \quad \text { and } \quad \frac{\left|B F_{n}\right|}{|B A|}=\frac{\Delta_{B E_{n} F_{n}}}{\Delta_{B E_{n} A}}
$$

Finally we can express the area of the triangle $B E_{n} F_{n}$ by the formula

$$
\begin{aligned}
\Delta_{B E_{n} F_{n}} & =\frac{\left|B F_{n}\right|}{|B A|} \cdot \Delta_{B E_{n} A}=\frac{a^{n}}{a^{n}+b^{n}} \cdot \Delta_{B E_{n} A} \\
& =\frac{a^{n}}{a^{n}+b^{n}} \cdot \frac{\left|A E_{n}\right|}{|A C|} \cdot \Delta=\frac{a^{n}}{a^{n}+b^{n}} \cdot \frac{c^{n}}{c^{n}+a^{n}} \cdot \Delta \\
& =\frac{a^{n} c^{n}}{\left(a^{n}+b^{n}\right)\left(c^{n}+a^{n}\right)} \cdot \Delta .
\end{aligned}
$$

Strictly analogously, we can provide the following formulas:

$$
\begin{aligned}
\Delta_{B E_{n} D_{n}} & =\frac{c^{n} a^{n}}{\left(c^{n}+b^{n}\right)\left(a^{n}+c^{n}\right)} \cdot \Delta, \\
\Delta_{B F_{n} D_{n}} & =\frac{a^{n} c^{n}}{\left(a^{n}+b^{n}\right)\left(c^{n}+b^{n}\right)} \cdot \Delta .
\end{aligned}
$$

To end the first part of the theorem, we only need to note, that

$$
\Delta_{n}=\Delta_{B E_{n} D_{n}}+\Delta_{B E_{n} F_{n}}-\Delta_{B F_{n} D_{n}}
$$

Finally we get

$$
\begin{aligned}
\Delta_{n} & =\frac{c^{n} a^{n}}{\left(c^{n}+b^{n}\right)\left(a^{n}+c^{n}\right)} \cdot \Delta+\frac{a^{n} c^{n}}{\left(a^{n}+b^{n}\right)\left(c^{n}+a^{n}\right)} \cdot \Delta-\frac{a^{n} c^{n}}{\left(a^{n}+b^{n}\right)\left(c^{n}+b^{n}\right)} \cdot \Delta \\
& =\frac{a^{n} c^{n}}{\left(a^{n}+b^{n}\right)\left(b^{n}+c^{n}\right)\left(c^{n}+a^{n}\right)}\left[\left(a^{n}+b^{n}\right)+\left(b^{n}+c^{n}\right)-\left(c^{n}+a^{n}\right)\right] \cdot \Delta
\end{aligned}
$$

Above consideration implies that $\Delta_{n}=2 \cdot \frac{a^{n} b^{n} c^{n}}{\left(a^{n}+b^{n}\right)\left(b^{n}+c^{n}\right)\left(c^{n}+a^{n}\right)} \cdot \Delta$.
The last part of the proof is quite formal.

$$
\begin{aligned}
\Delta_{-n} & =2 \cdot \frac{a^{-n} b^{-n} c^{-n}}{\left(a^{-n}+b^{-n}\right)\left(b^{-n}+c^{-n}\right)\left(c^{-n}+a^{-n}\right)} \cdot \Delta \\
& =2 \cdot \frac{a^{-n} b^{-n} c^{-n}}{\left(a^{-n}+b^{-n}\right)\left(b^{-n}+c^{-n}\right)\left(c^{-n}+a^{-n}\right)} \cdot \Delta \cdot \frac{a^{2 n} b^{2 n} c^{2 n}}{a^{2 n} b^{2 n} c^{2 n}} \\
& =2 \cdot \frac{a^{n} b^{n} c^{n}}{\left(a^{n}+b^{n}\right)\left(b^{n}+c^{n}\right)\left(c^{n}+a^{n}\right)} \cdot \Delta \\
& =\Delta_{n}
\end{aligned}
$$

Now we pass to the Maneeal's pedal triangle $P_{n} Q_{n} R_{n}$.
Lemma 2.11
The area of Maneeals pedal triangle of order n is given by the following formula

$$
\Delta_{n}^{\prime}=\frac{2^{2 n-2} \Delta^{n+1} R^{n-2}}{\left(a^{n}+b^{n}+c^{n}\right)^{2}}\left[a^{2-n}+b^{2-n}+c^{2-n}\right]
$$

Furthermore, sides of Maneeals pedal triangle have the following lengths:

$$
\begin{aligned}
& \left|P_{n} Q_{n}\right|=\frac{2 \Delta}{q_{n}} \sqrt{\left(a^{n-2}+b^{n-2}\right)\left(a^{n}+b^{n}\right)-a^{n-2} b^{n-2} c^{2}} \\
& \left|Q_{n} R_{n}\right|=\frac{2 \Delta}{q_{n}} \sqrt{\left(b^{n-2}+c^{n-2}\right)\left(b^{n}+c^{n}\right)-b^{n-2} c^{n-2} a^{2}} \\
& \left|R_{n} P_{n}\right|=\frac{2 \Delta}{q_{n}} \sqrt{\left(c^{n-2}+a^{n-2}\right)\left(c^{n}+a^{n}\right)-c^{n-2} a^{n-2} b^{2}}
\end{aligned}
$$

Theorem 2.12
For any point X in the plane we have the following formula

$$
\begin{aligned}
\left|M_{n} X\right|^{2}= & \frac{a^{n}|A X|^{2}+b^{n}|B X|^{2}+c^{n}|C X|^{2}}{a^{n}+b^{n}+c^{n}} \\
& -\frac{a^{2} b^{2} c^{2}}{\left(a^{n}+b^{n}+c^{n}\right)^{2}}\left(a^{n-2} b^{n-2}+b^{n-2} c^{n-2}+c^{n-2} a^{n-2}\right)
\end{aligned}
$$

Proof. From the Stewart Theorem [3] for triangle $X B C$, we get

$$
|X B|^{2} \cdot\left|D_{n} C\right|+|X C|^{2} \cdot\left|D_{n} B\right|=|B C| \cdot\left[\left|X D_{n}\right|^{2}+\left|D_{n} C\right| \cdot\left|D_{n} B\right|\right]
$$

or equivalently

$$
|X B|^{2} \cdot \frac{\left|D_{n} C\right|}{|B C|}+|X C|^{2} \cdot \frac{\left|D_{n} B\right|}{|B C|}=\left|X D_{n}\right|^{2}+\left|D_{n} C\right| \cdot\left|D_{n} B\right|
$$

If we use formulas from Lemma 2.4 and make a few simple transformations, then we will get

$$
\left|X D_{n}\right|^{2}=\frac{c^{n}}{c^{n}+b^{n}}|X C|^{2}+\frac{b^{n}}{c^{n}+b^{n}}|X B|^{2}-\frac{b^{n} c^{n}}{\left(c^{n}+b^{n}\right)^{2}}|B C|^{2}
$$

Furthermore, an analogous consideration for the triangle $A X D_{n}$ shows that

$$
\begin{aligned}
\left|X M_{n}\right|^{2}= & \frac{\left|A M_{n}\right|}{\left|A D_{n}\right|}\left|D_{n} X\right|^{2}+\frac{\left|D_{n} M_{n}\right|}{\left|A D_{n}\right|}|A X|^{2}-\left|A M_{n}\right| \cdot\left|D_{n} M_{n}\right| \\
= & \frac{\left|A M_{n}\right|}{\left|A D_{n}\right|}\left|D_{n} X\right|^{2}+\frac{\left|D_{n} M_{n}\right|}{\left|A D_{n}\right|}|A X|^{2}-\frac{\left|A M_{n}\right|}{\left|A D_{n}\right|} \cdot \frac{\left|D_{n} M_{n}\right|}{\left|A D_{n}\right|} \cdot\left|A D_{n}\right|^{2} \\
= & \left(\frac{c^{n}+b^{n}}{a^{n}+b^{n}+c^{n}}\right)\left(\frac{c^{n}}{c^{n}+b^{n}}|X C|^{2}+\frac{b^{n}}{c^{n}+b^{n}}|X B|^{2}-\frac{b^{n} c^{n} a^{2}}{\left(c^{n}+b^{n}\right)^{2}}\right) \\
& +\frac{a^{n}}{a^{n}+b^{n}+c^{n}}|A X|^{2}-\frac{a^{n}\left(c^{n}+b^{n}\right)}{\left(a^{n}+b^{n}+c^{n}\right)^{2}}\left|A D_{n}\right|^{2} \\
= & \frac{a^{n}|A X|^{2}+b^{n}|B X|^{2}+c^{n}|C X|^{2}}{a^{n}+b^{n}+c^{n}}-\frac{a^{2} b^{n} c^{n}}{\left(a^{n}+b^{n}+c^{n}\right)\left(b^{n}+c^{n}\right)} \\
& -\frac{a^{n}\left(c^{n}+b^{n}\right)}{\left(a^{n}+b^{n}+c^{n}\right)^{2}}\left|A D_{n}\right|^{2} .
\end{aligned}
$$

Now we will use formula

$$
\left|A D_{n}\right|^{2}=\frac{b^{2} c^{2}}{\left(b^{n}+c^{n}\right)^{2}}\left[\left(b^{n}+c^{n}\right)\left(b^{n-2}+c^{n-2}\right)-a^{2} b^{n-2} c^{n-2}\right]
$$

to simplify the following part of the main formula

$$
\begin{aligned}
& -\frac{a^{2} b^{n} c^{n}}{\left(a^{n}+b^{n}+c^{n}\right)\left(b^{n}+c^{n}\right)}-\frac{a^{n}\left(c^{n}+b^{n}\right)}{\left(a^{n}+b^{n}+c^{n}\right)^{2}}\left|A D_{n}\right|^{2} \\
& \quad=-\frac{a^{2} b^{n} c^{n}}{\left(a^{n}+b^{n}+c^{n}\right)\left(b^{n}+c^{n}\right)} \\
& \quad-\frac{a^{n}\left(c^{n}+b^{n}\right)}{\left(a^{n}+b^{n}+c^{n}\right)^{2}} \frac{b^{2} c^{2}}{\left(b^{n}+c^{n}\right)^{2}}\left[\left(b^{n}+c^{n}\right)\left(b^{n-2}+c^{n-2}\right)-a^{2} b^{n-2} c^{n-2}\right]
\end{aligned}
$$

$$
=-\frac{a^{2} b^{2} c^{2}}{\left(a^{n}+b^{n}+c^{n}\right)^{2}}\left[a^{n-2} b^{n-2}+b^{n-2} c^{n-2}+c^{n-2} a^{n-2}\right] .
$$

Finally we have

$$
\begin{align*}
\left|M_{n} X\right|^{2}= & \frac{a^{n}|A X|^{2}+b^{n}|B X|^{2}+c^{n}|C X|^{2}}{a^{n}+b^{n}+c^{n}} \tag{7}\\
& -\frac{a^{2} b^{2} c^{2}}{\left(a^{n}+b^{n}+c^{n}\right)^{2}}\left(a^{n-2} b^{n-2}+b^{n-2} c^{n-2}+c^{n-2} a^{n-2}\right) .
\end{align*}
$$

Corollaries 2.13
From (7) we obtain for $n=0,1$:

$$
\begin{aligned}
& \left|M_{0} X\right|^{2}=\frac{|A X|^{2}+|B X|^{2}+|C X|^{2}}{3}-\frac{a^{2}+b^{2}+c^{2}}{9}, \\
& \left|M_{1} X\right|^{2}=\frac{a|A X|^{2}+b|B X|^{2}+c|C X|^{2}}{a+b+c}-\frac{a b c}{(a+b+c)} .
\end{aligned}
$$

Note that M_{0} is the centroid of the triangle $A B C$ and M_{1} is the incenter of $A B C$.
From (7), (11), (2) we obtain the last corollary, which states, that the distance between two Maneeal's points, of order m and n, is given by the following formula

$$
\left|M_{m} M_{n}\right|^{2}=\frac{1}{\left(a^{m}+b^{m}+c^{m}\right)^{2}\left(a^{n}+b^{n}+c^{n}\right)^{2}} \cdot V,
$$

where

$$
\begin{aligned}
& V=a^{2}\left\{\left[b^{m} c^{n}-b^{n} c^{m}\right]^{2}-\left[b^{m} c^{n}-b^{n} c^{m}\right]\left[a^{m}\left(b^{n}-c^{n}\right)-a^{n}\left(b^{m}-c^{m}\right)\right]\right. \\
&\left.-\left[a^{m} b^{n}-a^{n} b^{m}\right]\left[a^{m} c^{n}-a^{n} c^{m}\right]\right\} \\
&+ b^{2}\left\{\left[c^{m} a^{n}-c^{n} a^{m}\right]^{2}-\left[c^{m} a^{n}-c^{n} a^{m}\right]\left[b^{m}\left(c^{n}-a^{n}\right)-b^{n}\left(c^{m}-a^{m}\right)\right]\right. \\
&\left.-\left[b^{m} c^{n}-b^{n} c^{m}\right]\left[b^{m} a^{n}-b^{n} a^{m}\right]\right\} \\
&+ c^{2}\left\{\left[a^{m} b^{n}-a^{n} b^{m}\right]^{2}-\left[a^{m} b^{n}-a^{n} b^{m}\right]\left[c^{m}\left(a^{n}-b^{n}\right)-c^{n}\left(a^{m}-b^{m}\right)\right]\right. \\
&\left.-\left[c^{m} a^{n}-c^{n} a^{m}\right]\left[c^{m} b^{n}-c^{n} b^{m}\right]\right\} .
\end{aligned}
$$

In particular if we let $m=1, n=0$, we will get

$$
\left|M_{1} M_{0}\right|^{2}=\frac{1}{(a+b+c)}\left[a\left|A M_{0}\right|^{2}+b\left|B M_{0}\right|^{2}+c\left|C M_{0}\right|^{2}-a b c\right] .
$$

Corollary 2.14
From (2.12) for $X=S$ we have

$$
\begin{aligned}
\left|M_{n} S\right|^{2}= & \frac{a^{n} R^{2}+b^{n} R^{2}+c^{n} R^{2}}{a^{n}+b^{n}+c^{n}} \\
& -\frac{a^{2} b^{2} c^{2}}{\left(a^{n}+b^{n}+c^{n}\right)^{2}}\left(a^{n-2} b^{n-2}+b^{n-2} c^{n-2}+c^{n-2} a^{n-2}\right)
\end{aligned}
$$

≥ 0.

Therefore, we have

$$
R^{2} \geq \frac{a^{2} b^{n} c^{n}+b^{2} a^{n} c^{n}+c^{2} a^{n} b^{n}}{q_{n}^{2}}
$$

In particular, for $n=1$, since

$$
R^{2} \geq \frac{a b c}{(a+b+c)}=2 R r
$$

therefore

$$
R \geq 2 r .
$$

Other proofs of Euler's inequality you can find at [2, [13, 14, 6, [7, 8, 9, 10].
Now we can obtain a few relationships from the Cauchy-Schwarz inequality. They will be important part of proofs of several subsequent theorems.

Lemma 2.15
Any non-zero real numbers a, b, c satisfy the following inequalities:

$$
\begin{align*}
\left(\frac{a^{2 n}}{a^{2}}+\frac{b^{2 n}}{b^{2}}+\frac{c^{2 n}}{c^{2}}\right) & \geq \frac{\left(a^{n}+b^{n}+c^{n}\right)^{2}}{a^{2}+b^{2}+c^{2}} \tag{8}\\
\left(a^{2 n}+b^{2 n}+c^{2 n}\right) & \geq \frac{1}{3}\left(a^{n}+b^{n}+c^{n}\right)^{2} \tag{9}\\
\left(\frac{a^{2}}{a^{n}}+\frac{b^{2}}{b^{n}}+\frac{c^{2}}{c^{n}}\right) & \geq \frac{(a+b+c)^{2}}{a^{n}+b^{n}+c^{n}} \tag{10}
\end{align*}
$$

Proof. Indeed, these are special cases of the Cauchy-Schwarz inequality

$$
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right) \geq\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\right)^{2}
$$

with the substitutions

$$
\begin{gathered}
x_{1}=\frac{a^{n}}{a}, x_{2}=\frac{b^{n}}{b}, x_{3}=\frac{c^{n}}{c}, y_{1}=a, y_{2}=b, y_{3}=c \quad \text { for (8) } \\
\quad x_{1}=a^{n}, x_{2}=b^{n}, x_{3}=c^{n}, y_{1}=y_{2}=y_{3}=1 \quad \text { for (9) }
\end{gathered}
$$

and
$x_{1}=\sqrt{\frac{a^{2}}{a^{n}}}, x_{2}=\sqrt{\frac{b^{2}}{b^{n}}}, x_{3}=\sqrt{\frac{c^{2}}{c^{n}}}, y_{1}=\sqrt{a^{n}}, y_{2}=\sqrt{b^{n}}, y_{3}=\sqrt{c^{n}} \quad$ for 10 .

LEMMA 2.16 (Inequality of arithmetic and geometric means)
For any real numbers x_{1}, \ldots, x_{n} there is

$$
\begin{equation*}
\frac{x_{1}+\ldots+x_{n}}{n} \geq \sqrt[n]{x_{1} \cdot \ldots \cdot x_{n}} \tag{11}
\end{equation*}
$$

The Symmedian point M_{2} has a special feature, which we will describe by following

Theorem 2.17
Let $S(n)=\left|M_{n} P_{n}\right|^{2}+\left|M_{n} Q_{n}\right|^{2}+\left|M_{n} R_{n}\right|^{2}$. Then $S(2) \leq S(n)$ for all $n \in \mathbb{Z}$.
Proof. Using (5) we get

$$
S(n)=\frac{4 \Delta^{2}}{q_{n}^{2}}\left[\frac{a^{2 n}}{a^{2}}+\frac{b^{2 n}}{b^{2}}+\frac{c^{2 n}}{c^{2}}\right]
$$

Using (8) we get

$$
S(n) \geq \frac{4 \Delta^{2}}{q_{2}}
$$

Now, an easy computation shows, that

$$
S(2)=\left|M_{2} P_{2}\right|^{2}+\left|M_{2} Q_{2}\right|^{2}+\left|M_{2} R_{2}\right|^{2}=\frac{4 \Delta^{2}}{q_{2}}
$$

This finishes the proof.
Not only the Symmedian point, but also the Centroid M_{0}, has a special feature:
Theorem 2.18
Let $T(n)=a^{2}\left|M_{n} P_{n}\right|^{2}+b^{2}\left|M_{n} Q_{n}\right|^{2}+c^{2}\left|M_{n} R_{n}\right|^{2}$. Then $T(0) \leq T(n)$ for all $n \in \mathbb{Z}$.

Proof. Using (5) we obtain

$$
T(n)=4 \Delta^{2} \cdot \frac{q_{2 n}}{q_{n}^{2}}
$$

By (9) we get

$$
T(n) \geq \frac{4 \Delta^{2}}{3} .
$$

Now an easy computation shows, that

$$
a^{2}\left|M_{0} P_{0}\right|^{2}+b^{2}\left|M_{0} Q_{0}\right|^{2}+c^{2}\left|M_{0} R_{0}\right|^{2}=\frac{4 \Delta^{2}}{3}
$$

This finishes the proof.
Theorem 2.19
Let $W(n)=\frac{a}{\left|M_{n} P_{n}\right|}+\frac{b}{\left|M_{n} Q_{n}\right|}+\frac{c}{\left|M_{n} R_{n}\right|}$. Then $W(1) \leq S(n)$ for all $n \in \mathbb{Z}$.
Proof. Using (5) we get

$$
W(n)=\frac{q_{n}}{2 \Delta}\left(\frac{a^{2}}{a^{n}}+\frac{b^{2}}{b^{n}}+\frac{c^{2}}{c^{n}}\right) .
$$

Using we get

$$
W(n)=\frac{\left(a^{n}+b^{n}+c^{n}\right)}{2 \Delta}\left(\frac{a^{2}}{a^{n}}+\frac{b^{2}}{b^{n}}+\frac{c^{2}}{c^{n}}\right) \geq \frac{(a+b+c)^{2}}{2 \Delta} .
$$

Now an easy computation shows, that

$$
\frac{a}{\left|M_{1} P_{1}\right|}+\frac{b}{\left|M_{1} Q_{1}\right|}+\frac{c}{\left|M_{1} R_{1}\right|}=\frac{(a+b+c)^{2}}{2 \Delta} .
$$

This finishes the proof.
THEOREM 2.20
Let $K(n)=\left|M_{n} P_{n}\right| \cdot\left|M_{n} Q_{n}\right| \cdot\left|M_{n} R_{n}\right|$. Then $K(0) \geq K(n)$ for all $n \in \mathbb{Z}$.
Proof. Using (5) we obtain

$$
K(n)=\frac{8 a^{n-1} b^{n-1} c^{n-1}}{\left(a^{n}+b^{n}+c^{n}\right)^{3}} \cdot \Delta^{3} .
$$

By a special case of 2.16 we get

$$
\left(a^{n}+b^{n}+c^{n}\right) \geq 3 \sqrt[3]{a^{n} b^{n} c^{n}}
$$

Equivalently,

$$
\frac{1}{\left(a^{n}+b^{n}+c^{n}\right)^{3}} \leq \frac{1}{27 a^{n} b^{n} c^{n}} .
$$

Using this inequality, we get

$$
K(n) \leq \frac{8 a^{n-1} b^{n-1} c^{n-1}}{27 a^{n} b^{n} c^{n}} \cdot \Delta^{3}=\frac{8}{27 a b c} \cdot \Delta^{3} .
$$

Furthermore,

$$
\left(a^{n}+b^{n}+c^{n}\right)=3 \sqrt[3]{a^{n} b^{n} c^{n}} \quad \text { for } n=0 .
$$

Hence,

$$
\left|M_{0} P_{0}\right| \cdot\left|M_{0} Q_{0}\right| \cdot\left|M_{0} R_{0}\right|=\frac{8 a^{-1} b^{-1} c^{-1}}{27} \cdot \Delta^{3}=\frac{8}{27 a b c} \cdot \Delta^{3} .
$$

This equality finishes the proof.
Theorem 2.21
Let π be the circumcircle of the triangle $A B C$. For any $n \in \mathbb{Z}$ we choose points X_{n}, Y_{n}, Z_{n} on π in such a manner, that chords $A X_{n}, B Y_{n}, C Z_{n}$ contain the Maneeals $A D_{n}, B E_{n}, C F_{n}$ respectively. Let $D_{n}^{\prime}, E_{n}^{\prime}, F_{n}^{\prime}$ be intersection points of $A X_{n}, B Y_{n}, C Z_{n}$ and $Y_{n} Z_{n}, Z_{n} X_{n}, X_{n} Y_{n}$ respctively.

Let finally m be an integer, $X_{n} D_{m}^{\prime \prime}, Y_{n} E_{m}^{\prime \prime}, Z_{n} F_{m}^{\prime \prime}$ be order m Maneeals of the triangle $X_{n} Y_{n} Z_{n}$. Then the following conditions hold:

- $D_{2}^{\prime \prime}=D_{2}^{\prime}, E_{2}^{\prime \prime}=E_{2}^{\prime}, F_{2}^{\prime \prime}=F_{2}^{\prime}$,
- if G_{m} is an m-order Maneeal's point of triangle $X_{n} Y_{n} Z_{n}$, then $G_{2}=M_{2}$.

Proof. Line segments $B C$ and $A X_{n}$ are the chords of circle π, and D_{n} is their point of intersection. Hence,

$$
\left|B D_{n}\right| \cdot\left|D_{n} C\right|=\left|A D_{n}\right| \cdot\left|D_{n} X_{n}\right| .
$$

Using 2.4 we get

$$
\left|D_{n} X_{n}\right|=\frac{a^{2} b^{n} c^{n}}{\left(b^{n}+c^{n}\right)^{2}\left|A D_{n}\right|}
$$

Strictly analogously we get

$$
\left|E_{n} Y_{n}\right|=\frac{b^{2} a^{n} c^{n}}{\left(a^{n}+c^{n}\right)^{2}\left|B E_{n}\right|}, \quad\left|F_{n} Z_{n}\right|=\frac{c^{2} a^{n} b^{n}}{\left(a^{n}+b^{n}\right)^{2}\left|C F_{n}\right|}
$$

Now we can use (1) and (2) to obtain

$$
\begin{aligned}
\left|M_{n} X_{n}\right| & =\left|M_{n} D_{n}\right|+\left|D_{n} X_{n}\right|=\frac{a^{n}\left|A D_{n}\right|}{\left(a^{n}+b^{n}+c^{n}\right)}+\frac{a^{2} b^{n} c^{n}}{\left(b^{n}+c^{n}\right)^{2}\left|A D_{n}\right|} \\
& =\frac{a^{2} b^{n} c^{n}+b^{2} c^{n} a^{n}+c^{2} a^{n} b^{n}}{\left(a^{n}+b^{n}+c^{n}\right)\left(b^{n}+c^{n}\right)\left|A D_{n}\right|}
\end{aligned}
$$

Strictly analogously we get

$$
\begin{aligned}
& \left|M_{n} Y_{n}\right|=\frac{a^{2} b^{n} c^{n}+b^{2} c^{n} a^{n}+c^{2} a^{n} b^{n}}{\left(a^{n}+b^{n}+c^{n}\right)\left(c^{n}+a^{n}\right)\left|B E_{n}\right|} \\
& \left|M_{n} Z_{n}\right|=\frac{a^{2} b^{n} c^{n}+b^{2} c^{n} a^{n}+c^{2} a^{n} b^{n}}{\left(a^{n}+b^{n}+c^{n}\right)\left(a^{n}+b^{n}\right)\left|C F_{n}\right|}
\end{aligned}
$$

Using (2) again, we get

$$
\left|A X_{n}\right|=\left|A D_{n}\right|+\left|D_{n} X_{n}\right|=\frac{\left|A D_{n}\right|^{2}}{\left|A D_{n}\right|}+\frac{a^{2} b^{n} c^{n}}{\left(b^{n}+c^{n}\right)^{2}\left|A D_{n}\right|}=\frac{c^{2} b^{n}+b^{2} c^{n}}{\left(b^{n}+c^{n}\right)\left|A D_{n}\right|} .
$$

Analogously we get

$$
\left|B Y_{n}\right|=\frac{c^{2} a^{n}+a^{2} c^{n}}{\left(a^{n}+c^{n}\right)\left|B E_{n}\right|}, \quad\left|C Z_{n}\right|=\frac{b^{2} a^{n}+a^{2} b^{n}}{\left(a^{n}+b^{n}\right)\left|C F_{n}\right|}
$$

Now we observe, that triangles $X_{n} M_{n} Z_{n}$ and $C M_{n} A$ are similar. Indeed, we only need to note, that M_{n} is the intersection point of chords $A X_{n}$ and $C Z_{n}$ and that respective angles are right.

From the similarity, we derive that

$$
\frac{\Delta X_{n} M_{n} Z_{n}}{\Delta C M_{n} A}=\frac{\left|X_{n} M_{n}\right|^{2}}{\left|C M_{n}\right|^{2}}=\frac{\left|X_{n} Z_{n}\right|^{2}}{|C A|^{2}}=\frac{\left|Z_{n} M_{n}\right|^{2}}{\left|A M_{n}\right|^{2}}
$$

Since $\frac{\left|X_{n} Z_{n}\right|}{|C A|}=\frac{\left|Z_{n} M_{n}\right|}{\left|A M_{n}\right|}$, therefore if we use (1), we get

$$
\left|X_{n} Z_{n}\right|=\frac{|A C| \cdot\left|Z_{n} M_{n}\right|}{\left|A M_{n}\right|}=b \cdot \frac{a^{2} b^{n} c^{n}+b^{2} c^{n} a^{n}+c^{2} a^{n} b^{n}}{\left(a^{n}+b^{n}\right)\left(b^{n}+c^{n}\right)\left|A D_{n}\right|\left|C F_{n}\right|} .
$$

Strictly analogously we get

$$
\begin{aligned}
\left|X_{n} Y_{n}\right| & =c \cdot \frac{a^{2} b^{n} c^{n}+b^{2} c^{n} a^{n}+c^{2} a^{n} b^{n}}{\left(a^{n}+c^{n}\right)\left(b^{n}+c^{n}\right)\left|A D_{n}\right|\left|B E_{n}\right|} \\
\left|Y_{n} Z_{n}\right| & =a \cdot \frac{a^{2} b^{n} c^{n}+b^{2} c^{n} a^{n}+c^{2} a^{n} b^{n}}{\left(a^{n}+c^{n}\right)\left(a^{n}+b^{n}\right)\left|C F_{n}\right|\left|B E_{n}\right|}
\end{aligned}
$$

By (3) and similarity of respective triangles we have

$$
\begin{aligned}
\Delta X_{n} M_{n} Z_{n} & =\frac{\left|X_{n} Z_{n}\right|^{2}}{|C A|^{2}} \cdot \Delta C M_{n} A \\
& =\frac{b^{n}\left(a^{2} b^{n} c^{n}+b^{2} c^{n} a^{n}+c^{2} a^{n} b^{n}\right)^{2}}{\left(a^{n}+b^{n}+c^{n}\right)\left(a^{n}+b^{n}\right)^{2}\left(b^{n}+c^{n}\right)^{2}\left|A D_{n}\right|^{2}\left|C F_{n}\right|^{2}} \cdot \Delta .
\end{aligned}
$$

By the same taken we get

$$
\begin{aligned}
& \Delta Y_{n} M_{n} Z_{n}=\frac{a^{n}\left(a^{2} b^{n} c^{n}+b^{2} c^{n} a^{n}+c^{2} a^{n} b^{n}\right)^{2}}{\left(a^{n}+b^{n}+c^{n}\right)\left(a^{n}+b^{n}\right)^{2}\left(a^{n}+c^{n}\right)^{2}\left|B E_{n}\right|^{2}\left|C F_{n}\right|^{2}} \cdot \Delta, \\
& \Delta X_{n} M_{n} Y_{n}=\frac{c^{n}\left(a^{2} b^{n} c^{n}+b^{2} c^{n} a^{n}+c^{2} a^{n} b^{n}\right)^{2}}{\left(a^{n}+b^{n}+c^{n}\right)\left(c^{n}+b^{n}\right)^{2}\left(c^{n}+a^{n}\right)^{2}\left|A D_{n}\right|^{2}\left|B E_{n}\right|^{2}} \cdot \Delta .
\end{aligned}
$$

No we can determine the area of the triangle $Z_{n} B Y_{n}$. Since

$$
\frac{\Delta_{Z_{n} M_{n} Y_{n}}}{\Delta_{Z_{n} B Y_{n}}}=\frac{\left|Y_{n} M_{n}\right|}{\left|B Y_{n}\right|}
$$

therefore

$$
\Delta_{Z_{n} B Y_{n}}=\frac{B Y_{n}}{Y_{n} M_{n}} \cdot \Delta_{Z_{n} M_{n} Y_{n}}=\frac{a^{n}\left(a^{2} b^{n} c^{n}+b^{2} c^{n} a^{n}+c^{2} a^{n} b^{n}\right)\left(c^{2} a^{n}+a^{2} c^{n}\right)}{\left(a^{n}+b^{n}\right)^{2}\left(a^{n}+c^{n}\right)^{2}\left|B E_{n}\right|^{2}\left|C F_{n}\right|^{2}} \cdot \Delta
$$

Strictly analogously we get

$$
\Delta_{X_{n} B Y_{n}}=\frac{c^{n}\left(a^{2} b^{n} c^{n}+b^{2} c^{n} a^{n}+c^{2} a^{n} b^{n}\right)\left(a^{n} c^{2}+c^{n} a^{2}\right)}{\left(c^{n}+b^{n}\right)^{2}\left(c^{n}+a^{n}\right)^{2}\left|B E_{n}\right|^{2}\left|A D_{n}\right|^{2}} \cdot \Delta .
$$

Furthermore we have the following relation

$$
\frac{\left|Z_{n} E_{n}^{\prime}\right|}{\left|X_{n} E_{n}^{\prime}\right|}=\frac{\Delta_{Z_{n} B Y_{n}}}{\Delta_{X_{n} B Y_{n}}}=\frac{a^{n}\left(b^{n}+c^{n}\right)^{2}\left|A D_{n}\right|^{2}}{c^{n}\left(b^{n}+a^{n}\right)^{2}\left|C F_{n}\right|^{2}} .
$$

On the other hand since

$$
\frac{\left|Y_{n} Z_{n}\right|}{\left|Y_{n} X_{n}\right|}=\frac{a\left(b^{n}+c^{n}\right)\left|A D_{n}\right|}{c\left(b^{n}+a^{n}\right)\left|C F_{n}\right|}
$$

we can conclude, that

$$
\frac{\left|Y_{n} Z_{n}\right|^{2}}{\left|Y_{n} X_{n}\right|^{2}}=\frac{\left|Z_{n} E_{n}^{\prime}\right|}{\left|X_{n} E_{n}^{\prime}\right|} \quad \text { if and only if } \quad n=2
$$

On the other hand, by definition, the cevian $Y_{n} E_{m}^{\prime \prime}$, is an order m Maneeal of triangle $X_{n} Y_{n} Z_{n}$ if, and only if, the following condition holds

$$
\frac{\left|Z_{n} E_{m}^{\prime \prime}\right|}{\left|X_{n} E_{m}^{\prime \prime}\right|}=\frac{\left|Y_{n} Z_{n}\right|^{m}}{\left|Y_{n} X_{n}\right|^{m}} .
$$

Now it is easy to see, that the above condition is satisfied for $n=m=2$. Hence, $E_{2}^{\prime \prime}=E_{2}^{\prime}$. We can provide strictly analogously, that $D_{2}^{\prime \prime}=D_{2}^{\prime}, F_{2}^{\prime \prime}=F_{2}^{\prime}$. In particular, cevians $X_{2} D_{2}^{\prime}, Y_{2} E_{2}^{\prime}, Z_{2} F_{2}^{\prime}$ are Symmedians of the triangle $X_{2} Y_{2} Z_{2}$. The fact, that $G_{2}=M_{2}$ we conclude by the definition (construction) of points X_{2}, Y_{2}, Z_{2}.

Theorem 2.22 (Lemoine's Pedal Triangle Theorem [15)
Let $D_{n} E_{n} F_{n}$ be the order n Maneeal's triangle and $P_{n} Q_{n} R_{n}$ be the order n pedal Maneeal's triangle of the given triangle $A B C$. We can choose points T_{n}, U_{n}, W_{n}, on sides $R_{n} P_{n}, Q_{n} P_{n}, Q_{n} R_{n}$, respectively, in such a manner that cevians $R_{n} U_{n}$, $P_{n} W_{n}, Q_{n} T_{n}$ contain the line segments $R_{n} M_{n}, P_{n} M_{n}, Q_{n} M_{n}$ respectively. Then the following conditions hold:

- if $R_{n} R_{m}^{\prime}, Q_{n} Q_{m}^{\prime}, P_{n} P_{m}^{\prime}$ are order m Maneeals of the triangle $P_{n} Q_{n} R_{n}$, then $U_{2}=R_{0}^{\prime}, W_{2}=P_{0}^{\prime}, T_{2}=Q_{0}^{\prime}$,
- Symmedian point of triangle $A B C$ is the centroid of its pedals triangle $P_{n} Q_{n} R_{n}$,
- $\frac{\left|A F_{1}\right|}{\left|F_{1} B\right|}=\frac{\left|P_{1} U_{1}\right|}{\left|U_{1} Q_{1}\right|}, \frac{\left|B D_{1}\right|}{\left|D_{1} C\right|}=\frac{\left|Q_{1} W_{1}\right|}{\left|W_{1} R_{1}\right|}, \frac{\left|C E_{1}\right|}{\left|E_{1} A\right|}=\frac{\left|R_{1} T_{1}\right|}{\left|T_{1} P_{1}\right|}$.

Proof. We use (5) to make simple computations

$$
\frac{\left|P_{n} U_{n}\right|}{\left|U_{n} Q_{n}\right|}=\frac{\Delta_{R_{n} M_{n} P_{n}}}{\Delta_{R_{n} M_{n} Q_{n}}}=\frac{\frac{1}{2}\left|R_{n} M_{n}\right|\left|M_{n} P_{n}\right| \sin \left(\angle R_{n} M_{n} P_{n}\right)}{\frac{1}{2}\left|R_{n} M_{n}\right|\left|M_{n} Q_{n}\right| \sin \left(\angle R_{n} M_{n} Q_{n}\right)}
$$

$$
\begin{aligned}
& =\frac{\frac{2 c^{n-1} \Delta}{\left(a^{n}+b^{n}+c^{n}\right)} \frac{2 a^{n-1} \Delta}{\left(a^{n}+b^{n}+c^{n}\right)} \sin (\angle 180-B)}{\frac{2 c^{n-1} \Delta}{\left(a^{n}+b^{n}+c^{n}\right)} \frac{2 b^{n-1} \Delta}{\left(a^{n}+b^{n}+c^{n}\right)} \sin (\angle 180-A)}=\frac{a^{n-1} \sin B}{b^{n-1} \sin A} \\
& =\frac{a^{n-2}}{b^{n-2}}
\end{aligned}
$$

and get

$$
\begin{equation*}
\frac{\left|P_{n} U_{n}\right|}{\left|U_{n} Q_{n}\right|}=\frac{a^{n-2}}{b^{n-2}} . \tag{12}
\end{equation*}
$$

In particular, if we choose $n=2$, we obtain $\left|P_{n} U_{n}\right|=\left|U_{n} Q_{n}\right|$. Therefore, by definition of order m Maneeals of the triangle $P_{n} Q_{n} R_{n}$ the cevian $R_{2} U_{2}$ is a median of this triangle. Finally $R_{2} U_{2}=R_{2} R_{0}^{\prime}$. Strictly analogously we can show, that $P_{2} W_{2}=P_{2} P_{0}^{\prime}, Q_{2} T_{2}=Q_{2} Q_{0}^{\prime}$.

On the other hand, if we put $n=1$ into $\sqrt{12}$, we obtain

$$
\frac{\left|P_{1} U_{1}\right|}{\left|U_{1} Q_{1}\right|}=\frac{b}{a}=\frac{\left|A F_{1}\right|}{\left|F_{1} B\right|} .
$$

And analogously

$$
\frac{\left|Q_{1} W_{1}\right|}{\left|W_{1} R_{1}\right|}=\frac{c}{b}=\frac{\left|B D_{1}\right|}{\left|D_{1} C\right|}, \quad, \quad \frac{\left|R_{1} T_{1}\right|}{\left|T_{1} P_{1}\right|}=\frac{a}{c}=\frac{\left|C E_{1}\right|}{\left|E_{1} A\right|} .
$$

For further properties see [12].
Final remarks. In this article we introduced Maneeal's points, which to the best of our knowledge, have non been studied in the literature before. We shared a number of properties of these points, related lines and triangles. There is surely much more to discover. We hope, this note will sparkle some interest in the construction and will lead further research in this area of very classical triangle geometry.

Acknowledgement. The authors would like to thank Prof. Tomasz Szemberg for his help while preparing this manuscript. Additional thanks go to the referee for valuable comments and suggestions.

References

[1] Altshiller-Court, Nathan. "College geometry. An introduction to the modern geometry of the triangle and the circle." Reprint of the second edition. Mineola, NY: Dover Publications Inc.: 2007. Cited on 51.
[2] Andreescu, Titu, and Dorin Andrica. "Proving some geometric inequalities by using complex numbers." Educaţia Matematică 1, no. 2 (2005): 19-26. Cited on 60
[3] Chau, William. "Applications of Stewart's theorem in geometric proofs." Accessed April 7, 2016. http://www.computing-wisdom.com/papers/stewart_theorem. pdf. Cited on 57
[4] Coxeter, Harold S.M. Introduction to Geometry. New York-London: John Wiley \& Sons, Inc., 1961. Cited on 52
[5] Coxeter, Harold S.M., and S.L. Greitzer. "Geometry revisited." Vol. 19 of New Mathematical Library. New York: Random House Inc., 1967. Cited on 52
[6] Dasari, Naga Vijay Krishna. "The new proof of Euler's Inequality using Extouch Triangle." Journal of Mathematical Sciences \& Mathematics Education 11, no. 1 (2016): 1-10. Cited on 60
[7] Dasari, Naga Vijay Krishna. "The distance between the circumcenter and any point in the plane of the triangle." GeoGebra International Journal of Romania 5, no. 2 (2016): 139-148. Cited on 60
[8] Dasari, Naga Vijay Krishna. "A few minutes with a new triangle centre coined as Vivya's point." Int. Jr. of Mathematical Sciences and Applications 5, no. 2 (2015): 357-387. Cited on 60
[9] Dasari, Naga Vijay Krishna. "The new proof of Euler's Inequality using Spieker Center." International Journal of Mathematics And its Applications 3, no. 4-E (2015): 67-73. Cited on 60
[10] Dasari, Naga Vijay Krishna. "Weitzenbock Inequality - 2 Proofs in a more geometrical way using the idea of 'Lemoine point' and 'Fermat point'." GeoGebra International Journal of Romania 4, no. 1 (2015): 79-91. Cited on 60
[11] Gallatly, William. Modern geometry of a triangle. London: Francis Hodgson, 1910. Cited on 52
[12] Honsberger, Ross. "Episodes in nineteenth and twentieth century Euclidean geometry." Vol 37 of New Mathematical Library. Washington, DC: Mathematical Association of America, 1995. Cited on 67
[13] Nelsen, Roger B. "Euler's Triangle Inequality via proofs without words." Mathematics Magazine 81, no. 1 (2008): 58-61. Cited on 60
[14] Pohoaţă, Cosmin. "A new proof of Euler's Inradius - Circumradius Inequality." Gazeta Matematica Seria B no. 3 (2010): 121-123. Cited on 60
[15] Pohoaţă, Cosmin. "A short proof of Lemoine's Theorem." Forum Geometricorum 8 (2008): 97-98. Cited on 66

Naga Vijay Krishna Dasari
Department of Mathematics
Kesava Reddy Educational Instutions
Machilipatnam, Kurnool, Andhra Pradesh
India
E-mail: vijay9290009015@gmail.com
Jakub Kabat
Institute of Mathematics
Pedagogical University of Cracow
Podchorazych 2
30-084 Kraków
Poland
E-mail: xxkabat@gmail.com

Received: August 31, 2015; final version: September 5, 2016;
available online: October 13, 2016.

[^0]: AMS (2010) Subject Classification: 51M04, 51M15, 51A20.
 Keywords and phrases: Maneeals, Maneeal's Points, Maneeals triangle of order n, Maneeal's Pedal triangle of order n, Cauchy-Schwarz inequality, Lemoine's Pedal Triangle Theorem.

