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Abstract. In this paper, we study the superstablity problem of the cosine
and sine type functional equations:

f(xσ(y)a) + f(xya) = 2f(x)f(y)

and
f(xσ(y)a)− f(xya) = 2f(x)f(y),

where f : S → C is a complex valued function; S is a semigroup; σ is an in-
volution of S and a is a fixed element in the center of S.

1. Introduction

The stability problem of the functional equation was conjectured by Ulam [12]
during the conference in the University of Wisconsin in 1940. In the next year,
Hyers in [5] solved the problem of stability in the case of additive mapping. Since
then it is called the Hyers-Ulam stability.

In 1979, Baker et al. in [4] introduced the following: if f satisfies the inequality
|E1(f)− E2(f)| ≤ ε, then either f is bounded or E1(f) = E2(f). The stability of
this type is called the superstability.

The superstability of the cosine functional equation (also called the d’Alembert
equation)

f(x+ y) + f(x− y) = 2f(x)f(y),

was investigated by Baker [3]. Their results were improved by Badora [1] and
Badora and Ger [2].
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The superstability of the sine functional equation

f(x+ y)− f(x− y) = 2f(x)f(y),

was investigated by Kim ([6, 7]).
The aim of this paper is to investigate the superstability problem of the cosine

type functional equation

f(xσ(y)a) + f(xya) = 2f(x)f(y) (1)

and the sine type functional equation

f(xσ(y)a)− f(xya) = 2f(x)f(y). (2)

The form of solutions (1) (resp. (2)) are determined in [8, 11] (resp. [8, 10, 13]).
In this paper S is a semigroup, C stands for the field of complex numbers and

a is a fixed element in the center of S. We may assume that f is a nonzero function,
δ is a nonnegative real constant and σ is an involution of S, i.e. σ(σ(x)) = x and
σ(xy) = σ(y)σ(x) for all x, y ∈ S. If all the results of this article are given on the
semigroup S, we will obtain identical results for a group G.

2. Stability of the equation (1)

In this section, we will investigated the superstability of the functional equa-
tion (1) related to the cosine functional equation. We start with the proof that
f is an even function.

Lemma 2.1
Let δ ≥ 0. Let S be a semigroup and let f be a complex-valued function defined on
S such that

|f(xσ(y)a) + f(xya)− 2f(x)f(y)| ≤ δ, x, y ∈ S. (3)

If f is unbounded, then it is even, i.e. f(σ(x)) = f(x) for all x ∈ S.

Proof. Assume that f is unbounded on S and satisfies inequality (3). So, for all
x, y ∈ G we have

|f(xσ(y)a) + f(xya)− 2f(x)f(y)| ≤ δ,

replacing y by σ(y) in (3) we obtain

|f(xya) + f(xσ(y)a)− 2f(x)f(σ(y))| ≤ δ,

and by triangle inequality we find

|2f(x)||f(y)− f(σ(y))| ≤ 2δ for all x, y ∈ S.

Since f is assumed to be unbounded, then we get f(y) = f(σ(y)) for all y ∈ S.
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Proposition 2.2
Suppose that f : S → C satisfies the inequality (3), then

(i) f is bounded and

|f(x)| ≤ 1 +
√

1 + 2δ
2 , x ∈ S.

Or
(ii) f satisfies the functional equation

f(xσ(y)σ(a)) + f(xyσ(a)) = 2f(x)f(y), x, y ∈ S. (4)

Proof. (i) Assume that f satisfies the inequality (3). If f is bounded, let M =
sup |f |, then we get for all x ∈ S that

|2f(x)f(x)| ≤ δ + 2M,

from which we obtain that 2M2 − 2M − δ ≤ 0 such that

M ≤ 1 +
√

1 + 2δ
2 .

(ii) Assume that f is unbounded and satisfies the inequality (3). For all
x, y, z ∈ S, we have

2|f(z)||f(xσ(y)σ(a)) + f(xyσ(a))− 2f(x)f(y)|
= |2f(xσ(y)σ(a))f(z) + 2f(xyσ(a))f(z)− 4f(x)f(y)f(z)|
≤ |f(xσ(y)σ(a)σ(z)a) + f(xσ(y)σ(a)za)− 2f(xσ(y)σ(a))f(z)|

+ |f(xyσ(a)σ(z)a) + f(xyσ(a)za)− 2f(xyσ(a))f(z)|
+ |f(xσ(y)σ(a)σ(z)a) + f(xzaya)− 2f(x)f(zay)|
+ |f(xσ(y)σ(a)za) + f(xσ(z)aya)− 2f(x)f(σ(z)ay)|
+ |f(xyσ(a)σ(z)a) + f(xzaσ(y)a)− 2f(x)f(zaσ(y))|
+ |f(xyσ(a)za) + f(xσ(z)aσ(y)a)− 2f(x)f(σ(z)aσ(y))|
+ |f(xσ(z)aσ(y)a) + f(xσ(z)aya)− 2f(xσ(z)a)f(y)|
+ |f(xzaσ(y)a) + f(xzaya)− 2f(xza)f(y)|
+ |2f(xσ(z)a)f(y) + 2f(xza)f(y)− 4f(x)f(z)f(y)|
+ |2f(σ(z)aσ(y))f(x) + 2f(σ(z)ay)f(x)− 4f(x)f(σ(z))f(y)|
+ |2f(zaσ(y))f(x) + 2f(zay)f(x)− 4f(x)f(z)f(y)|
+ |4f(x)f(z)f(y)− 4f(x)f(σ(z))f(y)|.

By virtue of inequality (3) and using Lemma 2.1, we have

2|f(z)||f(xσ(y)σ(a)) + f(xyσ(a))− 2f(x)f(y)|



[116] F. Lehlou, M. Moussa, A. Roukbi, S. Kabbaj

≤ 8δ + 2|f(y)|δ
+ |2f(σ(z)aσ(y))f(x) + 2f(σ(z)ay)f(x)− 4f(x)f(σ(z))f(y)|
+ |2f(zaσ(y))f(x) + 2f(zay)f(x)− 4f(x)f(z)f(y)|.

Using that a is an element in the center of S and inequality (3) we find that

2|f(z)||f(xσ(y)σ(a)) + f(xyσ(a))− 2f(x)f(y)| ≤ 8δ + 2(|f(y)|+ 2|f(x)|)δ.

Since f is unbounded, from the last inequality, we conclude that f is a solution of
the equation (4).

Theorem 2.3
Suppose that f : S → C satisfies (3). Then
(i) f is bounded and

|f(x)| ≤ 1 +
√

1 + 2δ
2 , x ∈ S.

Or
(ii) f satisfies the functional equation

f(xσ(y)a) + f(xya) = 2f(x)f(y), x, y ∈ S. (5)

Proof. (i) Assume that f is bounded and using Proposition 2.2, (i) we get that
|f(x)| ≤ 1+

√
1+2δ
2 , x ∈ S.

(ii) Assume that f satisfies the inequality (3). For all x, y, z ∈ S, we have

2|f(z)||f(xσ(y)a) + f(xya)− 2f(x)f(y)|
= |2f(xσ(y)a)f(z) + 2f(xya)f(z)− 4f(x)f(y)f(z)|
≤ |f(xσ(y)aσ(z)a) + f(xσ(y)aza)− 2f(xσ(y)a)f(z)|

+ |f(xyaσ(z)a) + f(xyaza)− 2f(xya)f(z)|
+ |f(xσ(y)aσ(z)a) + f(xzσ(a)ya)− 2f(x)f(σ(y)aσ(z))|
+ |f(xσ(y)aza) + f(xσ(z)σ(a)ya)− 2f(x)f(σ(y)az)|
+ |f(xyaσ(z)a) + f(xzσ(a)σ(y)a)− 2f(x)f(yaσ(z))|
+ |f(xyaza) + f(xσ(z)σ(a)σ(y)a)− 2f(x)f(yaz)|
+ |f(xσ(z)aσ(y)σ(a)) + f(xσ(z)ayσ(a))− 2f(xσ(z)a)f(y)|
+ |f(xzaσ(y)σ(a)) + f(xzayσ(a))− 2f(xza)f(y)|
+ 2|f(y)||f(xσ(z)a) + f(xza)− 2f(x)f(z)|
+ |2f(x)||f(yaσ(z)) + f(yaz)− 2f(y)f(z)|
+ |2f(x)||f(σ(y)aσ(z)) + f(σ(y)az)− 2f(σ(y))f(z)|
+ 4|f(x)f(z)f(y)− f(x)f(σ(y))f(z)|.
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By virtue of inequality (3) and according to Lemma 2.1, we have

2|f(z)||f(xσ(y)a) + f(xya)− 2f(x)f(y)|
≤ 6δ + 2|f(y)|δ

+ |f(xσ(z)aσ(y)σ(a)) + f(xσ(z)ayσ(a))− 2f(xσ(z)a)f(y)|
+ |f(xzaσ(y)σ(a)) + f(xzayσ(a))− 2f(xza)f(y)|
+ |2f(x)||f(yaσ(z)) + f(yaz)− 2f(y)f(z)|
+ |2f(x)||f(σ(y)aσ(z)) + f(σ(y)az)− 2f(σ(y))f(z)|.

Since a is an element in the center of S and f is unbounded then, according to
Proposition 2.2 (ii), f is a solution of the equation (5).

As an immediate consequence of Theorem 2.3, we have the following result
which has been the subject of [9, Corollary 1] in the case where a = e.

Corollary 2.4 (11, Corollary 1)
Suppose that f : S → C satisfies (3). Then
(i) f is bounded and

|f(x)| ≤ 1 +
√

1 + 2δ
2 , x ∈ S.

Or
(ii) f satisfies the functional equation

f(xσ(y)) + f(xy) = 2f(x)f(y), x, y ∈ S.

3. Stability of equation (2)

In this section, we will investigated the superstability of the functional equa-
tion (2) related to the sine functional equation.

Lemma 3.1
Let δ ≥ 0. Let S be a semigroup and let f be a complex-valued function defined on
S such that

|f(xσ(y)a)− f(xya)− 2f(x)f(y)| ≤ δ, x, y ∈ S. (6)

If f is unbounded, then it is odd, i.e. f(σ(x)) = −f(x) for all x ∈ S.

Proof. Let f be a complex-valued function defined on S which satisfies the in-
equality (6), then for all x, y ∈ S we have

2|f(x)||f(y) + f(σ(y))|
= |2f(x)f(y) + 2f(x)f(σ(y))|
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= |f(xσ(y)a)− f(xya)− 2f(x)f(y)− f(xσ(y)a)
+ f(xσ(σ(y))a)− 2f(x)f(σ(y))|
≤ |f(xσ(y)a)− f(xya)− 2f(x)f(y)|

+ |f(xσ(σ(y))a)− f(xσ(y)a)− 2f(x)f(σ(y))|
≤ 2δ.

Since f is unbounded it follows that f(σ(y)) = −f(y) for all y ∈ S.

Proposition 3.2
Suppose that f : S → C satisfies the inequality (6), then one of the assertions is
satisfied
(i) f is bounded and

|f(x)| ≤ 1 +
√

1 + 2δ
2 , x ∈ S.

Or
(ii) f satisfies the functional equation

f(xσ(y)σ(a))− f(xyσ(a)) = 2f(x)f(y), x, y ∈ S. (7)

Proof. (i) Using the same method of proof as in Proposition 2.2 (i), i.e. let M =
sup |f |, then for all x ∈ S we have

|2f(x)f(x)| ≤ δ + 2M,

from which we obtain that 2M2 − 2M − δ ≤ 0, hence

M ≤ 1 +
√

1 + 2δ
2 .

(ii) Assume that f is unbounded and satisfies the inequality (6). For all
x, y, z ∈ S, we have

2|f(z)||f(xσ(y)σ(a))− f(xyσ(a))− 2f(x)f(y)|
= |2f(xσ(y)σ(a))f(z)− 2f(xyσ(a))f(z)− 4f(x)f(y)f(z)|
≤ |f(xσ(y)σ(a)σ(z)a)− f(xσ(y)σ(a)za)− 2f(xσ(y)σ(a))f(z)|

+ |f(xyσ(a)σ(z)a)− f(xyσ(a)za)− 2f(xyσ(a))f(z)|
+ |f(xσ(y)σ(a)σ(z)a)− f(xzaya)− 2f(x)f(zay)|
+ |f(xσ(y)σ(a)za)− f(xσ(z)aya)− 2f(x)f(σ(z)ay)|
+ |f(xyσ(a)σ(z)a)− f(xzaσ(y)a)− 2f(x)f(zaσ(y))|
+ |f(xyσ(a)za)− f(xσ(z)aσ(y)a)− 2f(x)f(σ(z)aσ(y))|
+ |f(xσ(z)aσ(y)a)− f(xσ(z)aya)− 2f(xσ(z)a)f(y)|
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+ |f(xzaσ(y)a)− f(xzaya)− 2f(xza)f(y)|
+ |2f(y)||f(xσ(z)a)− f(xza)− 2f(x)f(z)|
+ |2f(x)||f(σ(z)aσ(y))− f(σ(z)ay)− 2f(σ(z))f(y)|
+ |2f(x)||f(zaσ(y))− f(zay)− 2f(z)f(y)|
+ |4f(x)f(z)f(y) + 4f(x)f(σ(z))f(y)|.

In virtue of inequality (6) and that a belongs to the center of S and using
Lemma 3.1, we have

2|f(z)||f(xσ(y)σ(a))− f(xyσ(a))− 2f(x)f(y)| ≤ 8δ + 2(|f(y)|+ 2|f(x)|)δ.

Since f is unbounded, from the last inequality, we conclude that f is a solution of
the equation (7).

Theorem 3.3
Suppose that f : S → C satisfies (6). Then
(i) f is bounded and

|f(x)| ≤ 1 +
√

1 + 2δ
2 , x ∈ S.

Or
(ii) f satisfies the functional equation

f(xσ(y)a)− f(xya) = 2f(x)f(y), x, y ∈ S. (8)

Proof. (ii) Assume that f satisfies the inequality (6). By using Lemma 3.1 and
Proposition 3.2 (ii). For all x, y, z ∈ S, we have

2|f(z)||f(xσ(y)a)− f(xya)− 2f(x)f(y)|
= |2f(xσ(y)a)f(z)− 2f(xya)f(z)− 4f(x)f(y)f(z)|
≤ |f(xσ(y)aσ(z)a)− f(xσ(y)aza)− 2f(xσ(y)a)f(z)|

+ |f(xyaσ(z)a)− f(xyaza)− 2f(xya)f(z)|
+ |f(xzσ(a)ya)− f(xσ(y)aσ(z)a)− 2f(x)f(σ(y)aσ(z))|
+ |f(xσ(z)σ(a)ya)− f(xσ(y)aza)− 2f(x)f(σ(y)az)|
+ |f(xzσ(a)σ(y)a)− f(xyaσ(z)a)− 2f(x)f(yaσ(z))|
+ |f(xσ(z)σ(a)σ(y)a)− f(xyaza)− 2f(x)f(yaz)|
+ |f(xσ(z)aσ(y)σ(a))− f(xσ(z)ayσ(a))− 2f(xσ(z)a)f(y)|
+ |f(xzσ(a)σ(y)a)− f(xzσ(a)ya)− 2f(xza)f(y)|
+ |2f(y)||f(xσ(z)a)− f(xza)− 2f(x)f(z)|
+ |2f(x)||f(σ(y)aσ(z))− f(σ(y)az)− 2f(σ(y))f(z)|
+ |2f(x)||f(yaσ(z))− f(yaz)− 2f(y)f(z)|
+ |4f(x)f(z)f(y) + 4f(x)f(σ(y))f(z)|.
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Therefore

2|f(z)||f(xσ(y)a) + f(xya)− 2f(x)f(y)|
≤ 6δ + 2|f(y)|δ

+ |2f(x)||f(σ(y)aσ(z))− f(σ(y)az)− 2f(σ(y))f(z)|
+ |2f(x)||f(yaσ(z))− f(yaz)− 2f(y)f(z)|.

Since a is an element in the center of S and f is unbounded, then f satisfies the
equation (8), which finished the proof of Theorem 3.3.

The following corollary is a particular case of Theorem 3.3.

Corollary 3.4 ([14])
Suppose that f : S → C satisfies (6) and a = e. Then
(i) f is bounded and

|f(x)| ≤ 1 +
√

1 + 2δ
2 , x ∈ S.

Or
(ii) f satisfies the functional equation

f(xσ(y))− f(xy) = 2f(x)f(y), x, y ∈ S.
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comments.
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