

FOLIA 182

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XV (2016)

Fouad Lehlou^{*}, Mohammed Moussa, Ahmed Roukbi, Samir Kabbaj On the superstability of the cosine and sine type functional equations

Abstract. In this paper, we study the superstability problem of the cosine and sine type functional equations:

$$f(x\sigma(y)a) + f(xya) = 2f(x)f(y)$$

and

$$f(x\sigma(y)a) - f(xya) = 2f(x)f(y),$$

where $f: S \to \mathbb{C}$ is a complex valued function; S is a semigroup; σ is an involution of S and a is a fixed element in the center of S.

1. Introduction

The stability problem of the functional equation was conjectured by Ulam [12] during the conference in the University of Wisconsin in 1940. In the next year, Hyers in [5] solved the problem of stability in the case of additive mapping. Since then it is called the Hyers-Ulam stability.

In 1979, Baker et al. in [4] introduced the following: if f satisfies the inequality $|E_1(f) - E_2(f)| \le \epsilon$, then either f is bounded or $E_1(f) = E_2(f)$. The stability of this type is called the superstability.

The superstability of the cosine functional equation (also called the d'Alembert equation)

$$f(x+y) + f(x-y) = 2f(x)f(y),$$

was investigated by Baker [3]. Their results were improved by Badora [1] and Badora and Ger [2].

AMS (2010) Subject Classification: Primary 39B32, Secondary 39B72.

Keywords and phrases: functional equation, superstablity, stablity.

^{*}Corresponding author.

The superstability of the sine functional equation

$$f(x + y) - f(x - y) = 2f(x)f(y)$$

was investigated by Kim ([6, 7]).

The aim of this paper is to investigate the superstability problem of the cosine type functional equation

$$f(x\sigma(y)a) + f(xya) = 2f(x)f(y) \tag{1}$$

and the sine type functional equation

$$f(x\sigma(y)a) - f(xya) = 2f(x)f(y).$$
(2)

The form of solutions (1) (resp. (2)) are determined in [8, 11] (resp. [8, 10, 13]).

In this paper S is a semigroup, \mathbb{C} stands for the field of complex numbers and a is a fixed element in the center of S. We may assume that f is a nonzero function, δ is a nonnegative real constant and σ is an involution of S, i.e. $\sigma(\sigma(x)) = x$ and $\sigma(xy) = \sigma(y)\sigma(x)$ for all $x, y \in S$. If all the results of this article are given on the semigroup S, we will obtain identical results for a group G.

2. Stability of the equation (1)

In this section, we will investigated the superstability of the functional equation (1) related to the cosine functional equation. We start with the proof that f is an even function.

Lemma 2.1

Let $\delta \geq 0$. Let S be a semigroup and let f be a complex-valued function defined on S such that

$$|f(x\sigma(y)a) + f(xya) - 2f(x)f(y)| \le \delta, \qquad x, y \in S.$$
(3)

If f is unbounded, then it is even, i.e. $f(\sigma(x)) = f(x)$ for all $x \in S$.

Proof. Assume that f is unbounded on S and satisfies inequality (3). So, for all $x, y \in G$ we have

$$|f(x\sigma(y)a) + f(xya) - 2f(x)f(y)| \le \delta,$$

replacing y by $\sigma(y)$ in (3) we obtain

$$|f(xya) + f(x\sigma(y)a) - 2f(x)f(\sigma(y))| \le \delta,$$

and by triangle inequality we find

$$|2f(x)||f(y) - f(\sigma(y))| \le 2\delta \qquad \text{for all } x, y \in S.$$

Since f is assumed to be unbounded, then we get $f(y) = f(\sigma(y))$ for all $y \in S$.

[114]

On the superstability of the cosine and sine type functional equations

Proposition 2.2

Suppose that $f: S \to \mathbb{C}$ satisfies the inequality (3), then

(i) f is bounded and

$$|f(x)| \le \frac{1 + \sqrt{1 + 2\delta}}{2}, \qquad x \in S.$$

Or

(ii) f satisfies the functional equation

$$f(x\sigma(y)\sigma(a)) + f(xy\sigma(a)) = 2f(x)f(y), \qquad x, y \in S.$$
(4)

Proof. (i) Assume that f satisfies the inequality (3). If f is bounded, let $M = \sup |f|$, then we get for all $x \in S$ that

$$|2f(x)f(x)| \le \delta + 2M,$$

from which we obtain that $2M^2 - 2M - \delta \leq 0$ such that

$$M \le \frac{1 + \sqrt{1 + 2\delta}}{2}.$$

(ii) Assume that f is unbounded and satisfies the inequality (3). For all $x,y,z\in S,$ we have

$$\begin{split} 2|f(z)||f(x\sigma(y)\sigma(a)) + f(xy\sigma(a)) - 2f(x)f(y)| \\ &= |2f(x\sigma(y)\sigma(a))f(z) + 2f(xy\sigma(a))f(z) - 4f(x)f(y)f(z)| \\ &\leq |f(x\sigma(y)\sigma(a)\sigma(z)a) + f(x\sigma(y)\sigma(a)za) - 2f(x\sigma(y)\sigma(a))f(z)| \\ &+ |f(xy\sigma(a)\sigma(z)a) + f(xy\sigma(a)za) - 2f(xy\sigma(a))f(z)| \\ &+ |f(x\sigma(y)\sigma(a)\sigma(z)a) + f(xzaya) - 2f(x)f(zay)| \\ &+ |f(x\sigma(y)\sigma(a)za) + f(x\sigma(z)aya) - 2f(x)f(\sigma(z)ay)| \\ &+ |f(xy\sigma(a)\sigma(z)a) + f(xza\sigma(y)a) - 2f(x)f(\sigma(z)a\sigma(y))| \\ &+ |f(xy\sigma(a)za) + f(x\sigma(z)a\sigma(y)a) - 2f(x)f(\sigma(z)a\sigma(y))| \\ &+ |f(xz\sigma(y)a) + f(x\sigma(z)aya) - 2f(x)f(\sigma(z)a\sigma(y))| \\ &+ |f(xz\sigma(y)a) + f(xzaya) - 2f(x\sigma(z)a)f(y)| \\ &+ |f(xza\sigma(y)a) + f(xzaya) - 2f(xza)f(y)| \\ &+ |2f(x\sigma(z)a)f(y) + 2f(xza)f(y) - 4f(x)f(z)f(y)| \\ &+ |2f(za\sigma(y))f(x) + 2f(zay)f(x) - 4f(x)f(z)f(y)| \\ &+ |2f(za\sigma(y))f(x) + 2f(zay)f(x) - 4f(x)f(z)f(y)| \\ &+ |4f(x)f(z)f(y) - 4f(x)f(\sigma(z))f(y)|. \end{split}$$

By virtue of inequality (3) and using Lemma 2.1, we have

$$2|f(z)||f(x\sigma(y)\sigma(a)) + f(xy\sigma(a)) - 2f(x)f(y)|$$

[115]

F. Lehlou, M. Moussa, A. Roukbi, S. Kabbaj

$$\leq 8\delta + 2|f(y)|\delta \\ + |2f(\sigma(z)a\sigma(y))f(x) + 2f(\sigma(z)ay)f(x) - 4f(x)f(\sigma(z))f(y)| \\ + |2f(za\sigma(y))f(x) + 2f(zay)f(x) - 4f(x)f(z)f(y)|.$$

Using that a is an element in the center of S and inequality (3) we find that

$$2|f(z)||f(x\sigma(y)\sigma(a)) + f(xy\sigma(a)) - 2f(x)f(y)| \le 8\delta + 2(|f(y)| + 2|f(x)|)\delta.$$

Since f is unbounded, from the last inequality, we conclude that f is a solution of the equation (4).

THEOREM 2.3 Suppose that $f: S \to \mathbb{C}$ satisfies (3). Then (i) f is bounded and

$$|f(x)| \le \frac{1 + \sqrt{1 + 2\delta}}{2}, \qquad x \in S.$$

Or

(ii) f satisfies the functional equation

$$f(x\sigma(y)a) + f(xya) = 2f(x)f(y), \qquad x, y \in S.$$
(5)

Proof. (i) Assume that f is bounded and using Proposition 2.2, (i) we get that $|f(x)| \leq \frac{1+\sqrt{1+2\delta}}{2}, x \in S.$

(ii) Assume that f satisfies the inequality (3). For all $x, y, z \in S$, we have

$$\begin{split} 2|f(z)||f(x\sigma(y)a) + f(xya) - 2f(x)f(y)| \\ &= |2f(x\sigma(y)a)f(z) + 2f(xya)f(z) - 4f(x)f(y)f(z)| \\ &\leq |f(x\sigma(y)a\sigma(z)a) + f(x\sigma(y)aza) - 2f(x\sigma(y)a)f(z)| \\ &+ |f(xya\sigma(z)a) + f(xyaza) - 2f(xya)f(z)| \\ &+ |f(x\sigma(y)a\sigma(z)a) + f(xz\sigma(a)ya) - 2f(x)f(\sigma(y)a\sigma(z))| \\ &+ |f(x\sigma(y)aza) + f(x\sigma(z)\sigma(a)\sigma(y)a) - 2f(x)f(\sigma(y)az)| \\ &+ |f(xya\sigma(z)a) + f(xz\sigma(a)\sigma(y)a) - 2f(x)f(ya\sigma(z))| \\ &+ |f(xyaza) + f(x\sigma(z)\sigma(a)\sigma(y)a) - 2f(x)f(yaz)| \\ &+ |f(x\sigma(z)a\sigma(y)\sigma(a)) + f(x\sigma(z)ay\sigma(a)) - 2f(x\sigma(z)a)f(y)| \\ &+ |f(xza\sigma(y)\sigma(a)) + f(xzay\sigma(a)) - 2f(xza)f(y)| \\ &+ |2f(x)||f(x\sigma(z)a) + f(yaz) - 2f(y)f(z)| \\ &+ |2f(x)||f(\sigma(y)a\sigma(z)) + f(\sigma(y)az) - 2f(\sigma(y))f(z)| \\ &+ 4|f(x)f(z)f(y) - f(x)f(\sigma(y))f(z)|. \end{split}$$

[116]

By virtue of inequality (3) and according to Lemma 2.1, we have

$$\begin{split} 2|f(z)||f(x\sigma(y)a) + f(xya) - 2f(x)f(y)| \\ &\leq 6\delta + 2|f(y)|\delta \\ &+ |f(x\sigma(z)a\sigma(y)\sigma(a)) + f(x\sigma(z)ay\sigma(a)) - 2f(x\sigma(z)a)f(y) \\ &+ |f(xza\sigma(y)\sigma(a)) + f(xzay\sigma(a)) - 2f(xza)f(y)| \\ &+ |2f(x)||f(ya\sigma(z)) + f(yaz) - 2f(y)f(z)| \\ &+ |2f(x)||f(\sigma(y)a\sigma(z)) + f(\sigma(y)az) - 2f(\sigma(y))f(z)|. \end{split}$$

Since a is an element in the center of S and f is unbounded then, according to Proposition 2.2 (ii), f is a solution of the equation (5).

As an immediate consequence of Theorem 2.3, we have the following result which has been the subject of [9, Corollary 1] in the case where a = e.

COROLLARY 2.4 (11, Corollary 1) Suppose that $f: S \to \mathbb{C}$ satisfies (3). Then (i) f is bounded and

$$|f(x)| \le \frac{1 + \sqrt{1 + 2\delta}}{2}, \qquad x \in S.$$

Or

(ii) f satisfies the functional equation

$$f(x\sigma(y)) + f(xy) = 2f(x)f(y), \qquad x, y \in S.$$

3. Stability of equation (2)

In this section, we will investigated the superstability of the functional equation (2) related to the sine functional equation.

Lemma 3.1

Let $\delta \geq 0$. Let S be a semigroup and let f be a complex-valued function defined on S such that

$$|f(x\sigma(y)a) - f(xya) - 2f(x)f(y)| \le \delta, \qquad x, y \in S.$$
(6)

If f is unbounded, then it is odd, i.e. $f(\sigma(x)) = -f(x)$ for all $x \in S$.

Proof. Let f be a complex-valued function defined on S which satisfies the inequality (6), then for all $x, y \in S$ we have

$$2|f(x)||f(y) + f(\sigma(y))| = |2f(x)f(y) + 2f(x)f(\sigma(y))|$$

F. Lehlou, M. Moussa, A. Roukbi, S. Kabbaj

$$= |f(x\sigma(y)a) - f(xya) - 2f(x)f(y) - f(x\sigma(y)a) + f(x\sigma(\sigma(y))a) - 2f(x)f(\sigma(y))| \leq |f(x\sigma(y)a) - f(xya) - 2f(x)f(y)| + |f(x\sigma(\sigma(y))a) - f(x\sigma(y)a) - 2f(x)f(\sigma(y))| \leq 2\delta.$$

Since f is unbounded it follows that $f(\sigma(y)) = -f(y)$ for all $y \in S$.

Proposition 3.2

Suppose that $f: S \to \mathbb{C}$ satisfies the inequality (6), then one of the assertions is satisfied

(i) f is bounded and

$$|f(x)| \le \frac{1 + \sqrt{1 + 2\delta}}{2}, \qquad x \in S.$$

Or

(ii) f satisfies the functional equation

$$f(x\sigma(y)\sigma(a)) - f(xy\sigma(a)) = 2f(x)f(y), \qquad x, y \in S.$$
(7)

Proof. (i) Using the same method of proof as in Proposition 2.2 (i), i.e. let $M = \sup |f|$, then for all $x \in S$ we have

$$|2f(x)f(x)| \le \delta + 2M,$$

from which we obtain that $2M^2 - 2M - \delta \leq 0$, hence

$$M \le \frac{1 + \sqrt{1 + 2\delta}}{2}.$$

(ii) Assume that f is unbounded and satisfies the inequality (6). For all $x, y, z \in S$, we have

$$\begin{split} 2|f(z)||f(x\sigma(y)\sigma(a)) - f(xy\sigma(a)) - 2f(x)f(y)| \\ &= |2f(x\sigma(y)\sigma(a))f(z) - 2f(xy\sigma(a))f(z) - 4f(x)f(y)f(z)| \\ &\leq |f(x\sigma(y)\sigma(a)\sigma(z)a) - f(x\sigma(y)\sigma(a)za) - 2f(x\sigma(y)\sigma(a))f(z)| \\ &+ |f(xy\sigma(a)\sigma(z)a) - f(xy\sigma(a)za) - 2f(xy\sigma(a))f(z)| \\ &+ |f(x\sigma(y)\sigma(a)\sigma(z)a) - f(xzaya) - 2f(x)f(zay)| \\ &+ |f(x\sigma(y)\sigma(a)za) - f(x\sigma(z)aya) - 2f(x)f(\sigma(z)ay)| \\ &+ |f(xy\sigma(a)\sigma(z)a) - f(xza\sigma(y)a) - 2f(x)f(\sigma(z)a\sigma(y))| \\ &+ |f(xy\sigma(a)za) - f(x\sigma(z)a\sigma(y)a) - 2f(x)f(\sigma(z)a\sigma(y))| \\ &+ |f(x\sigma(z)a\sigma(y)a) - f(x\sigma(z)aya) - 2f(x)\sigma(z)a\sigma(y))| \\ &+ |f(x\sigma(z)a\sigma(y)a) - f(x\sigma(z)aya) - 2f(x\sigma(z)a\sigma(y))| \\ &+ |f(x\sigma(z)a\sigma(y)a) - f(x\sigma(z)aya) - 2f(x\sigma(z)a)f(y)| \\ \end{split}$$

[118]

On the superstability of the cosine and sine type functional equations

$$\begin{split} &+ |f(xza\sigma(y)a) - f(xzaya) - 2f(xza)f(y)| \\ &+ |2f(y)||f(x\sigma(z)a) - f(xza) - 2f(x)f(z)| \\ &+ |2f(x)||f(\sigma(z)a\sigma(y)) - f(\sigma(z)ay) - 2f(\sigma(z))f(y)| \\ &+ |2f(x)||f(za\sigma(y)) - f(zay) - 2f(z)f(y)| \\ &+ |4f(x)f(z)f(y) + 4f(x)f(\sigma(z))f(y)|. \end{split}$$

In virtue of inequality (6) and that a belongs to the center of S and using Lemma 3.1, we have

$$2|f(z)||f(x\sigma(y)\sigma(a)) - f(xy\sigma(a)) - 2f(x)f(y)| \le 8\delta + 2(|f(y)| + 2|f(x)|)\delta.$$

Since f is unbounded, from the last inequality, we conclude that f is a solution of the equation (7).

THEOREM 3.3 Suppose that $f: S \to \mathbb{C}$ satisfies (6). Then (i) f is bounded and

$$|f(x)| \le \frac{1 + \sqrt{1 + 2\delta}}{2}, \qquad x \in S.$$

Or

(ii) f satisfies the functional equation

$$f(x\sigma(y)a) - f(xya) = 2f(x)f(y), \qquad x, y \in S.$$
(8)

Proof. (*ii*) Assume that f satisfies the inequality (6). By using Lemma 3.1 and Proposition 3.2 (*ii*). For all $x, y, z \in S$, we have

$$\begin{split} 2|f(z)||f(x\sigma(y)a) - f(xya) - 2f(x)f(y)| \\ &= |2f(x\sigma(y)a)f(z) - 2f(xya)f(z) - 4f(x)f(y)f(z)| \\ &\leq |f(x\sigma(y)a\sigma(z)a) - f(x\sigma(y)aza) - 2f(x\sigma(y)a)f(z)| \\ &+ |f(xya\sigma(z)a) - f(xyaza) - 2f(xya)f(z)| \\ &+ |f(xz\sigma(a)ya) - f(x\sigma(y)a\sigma(z)a) - 2f(x)f(\sigma(y)a\sigma(z))| \\ &+ |f(x\sigma(z)\sigma(a)ya) - f(x\sigma(y)aza) - 2f(x)f(\sigma(y)az)| \\ &+ |f(xz\sigma(a)\sigma(y)a) - f(xya\sigma(z)a) - 2f(x)f(ya\sigma(z))| \\ &+ |f(x\sigma(z)\sigma(a)\sigma(y)a) - f(xyaza) - 2f(x)f(yaz)| \\ &+ |f(x\sigma(z)\sigma(a)\sigma(y)\sigma(a)) - f(xz\sigma(a)y\sigma(a)) - 2f(x\sigma(z)a)f(y)| \\ &+ |f(xz\sigma(a)\sigma(y)\sigma(a)) - f(xz\sigma(a)ya) - 2f(xza)f(y)| \\ &+ |2f(y)||f(x\sigma(z)a) - f(xza) - 2f(x)f(z)| \\ &+ |2f(x)||f(ya\sigma(z)) - f(yaz) - 2f(y)f(z)| \\ &+ |4f(x)f(z)f(y) + 4f(x)f(\sigma(y))f(z)|. \end{split}$$

[119]

Therefore

$$\begin{aligned} 2|f(z)||f(x\sigma(y)a) + f(xya) - 2f(x)f(y)| \\ &\leq 6\delta + 2|f(y)|\delta \\ &+ |2f(x)||f(\sigma(y)a\sigma(z)) - f(\sigma(y)az) - 2f(\sigma(y))f(z)| \\ &+ |2f(x)||f(ya\sigma(z)) - f(yaz) - 2f(y)f(z)|. \end{aligned}$$

Since a is an element in the center of S and f is unbounded, then f satisfies the equation (8), which finished the proof of Theorem 3.3.

The following corollary is a particular case of Theorem 3.3.

COROLLARY 3.4 ([14]) Suppose that $f: S \to \mathbb{C}$ satisfies (6) and a = e. Then (i) f is bounded and

$$|f(x)| \le \frac{1 + \sqrt{1 + 2\delta}}{2}, \qquad x \in S.$$

Or

(ii) f satisfies the functional equation

$$f(x\sigma(y)) - f(xy) = 2f(x)f(y), \qquad x, y \in S.$$

Acknowledgement. We wish to express our thanks to the referees for useful comments.

References

- Badora, Roman. "On the stability of the cosine functional equation." Rocznik Nauk.-Dydakt. Prace Mat. 15 (1998): 5-14. Cited on 113.
- [2] Badora, Roman, and Roman Ger. "On some trigonometric functional inequalities." In Functional equations-results and advances. Vol 3 of Adv. Math. (Dordr.), 3–15, Dordrecht, Kluwer Acad. Publ., 2002. Cited on 113.
- [3] Baker, John A. "The stability of the cosine equation." Proc. Amer. Math. Soc. 80, no. 3 (1980): 411–416. Cited on 113.
- [4] Baker, John, and John W. Lawrence, and Frank A. Zorzitto. "The stability of the equation f(x+y) = f(x)f(y)." Proc. Amer. Math. Soc. 74, no. 2 (1979): 242–246. Cited on 113.
- [5] Hyers, Donald H. "On the stability of the linear functional equation." Proc. Nat. Acad. Sci. U.S.A. 27, (1941): 222–224. Cited on 113.
- [6] Kim, Gwang Hui. "On the stability of trigonometric functional equations." Adv. Difference Equ. 2007: Art. ID 90405. Cited on 114.
- [7] Kim, Gwang Hui. "On the stability of the Pexiderized trigonometric functional equation." *Appl. Math. Comput.* 203, no. 1 (2008): 99–105. Cited on 114.

[120]

- [8] Perkins, Allison M., and Prasanna K. Sahoo. "On two functional equations with involution on groups related to sine and cosine functions." *Aequationes Math.* 89, no. 5 (2015): 1251–1263. Cited on 114.
- [9] Roukbi, Ahmed, and Driss Zeglami, and Samir Kabbaj. "Hyers-Ulam stability of Wilson's functional equation." J. Math. Sci. Adv. Appl. 22 (2013): 19–26. Cited on 117.
- [10] Stetkær, Henrik. "Van Vleck's functional equation for the sine." Aequationes Math. 90, no. 1 (2016): 25–34. Cited on 114.
- [11] Stetkær, Henrik. "Kannappan's functional equation on semigroups with involution." Semigroup Forum (2015), doi: 10.1007/s00233-015-9756-7. Cited on 114.
- [12] Ulam, Stanisław M. Problems in modern mathematics. New York: John Wiley & Sons, Inc., 1964. Cited on 113.
- [13] Van Vleck, Edward B. "A functional equation for the sine." Ann. of Math. (2) 11, no. 4 (1910): 161–165. Cited on 114.
- [14] Zeglami, Driss, and Samir Kabbaj. "On the superstability of trigonometric type functional equations." *British Journal of Mathematics & Computer Science* 4, no. 8 (2014): 1146–1155. Cited on 120.

Department of Mathematics Faculty of Sciences Ibn Tofail Kenitra 14000 Morocco E-mail: lehlou16@gmail.com mohammed.moussa09@gmail.com rroukbi.a2000@gmail.com samkabbaj@yahoo.fr.

Received: May 11, 2016; final version: November 9, 2016; available online: November 29, 2016.