Annales Academiae Paedagogicae Cracoviensis

Folia 23

Studia Mathematica IV (2004)

Zbigniew Olszak

On nondegenerate umbilical affine hypersurfaces in recurrent affine manifolds

Dedicated to Professor Andrzej Zajtz on the occasion of his 70th birthday

Abstract. Let \widetilde{M} be a differentiable manifold of dimension $\geqslant 5$, which is endowed with a (torsion-free) affine connection $\widetilde{\nabla}$ of recurrent curvature. Let M be a nondegenerate umbilical affine hypersurface in \widetilde{M} , whose shape operator does not vanish at every point of M. Denote by ∇ and h, respectively, the affine connection and the affine metric induced on M from the ambient manifold. Under the additional assumption that the induced connection ∇ is related to the Levi-Civita connection ∇^* of h by the formula

$$\nabla_X Y = \nabla_X^* Y + \varphi(X)Y + \varphi(Y)X + h(X,Y)E,$$

 φ being a 1-form and E a vector field on M, it is proved that the affine metric h is conformally flat. Relations to totally umbilical pseudo-Riemannian hypersurfaces are also discussed.

In this paper, certain ideas from my unpublished report [14] (cf. also [15]) are generalized.

1. Preliminaries ([11, 10])

Let \widetilde{M} be an (n+1)-dimensional affine manifold, that is, a connected differentiable manifold endowed with an affine connection $\widetilde{\nabla}$ (only torsion-free affine connections will be considered).

Let M be an n-dimensional connected differentiable manifold immersed into \widetilde{M} and assume that there exists a transversal vector field ξ along the submanifold M. If \widetilde{X} is a vector field defined along the submanifold M (which is not tangent to M in general), by \widetilde{X}^{\top} and \widetilde{X}^{\perp} we indicate its tangential and transversal parts, respectively.

Denote by ∇ the affine connection induced on M by assuming $\nabla_X Y = (\widetilde{\nabla}_X Y)^{\top}$ for all vector fields X, Y tangent to M. In the sequel, M will be

AMS (2000) Subject Classification: Primary 53A15, Secondary 53B05, 53B30, 53C50.

called an affine hypersurface of the affine manifold \widetilde{M} . Thus, we have the Gauss equation for M

$$\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y)\xi \tag{1}$$

for all vector fields X, Y tangent to M, where h is a symmetric (0,2)-tensor field, which is called the affine fundamental form of M or the affine metric corresponding to ξ .

The affine hypersurface M is said to be nondegenerate if the affine metric h is nondegenerate. In this case, h is a Riemannian or pseudo-Riemannian metric on M. It should be mentioned that there is no relation between the affine metric h and the induced connection ∇ in general.

For the affine hypersurface M, we also have the so-called Weingarten equation

$$\widetilde{\nabla}_X \xi = -AX + \tau(X)\xi,\tag{2}$$

where A is a (1,1)-tensor field and τ is a 1-form on M. A and τ are called, respectively, the shape operator and the transversal connection form of M.

Let \widetilde{R} and R be the curvature tensor fields of the connection $\widetilde{\nabla}$ and the induced connection ∇ . Thus,

$$\widetilde{R}\big(\widetilde{X},\widetilde{Y}\,\big) = [\widetilde{\nabla}_{\widetilde{X}},\widetilde{\nabla}_{\widetilde{Y}}] - \widetilde{\nabla}_{[\widetilde{X},\widetilde{Y}]} \qquad \text{ for any vector fields } \widetilde{X},\ \widetilde{Y} \text{ on } \widetilde{M}$$

and

$$R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$$
 for any vector fileds X, Y on M .

As the integrability conditions of (1) and (2), we have the so-called Gauss and Codazzi equations

$$\widetilde{R}(X,Y)Z = R(X,Y)Z - h(Y,Z)AX + h(X,Z)AY + ((\nabla_X h)(Y,Z) + \tau(X)h(Y,Z) - (\nabla_Y h)(X,Z) - \tau(Y)h(X,Z))\xi,$$
(3)

$$\widetilde{R}(X,Y)\xi = -(\nabla_X A)Y + \tau(X)AY + (\nabla_Y A)X - \tau(Y)AX + (-h(X,AY) + h(Y,AX) + 2d\tau(X,Y))\xi.$$
(4)

In the above formulas and in the sequel, symbols X, Y, Z, \ldots denote arbitrary vector fields tangent to M if it is not otherwise stated.

Remark

Note that for an immersion of a differentiable manifold M into an affine manifold \widetilde{M} , a choice of a transversal vector field ξ provides the induced connection ∇ on M in such a way that this immersion becomes an affine immersion of (M, ∇) into $(\widetilde{M}, \widetilde{\nabla})$ in the sense of [9].

2. Umbilical affine hypersurfaces

An affine hypersurface M is said to be umbilical ([5, 8, 10]) if its shape operator A is proportional to the identity tensor at every point of the hypersurface, that is, we have $A = \rho \operatorname{Id}$, where Id is the identity tensor field and ρ is a certain function on M. Consequently, for such a hypersurface, we also have $\nabla A = d\rho \otimes \mathrm{Id}$, where d indicates the exterior derivative.

For an umbilical affine hypersurface, the Gauss and Codazzi equations (3) and (4) take the forms

$$\widetilde{R}(X,Y)Z = R(X,Y)Z - \rho h(Y,Z)X + \rho h(X,Z)Y + ((\nabla_X h)(Y,Z) + \tau(X)h(Y,Z) - (\nabla_Y h)(X,Z) - \tau(Y)h(X,Z))\xi,$$
(5)

$$\widetilde{R}(X,Y)\xi = (\rho\tau - d\rho)(X)Y - (\rho\tau - d\rho)(Y)X + 2d\tau(X,Y)\xi. \tag{6}$$

The following proposition can be found in my unpublished report [14], and we include its proof to the presented paper for completness only.

Proposition 1

For an umbilical affine hypersurface M in an affine manifold \widetilde{M} , we have

$$((\widetilde{\nabla}_{Z}\widetilde{R})(X,Y)\xi)^{\top} = \rho R(X,Y)Z$$

$$-2\rho d\tau(X,Y)Z - \rho^{2}(h(Y,Z)X - h(X,Z)Y)$$

$$-((\nabla_{Z}(\rho\tau - d\rho))(Y) - \tau(Z)(\rho\tau - d\rho)(Y))X \qquad (7)$$

$$+((\nabla_{Z}(\rho\tau - d\rho))(X) - \tau(Z)(\rho\tau - d\rho)(X))Y$$

$$+h(Y,Z)(\widetilde{R}(\xi,X)\xi)^{\top} - h(X,Z)(\widetilde{R}(\xi,Y)\xi)^{\top}.$$

Proof. Applying the equalities (1), (2) and $A = \rho \operatorname{Id}$ into the general formula

$$\begin{split} (\widetilde{\nabla}_Z \widetilde{R})(X,Y) \xi &= \widetilde{\nabla}_Z \widetilde{R}(X,Y) \xi - \widetilde{R}(\widetilde{\nabla}_Z X,Y) \xi \\ &- \widetilde{R}(X,\widetilde{\nabla}_Z Y) \xi - \widetilde{R}(X,Y) \widetilde{\nabla}_Z \xi, \end{split}$$

we find

$$(\widetilde{\nabla}_{Z}\widetilde{R})(X,Y)\xi = \widetilde{\nabla}_{Z}\widetilde{R}(X,Y)\xi - \widetilde{R}(\nabla_{Z}X,Y)\xi - \widetilde{R}(X,\nabla_{Z}Y)\xi$$
$$-h(Z,X)\widetilde{R}(\xi,Y)\xi + h(Z,Y)\widetilde{R}(\xi,X)\xi$$
$$+\rho\widetilde{R}(X,Y)Z - \tau(Z)\widetilde{R}(X,Y)\xi. \tag{8}$$

On the other hand, with the help of (6), (1) and (2), we find

$$(\widetilde{\nabla}_{Z}\widetilde{R}(X,Y)\xi - \widetilde{R}(\nabla_{Z}X,Y)\xi - \widetilde{R}(X,\nabla_{Z}Y)\xi)^{\top}$$

$$= (\nabla_{Z}(\rho\tau - d\rho))(X)Y - (\nabla_{Z}(\rho\tau - d\rho))(Y)X$$

$$- 2\rho d\tau(X,Y)Z.$$
(9)

Moreover, (5) and (6) imply

$$(\widetilde{R}(X,Y)Z)^{\top} = R(X,Y)Z - \rho h(Y,Z)X + \rho h(X,Z)Y, \tag{10}$$

$$(\widetilde{R}(X,Y)\xi)^{\top} = (\rho\tau - d\rho)(X)Y - (\rho\tau - d\rho)(Y)X. \tag{11}$$

Now, to obtain (7) it is sufficient to take the tangential parts of the both sides of (8) and use identities (9)-(11).

In the final section, we will study the case when the ambient affine manifold \widetilde{M} is a recurrent affine manifold, that is, the curvature tensor field \widetilde{R} of \widetilde{M} is non-zero and its covariant derivative $\widetilde{\nabla}\widetilde{R}$ satisfies the condition ([19, 20, 6])

$$\widetilde{\nabla}\widetilde{R} = \psi \otimes \widetilde{R} \tag{12}$$

for a certain 1-form ψ .

We will need the following result:

Proposition 2

Let M be an umbilical affine hypersurface in a recurrent affine manifold \widetilde{M} . Then the curvature tensor R of the induced connection ∇ is given by

$$\rho R(X,Y)Z = 2\rho d\tau(X,Y)Z + \rho^{2}(h(Y,Z)X - h(X,Z)Y)
+ ((\nabla_{Z}(\rho\tau - d\rho))(Y) - (\tau + \psi)(Z)(\rho\tau - d\rho)(Y))X
- ((\nabla_{Z}(\rho\tau - d\rho))(X) - (\tau + \psi)(Z)(\rho\tau - d\rho)(X))Y
- h(Y,Z)(\widetilde{R}(\xi,X)\xi)^{\top} + h(X,Z)(\widetilde{R}(\xi,Y)\xi)^{\top}$$
(13)

Proof. At first, note that (12) and (6) enable us to find

$$(\widetilde{\nabla}_Z \widetilde{R})(X, Y)\xi = \psi(Z) \big((\rho \tau - d\rho)(X)Y - (\rho \tau - d\rho)(Y)X + 2d\tau(X, Y)\xi \big).$$

Then, applying the above into (7), we obtain (13).

3. A special class of affine connections

In the next section, a geometric situation occurs in which a pseudo-Riemannian manifold (M, g) admits an affine connection ∇ which is related to the Levi-Civita connection ∇^* of the metric g by the formula

$$\nabla_X Y = \nabla_X^* Y + \varphi(X)Y + \varphi(Y)X + q(X,Y)E, \tag{14}$$

where φ is a 1-form and E a vector field on a M.

The following proposition is of our special interest in the next section.

Proposition 3

Let ∇ be an affine connection on a pseudo-Riemannian manifold (M,g), which is related to the Levi-Civita connection ∇^* of q by the formula (14). Then for the curvature tensor fields R and R* of ∇ and ∇ *, respectively, it holds

$$R^*(X,Y)Z = R(X,Y)Z - 2d\varphi(X,Y)Z - \varphi(E)(g(Y,Z)X - g(X,Z)Y) + ((\nabla_Y^*\varphi)(Z) - \varphi(Y)\varphi(Z))X - ((\nabla_X^*\varphi)(Z) - \varphi(X)\varphi(Z))Y$$

$$-g(Y,Z)(\nabla_X^*E + g(X,E)E) + g(X,Z)(\nabla_Y^*E + g(Y,E)E).$$

$$(15)$$

Proof. Let ∇^2 and ∇^{*2} denote the second covariant derivatives with respect to ∇ and ∇^* , respectively,

$$\nabla^2_{XY}Z = \nabla_X\nabla_YZ - \nabla_{\nabla_XY}Z, \qquad \nabla^{*2}_{XY}Z = \nabla^*_X\nabla^*_YZ - \nabla^*_{\nabla^*_YY}Z.$$

Then obviously

$$R(X,Y) = \nabla_{XY}^2 - \nabla_{YX}^2, \qquad R^*(X,Y) = \nabla_{XY}^{*2} - \nabla_{YX}^{*2}.$$
 (16)

At first, using (14), we find the following relation for the second covariant derivatives

$$\nabla_{XY}^{*2}Z = \nabla_{XY}^{2}Z - (\nabla_{X}^{*}\varphi)(Y)Z - \varphi(E)g(Y,Z)E - (\nabla_{X}^{*}\varphi)(Z)Y - \varphi(Y)\varphi(Z)X - g(Y,Z)(\nabla_{X}^{*}E + g(X,E)E) + SP(X,Y)Z,$$

$$(17)$$

where SP(X,Y)Z indicates an expression which is symmetric with respect to X and Y. Next, we find (15), by applying (17), (16) and the following expression for the exterior derivative

$$d\varphi(X,Y) = \frac{1}{2}((\nabla_X^*\varphi)(Y) - (\nabla_Y^*\varphi)(X)).$$

Below, we discuss two typical geometric circumstances leading to (14).

A. Weyl connections ([2, 4, 11]). A Weyl structure on a differentiable manifold M is a conformal class of pseudo-Riemannian metrics $\mathfrak C$ together with a mapping $F: \mathfrak{C} \longrightarrow \Lambda^1(M)$ such that

$$F(e^{\lambda}g) = F(g) - d\lambda$$

for any $\lambda: M \longrightarrow \mathbb{R}$ and $g \in \mathfrak{C}$, $\Lambda^1(M)$ being the space of 1-forms on M. We say that an affine connection ∇ is compatible with the given Weyl structure $\mathfrak C$ on M if

$$\nabla g + F(g) \otimes g = 0$$
 for all $g \in \mathfrak{C}$.

Given a Weyl structure \mathfrak{C} on M, there exists a unique connection compatible with this structure, and this connection can be described in the following way

$$\nabla = \nabla^* + \varphi \otimes \operatorname{Id} + \operatorname{Id} \otimes \varphi - g \otimes \varphi^{\sharp},$$

where g is a (pseudo-)Riemannian metric belonging to the conformal class, ∇^* is the Levi-Civita connection of g, $\varphi = F(g)/2$ and φ^{\sharp} is the vector field related to the 1-form φ by $g(\cdot, \varphi^{\sharp}) = \varphi(\cdot)$.

Given a pseudo-Riemannian metric g, an affine connection ∇ and a 1-form φ satisfying the condition

$$\nabla g + 2\varphi \otimes g = 0 \tag{18}$$

on a manifold M, there is a Weyl structure on M for which ∇ is compatible. Namely it is sufficient to suppose $\mathfrak{C} = [g]$ (\mathfrak{C} is the equivalence class of pseudo-Riemannian metrics conformal to g) and define $F:\mathfrak{C} \longrightarrow \Lambda^1(M)$ by $F(e^{\lambda}g) = 2\varphi - d\lambda$.

To be consistent with a certain geometrical tradition, an affine connection ∇ is called a Weyl connection for a pseudo-Riemannian metric g if there exists a 1-form φ such that the relation (18) is fulfilled. Of course, then ∇ is related to the Levi-Civita connection ∇^* of g by

$$\nabla_X Y = \nabla_X^* Y + \varphi(X)Y + \varphi(Y)X - g(X,Y)\varphi^{\sharp},$$

so that we have (14) with $E = -\varphi^{\sharp}$.

B. Projectively related connections ([2, 10, 18], cf. also [16]). Let M be a differentiable manifold endowed with an affine connection ∇ . A curve γ in M is called a ∇ -pregeodesic (or a path with respect to ∇) if $\nabla_t \dot{\gamma}(t) = \sigma(t) \dot{\gamma}(t)$ for a function σ of the parameter t. Geometrically, this condition means that the tangent line field is parallel along γ . A ∇ -pregeodesic γ can always be reparametrized so that $\nabla_s \dot{\gamma}(s) = 0$ with respect to the new parameter s. Two affine connections ∇ and ∇^* on M have the same paths if and only if there is a 1-form φ such that

$$\nabla_X Y = \nabla_X^* Y + \varphi(X) Y + \varphi(Y) X.$$

Clearly, if ∇^* is taken to be the Levi-Civita connection of a pseudo-Riemannian metric g on M, then we get (14) with E = 0.

4. Main result

Theorem 4

Let \widetilde{M} be a recurrent affine manifold with $\dim \widetilde{M} \geqslant 5$. Let M be a nondegenerate umbilical affine hypersurface in \widetilde{M} , whose shape operator A does not vanish at every point of M. Moreover, assume that the induced connection ∇ is related to the Levi-Civita connection ∇^* of h by the formula

$$\nabla_X Y = \nabla_X^* Y + \varphi(X)Y + \varphi(Y)X + h(X,Y)E, \tag{19}$$

where φ is a 1-form and E a vector field on M. Then the induced affine metric h is conformally flat.

Proof. Note that (19) is just of the form (14) with g = h, so we can apply Proposition 3. Using (13) and (15) with g = h, we conclude the following

$$\rho h(R^*(X,Y)Z,W) = \omega_0(X,Y)h(Z,W)
+ \alpha(h(Y,Z)h(X,W) - h(X,Z)h(Y,W))
+ h(Y,Z)\omega_1(X,W) - h(X,Z)\omega_1(Y,W)
+ \omega_2(Y,Z)h(X,W) - \omega_2(X,Z)h(Y,W),$$
(20)

where α is the scalar function and ω_i 's are the (0,2)-tensor fields defined by

$$\alpha = \rho^2 - \rho \varphi(E),$$

$$\omega_0(X, Y) = 2\rho(d\tau - d\varphi)(X, Y),$$

$$\omega_1(X, Y) = -h(\rho h(X, E)E + \rho \nabla_X^* E + (\widetilde{R}(\xi, X)\xi)^\top, Y),$$

$$\omega_2(X, Y) = \rho(\nabla_X^* \varphi)(Y) - \rho \varphi(X)\varphi(Y) + (\nabla_Y(\rho \tau - d\rho))(X) - (\tau + \psi)(Y)(\rho \tau - d\rho)(X).$$

The antisymmetrization of (20) with respect to Z and W gives

$$\rho h(R^*(X,Y)Z,W) = \alpha(h(Y,Z)h(X,W) - h(X,Z)h(Y,W)) + h(Y,Z)\omega(X,W) - h(X,Z)\omega(Y,W) + \omega(Y,Z)h(X,W) - \omega(X,Z)h(Y,W),$$
(21)

where

$$\omega = \frac{1}{2} \left(\omega_1 + \omega_2 \right).$$

From (21), for the Ricci tensor S^* and the scalar curvature r^* of ∇^* , we find

$$\rho S^*(Y,Z) = (n-2)\omega(Y,Z) + ((n-1)\alpha + \operatorname{Tr}_h(\omega))h(Y,Z),$$
$$\rho r^* = 2(n-1)\operatorname{Tr}_h(\omega) + n(n-1)\alpha,$$

where $\operatorname{Tr}_h(\omega)$ indicates the trace of the tensor ω with respect to the metric h. Next, from the last two equalities, one gets

$$\omega(Y,Z) = \frac{1}{n-2}\rho S^*(Y,Z) - \frac{1}{2}\left(\frac{1}{(n-1)(n-2)}\rho r^* + \alpha\right)h(Y,Z).$$

This applied to (21), gives

$$\begin{split} \rho \Big(h(R^*(X,Y)Z,W) - \frac{1}{n-2} \big(S^*(Y,Z) h(X,W) \\ - S^*(X,Z) h(Y,W) + h(Y,Z) S^*(X,W) - h(X,Z) S^*(Y,W) \big) \\ + \frac{r^*}{(n-1)(n-2)} \big(h(Y,Z) h(X,W) - h(X,Z) h(Y,W) \big) \Big) &= 0, \end{split}$$

that is, $\rho C^* = 0$, where C^* is the Weyl conformal curvature tensor of the metric h. This implies the assertion since $n = \dim M \geqslant 4$ and ρ is non-zero everywhere on M.

The case of pseudo-Riemannian hypersurfaces

Let \widetilde{M} be a connected differentiable manifold, which is endowed with a pseudo-Riemannian metric \widetilde{g} . Denote by $\widetilde{\nabla}$ the Levi-Civita connection of the metric \widetilde{g} . Let us assume that M is a pseudo-Riemannian hypersurface of \widetilde{M} , that is, M is a submanifold of codimension 1 in \widetilde{M} , on which a pseudo-Riemannian metric g is induced by $g(X,Y)=\widetilde{g}(X,Y)$ for any vector fields X,Y on M. Then the induced connection ∇ on M is just the Levi-Civita connection of g.

As it follows from [12, Theorem and Corollary 3], if $\dim \widetilde{M} \geqslant 5$, $(\widetilde{M}, \widetilde{g})$ is of recurrent curvature (more generally, of recurrent Weyl conformal curvature) and M is totally umbilical and not-totally geodesic $(g = \rho h, \rho \neq 0, h)$ being the second fundamental form), then (M,g) must be conformally flat. It is obvious that in this case, the second fundamental form h must be conformally flat too (h) becomes the affine metric when we treat the pseudo-Riemannian submanifold as the affine hypersurface).

Thus, we claim that our Theorem 4 is an extension of the above result to the case of umbilical affine hypersurfaces.

Another theorems about totally umbilical hypersurfaces in pseudo-Riemannian manifolds of recurrent curvature are presented in [3, 7, 17], and of Riemannian or pseudo-Riemannian (locally) symmetric spaces in [1, 13] and in many others papers.

References

- B.Y. Chen, L. Verstraelen, Hypersurfaces of symmetric spaces, Bull. Inst. Math. Acad. Sinica 8 (1980), 201-236.
- [2] L.P. Eisenhart, Non-Riemannian Geometry, Amer. Math. Soc. Colloq. Publ., Vol. VIII, New York, 1927 (reprinted 1986).
- [3] P. Enghiş, Hypersurfaces dans un espace Riemannien récurrent, Studia Univ. Babeş-Bolyai, Ser. Math.-Mech. 19 (1974), 23-31.
- [4] G.B. Folland, Weyl manifolds, J. Diff. Geometry 4 (1970), 145-153.

- [5] C.M. Fulton, Umbilical hypersurfaces in affinely connected spaces, Proc. Amer. Math. Soc. 19 (1968), 1487-1490.
- [6] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience Publishers, New York, 1963.
- [7] T. Miyazawa, G. Chuman, On certain subspaces of Riemannian recurrent spaces, Tensor N.S. 23 (1972), 253-260.
- [8] P.T. Nagy, On the umbilical hypersurfaces, Acta Sci. Math. (Szeged) 36 (1974), 107-109.
- [9] K. Nomizu, U. Pinkall, On the geometry of affine immersions, Math. Z. 195 (1987), 165-178.
- [10] K. Nomizu, T. Sasaki, Affine Differential Geometry, Cambridge University Press, Cambridge, 1994.
- [11] A.P. Norden, Spaces with Affine Connection (in Russian), Second edition, Izdat. Nauka, Moscow, 1976.
- [12] Z. Olszak, On totally umbilical surfaces in some Riemannian spaces, Colloq. Math. 37 (1977), 105-111.
- [13] Z. Olszak, Remarks on manifolds admitting totally umbilical hypersurfaces, Demonstratio Math. 11 (1978), 695-702.
- [14] Z. Olszak, On umbilical nondegenerate affine immersions, Reports of Institute of Mathematics, Wrocław University of Technology, No. 8, 1993 (unpublished).
- [15] Z. Olszak, On certain affine immersions into locally symmetric spaces, In: Geometry and Topology of Submanifolds, Vol. VII, World Scientific Publ., Singapore, 1995, 204-207.
- [16] W.A. Poor, Differential Geometric Structures, McGraw-Hill Book Company, New York, 1981.
- [17] M. Prvanović, Certain theorems on hypersurfaces with indetermined lines of curvature of Riemannian recurrent spaces (in Serbo-Croatian), Math. Vesnik 1(16) (1964), 81-87.
- [18] J. Schouten, Ricci Calculus, Springer-Verlag, 1954.
- [19] Y.C. Wong, Recurrent tensors on a linearly connected differentiable manifold, Trans. Amer. Math. Soc. 99 (1961), 325-334.
- [20] Y.C. Wong, Linear connexions with zero torsion and recurrent curvature, Trans. Amer. Math. Soc. 102 (1962), 471-506.

Institute of Mathematics Wrocław University of Technology Wybrzeże Wyspiańskiego 27 PL-50-370 Wrocław Poland E-mail: olszak@im.pwr.wroc.pl