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Abstract. Let M be a differentiable manifold of dimension > 5, which is
endowed with a (torsion-free) affine connection V of recurrent curvature.
Let M be a nondegenerate umbilical affine hypersurface in M , whose
shape operator does not vanish at every point of M. Denote by V and
h, respectively, the affine connection and the affine metric induced on M
from the ambient manifold. Under the additional assumption that the
induced connection V is related to the Levi-Civita connection V* of h
by the formula

VxY =VXY + p(X)Y + p(Y)X + h(X,Y)E,

¢ being a 1-form and F a vector field on M, it is proved that the
affine metric h is conformally flat. Relations to totally umbilical pseudo-
Riemannian hypersurfaces are also discussed.

In this paper, certain ideas from my unpublished report [14] (cf. also
[15]) are generalized.

1. Preliminaries ([11, 10])

Let M be an (n + 1)-dimensional affine manifold, that is, a connected diffe-
rentiable manifold endowed with an affine connection V (only torsion-free affine
connections will be considered).

Let M be an n-dimensional connected differentiable manifold immersed
into M and assume that there exists a transversal vector field £ along the
submanifold M. If X is a vector field defined along the submanifold M (which
is not tangent to M in general), by XT and X1 we indicate its tangential and
transversal parts, respectively.

_ Denote by V the affine connection induced on M by assuming VxY =
(VxY)T for all vector fields X, Y tangent to M. In the sequel, M will be
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called an affine hypersurface of the affine manifold M. Thus, we have the
Gauss equation for M

VxY = VxY +h(X,Y)¢ (1)

for all vector fields X, Y tangent to M, where h is a symmetric (0, 2)-tensor
field, which is called the affine fundamental form of M or the affine metric
corresponding to &.

The affine hypersurface M is said to be nondegenerate if the affine metric
h is nondegenerate. In this case, h is a Riemannian or pseudo-Riemannian
metric on M. It should be mentioned that there is no relation between the
affine metric h and the induced connection V in general.

For the affine hypersurface M, we also have the so-called Weingarten equa-
tion

Vx¢é = —AX +7(X)g, (2)

where A is a (1,1)-tensor field and 7 is a 1-form on M. A and 7 are called,
respectively, the shape operator and the transversal connection form of M.

Let R and R be the curvature tensor fields of the connection V and the
induced connection V. Thus,

E()?,f/) = [6)}, 6?] — 6[5(5/} for any vector fields )Z', Y on M

and
R(X,Y) =[Vx,Vy] = Vixy] for any vector fileds X, Y on M.

As the integrability conditions of (1) and (2), we have the so-called Gauss and
Codazzi equations

R(X,Y)Z = R(X,Y)Z — h(Y, Z)AX + h(X, Z)AY
+ ((Vxh)(Y, Z) + 7(X)h(Y, 2) (3)
- (VYh)(Xa Z) - T(Y)h(X> Z))fa

R(X,Y)t = —(VxA)Y +7(X)AY + (VyA)X — 7(Y)AX
+ (= h(X, AY) + h(Y, AX) + 2d7(X,Y))¢.

In the above formulas and in the sequel, symbols X, Y, Z, ... denote arbi-
trary vector fields tangent to M if it is not otherwise stated.

(4)

REMARK
Note that for an immersion of a differentiable manifold M into an affine mani-

fold M , a choice of a transversal vector field £ provides the induced connection

V on M in such a way that this immersion becomes an affine immersion of
(M,V) into (M, V) in the sense of [9].
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2. Umbilical affine hypersurfaces

An affine hypersurface M is said to be umbilical ([5, 8, 10]) if its shape
operator A is proportional to the identity tensor at every point of the hyper-
surface, that is, we have A = pId, where Id is the identity tensor field and p is
a certain function on M. Consequently, for such a hypersurface, we also have
VA =dp ®]I1d, where d indicates the exterior derivative.

For an umbilical affine hypersurface, the Gauss and Codazzi equations (3)
and (4) take the forms

R(X,Y)Z = R(X,Y)Z — ph(Y, Z)X + ph(X, Z)Y
+ (Vxh)(Y, Z) + T(X)W(Y, Z) (5)
- (th)(Xv Z) 7T(Y)h( ) ))fa

RO, Y)E = (o7 — dp)(X)Y — (pr — dp)(¥)X +2dr(X, V). (6)
The following proposition can be found in my unpublished report [14], and

we include its proof to the presented paper for completness only.

ProrosiTiON 1 .
For an umbilical affine hypersurface M in an affine manifold M, we have

(VzR)(X,Y)E)T = pR(X,Y)Z

—2pd7(X,Y)Z — p*(h(Y, 2)X — h(X, Z)Y)
— ((Vz(pr = dp)(Y) = 7(Z)(pT —dp)(Y)) X (7)
+ ((Vz(pr — dp))(X) — 7(2)(p7 — dp)(X))Y
+h(Y, Z)(R(& X)E) T — (X, Z)(R(EY)E)T.

Proof. Applying the equalities (1), (2) and A = pId into the general for-

mula
(VZR)(X,Y)¢ = VZR(X,Y)E — R(V2X,Y)¢
— R(X,VzY)¢ - R(X,Y)Vz¢,

we find

(VZR)(X,Y)é = VZR(X,Y)¢ — R(VzX,Y)E — R(X,VzY)¢
— h(Z, X)R(E,Y)E + h(Z,Y)R(E, X )¢ (8)
+pR(X,Y)Z — 7(Z)R(X,Y)E.

On the other hand, with the help of (6), (1) and (2), we find
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(VZR(X,Y)¢ — R(V2X,Y)E — R(X,V;Y)E)T

= (Vz(pr = dp))(X)Y — (Vz(pT — dp))(Y)X 9)
— 2pdr(X,Y)Z.
Moreover, (5) and (6) imply
(R(X,Y)Z)" = R(X,Y)Z — ph(Y, 2)X + ph(X, Z)Y, (10)
(R(X,Y)E)" = (pr = dp)(X)Y — (p7 — dp)(Y)X. (11)

Now, to obtain (7) it is sufficient to take the tangential parts of the both sides
of (8) and use identities (9)-(11).

__ In the final section, we will study the case when the ambient affine manifold
M is a recurrent affine manifold, that is, the curvature tensor field R of M is
non-zero and its covariant derivative VR satisfies the conditon ([19, 20, 6])

VR=v¢®R (12)

for a certain 1-form ).
We will need the following result:

PROPOSITION 2 .
Let M be an umbilical affine hypersurface in a recurrent affine manifold M.
Then the curvature tensor R of the induced connection V is given by

pR(X,Y)Z
=2pd7(X,Y)Z + p*(h(Y, 2)X — h(X, 2)Y)

+ ((Vzlpr —dp))(Y) — (T +)(2)(pr —dp)(Y)) X (13)
— ((Vz(pr = dp))(X) = (7 +9)(2)(pr — dp)(X))Y
— h(Y, Z)(R(&, X)8) " + h(X, 2)(R(&,Y)8) T

Proof. At first, note that (12) and (6) enable us to find

(VZR)(X,Y)E =(Z)((pr — dp)(X)Y — (pr — dp)(Y)X + 2dr(X,Y)§).

Then, applying the above into (7), we obtain (13).

3. A special class of affine connections

In the next section, a geometric situation occurs in which a pseudo-Rie-
mannian manifold (M, g) admits an affine connection V which is related to the
Levi-Civita connection V* of the metric g by the formula

VxY = ViY + o(X)Y + o(Y)X + g(X,Y)E, (14)

where ¢ is a 1-form and E a vector field on a M.
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The following proposition is of our special interest in the next section.

PROPOSITION 3
Let V be an affine connection on a pseudo-Riemannian manifold (M, g), which
is related to the Levi-Civita connection V* of g by the formula (14). Then for
the curvature tensor fields R and R* of V and V*, respectively, it holds
R(X,Y)Z
+((V39)(2) —o(V)p(2))X = (Vx$)(Z) — p(X)p(2))Y
(¥, 2)(ViE + g(X, E)E) + g(X, Z)(V{ B + (Y, E)E).

(15)

Proof. Let V? and V*? denote the second covariant derivatives with respect
to V and V*, respectively,

VivyZ =VxVyZ - Vy,.vZ, V& Z =ViVyZ =V v Z.
Then obviously
R(X,Y) = v%(Y - V%fx, RY(X,Y) = V;(QY - V?X : (16)

At first, using (14), we find the following relation for the second covariant
derivatives

V& Z =ViyZ — (Vi) (Y)Z — o(B)g(Y, Z)E — (Vi) (2)Y
—e(YV)p(2)X —g(Y, Z)(VX E + (X, E)E) (17)
+ SP(X,Y)Z,
where SP(X,Y)Z indicates an expression which is symmetric with respect to X

and Y. Next, we find (15), by applying (17), (16) and the following expression
for the exterior derivative

1 * *
dp(X,Y) = (Vo) (Y) = (Vy9)(X)).
Below, we discuss two typical geometric circumstances leading to (14).

A. Weyl connections ([2, 4, 11]). A Weyl structure on a differentiable
manifold M is a conformal class of pseudo-Riemannian metrics € together with
a mapping F: € — A'(M) such that

F(etg) = F(g) — dX
for any \: M — R and g € €, A'(M) being the space of 1-forms on M. We
say that an affine connection V is compatible with the given Weyl structure €
on M if
Vg+F(g®@g=0 for all g € €.

Given a Weyl structure € on M, there exists a unique connection compatible
with this structure, and this connection can be described in the following way
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V=V'4pald+Id®¢—go o,

where g is a (pseudo-)Riemannian metric belonging to the conformal class, V*
is the Levi-Civita connection of g, ¢ = F(g)/2 and ¢* is the vector field related
to the 1-form ¢ by g(-, %) = ©(-).

Given a pseudo-Riemannian metric g, an affine connection V and a 1-form
 satisfying the condition

Vg+2009=0 (18)

on a manifold M, there is a Weyl structure on M for which V is compatible.
Namely it is sufficient to suppose € = [g] (€ is the equivalence class of pseudo-
Riemannian metrics conformal to g) and define F: € — AL(M) by F(e*g) =
2¢ — dA.

To be consistent with a certain geometrical tradition, an affine connection
V is called a Weyl connection for a pseudo-Riemannian metric g if there exists
a 1-form ¢ such that the relation (18) is fulfilled. Of course, then V is related
to the Levi-Civita connection V* of g by

VY = Vi + o(X)Y + (V)X — g(X,Y)h,
so that we have (14) with £ = —¢f.

B. Projectively related connections ([2, 10, 18], cf. also [16]). Let M
be a differentiable manifold endowed with an affine connection V. A curve 7 in
M is called a V-pregeodesic (or a path with respect to V) if Vi4(t) = o (t)5(¢)
for a function o of the parameter t. Geometrically, this condition means that
the tangent line field is parallel along . A V-pregeodesic v can always be
reparametrized so that V¥(s) = 0 with respect to the new parameter s. Two
affine connections V and V* on M have the same paths if and only if there is
a 1-form ¢ such that

VxY =V5Y + o(X)Y + (V) X.

Clearly, if V* is taken to be the Levi-Civita connection of a pseudo-Riemannian
metric g on M, then we get (14) with E = 0.

L. Main result
THEOREM 4 N
Let M be a recurrent affine manifold with dim M > 5. Let M be a monde-

generate umbilical affine hypersurface in M, whose shape operator A does not
vanish at every point of M. Moreover, assume that the induced connection V
is related to the Levi-Civita connection V* of h by the formula

VXY = ViV +@(X)Y + o(Y)X +h(X,Y)E, (19)
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where ¢ is a 1-form and E a vector field on M. Then the induced affine metric
h is conformally flat.

Proof. Note that (19) is just of the form (14) with g = h, so we can apply
Proposition 3. Using (13) and (15) with g = h, we conclude the following
ph(R*(X,Y)Z,W) = wo(X,Y)h(Z, W)
+a(h(Y, Z)W(X, W) — h(X, Z)h(Y, W)
+ h(Y, Z)wi1 (X, W) — h(X, Z)w1 (Y, W)
w2 (Y, Z)(X, W) — wa (X, Z)h(Y, W),

(20)

where « is the scalar function and w;’s are the (0,2)-tensor fields defined by

a=p° —pp(E),
2

WO(Xv Y) = p(dT - d@)(Xa Y)a
wi(X,Y) = —h(ph(X,E)E + pVXE + (R(£, X)§)T,Y)
w2 (X, Y) = p(Vx)(Y) — pp(X)p(Y) + (Vy (p1 — dp))(X)

— (T +)(Y)(pr —dp)(X).
The antisymmetrization of (20) with respect to Z and W gives

B, Z)w(X, W) = (X, Z)o(Y, W) (21)
+w(Y, 2)MX, W) = w(X, Z)h(Y, W),
where
1
w== (w1 +wa).
2
From (21), for the Ricci tensor S* and the scalar curvature 7* of V*, we find
pS*(Y,2) = (n = 2)w(Y, Z) + ((n — Da + Trp(w)A(Y, Z),
pr* =2(n—1)Trp(w) + n(n — e,

where Trj,(w) indicates the trace of the tensor w with respect to the metric h.
Next, from the last two equalities, one gets

wY,Z) = ﬁpS*(Y, Z) — % (mpr* +a) Y, Z).

This applied to (21), gives
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p(h(R* (X,Y)Z,W) — 5 (S*(Y, Z)h(X, W)
—S*(X, Z)h(Y, W) + h(Y, Z)S* (X, W) — h(X, Z)S*(Y, W))

,],,*
(WY, Z)h(X, W) — h(X, Z)h(Y, W ):0,
Ty (MY DR W) — (X )by W)
that is, pC* = 0, where C* is the Weyl conformal curvature tensor of the
metric h. This implies the assertion since n = dim M > 4 and p is non-zero
everywhere on M.

5. The case of pseudo-Riemannian hypersurfaces

Let M be a connected differentiable manifold, which is endowed with a
pseudo-Riemannian metric g. Denote by V the Levi-Civita connection of
the metric g. Let us assume that M is a pseudo-Riemannian hypersurface
of M, that is, M is a submanifold of codimension 1 in M, on which a pseudo-
Riemannian metric ¢ is induced by ¢g(X,Y) = g(X,Y) for any vector fields
X, Y on M. Then the induced connection V on M is just the Levi-Civita
connection of g. . .

As it follows from [12, Theorem and Corollary 3], if dim M > 5, (M,g) is
of recurrent curvature (more generally, of recurrent Weyl conformal curvature)
and M is totally umbilical and not-totally geodesic (¢ = ph, p # 0, h being
the second fundamental form), then (M,g) must be conformally flat. It is
obvious that in this case, the second fundamental form h must be conformally
flat too (h becomes the affine metric when we treat the pseudo-Riemannian
submanifold as the affine hypersurface).

Thus, we claim that our Theorem 4 is an extension of the above result to
the case of umbilical affine hypersurfaces.

Another theorems about totally umbilical hypersurfaces in pseudo-Rieman-
nian manifolds of recurrent curvature are presented in [3, 7, 17], and of Rie-
mannian or pseudo-Riemannian (locally) symmetric spaces in [1, 13] and in
many others papers.
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