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Stability of generalized quadratic functional
equation on a set of measure zero

Abstract. In this paper we prove the Hyers-Ulam stability of the following
K-quadratic functional equation∑

k∈K

f(x + k · y) = Lf(x) + Lf(y), x, y ∈ E,

where E is a real (or complex) vector space. This result was used to demon-
strate the Hyers-Ulam stability on a set of Lebesgue measure zero for the
same functional equation.

1. Introduction

The concept of the stability for functional equations was introduced for the
first time by S.M. Ulam in 1940 [33]. Ulam started the stability by the following
question
Given a group G, a metric group (G′, d), a number δ > 0 and a mapping f : G→ G′

which satisfies the inequality d(f(xy), f(x)f(y)) < δ for all x, y ∈ G, does there
exist an homomorphism h : G → G′ and a constant γ > 0, depending only on G
and G′ such that d(f(x), h(x)) ≤ γδ for all x in G?

In 1941, Ulam’s problem for the case of approximately additive mappings was
solved by D.H. Hyers [16] on Banach spaces. In 1950 T. Aoki [3] provided a general-
ization of the Hyers theorem for additive mappings and in 1978 Th.M. Rassias [30]
generalized the Hyers theorem for linear mappings by considering an unbounded
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Cauchy difference. For more information on the concept of the stability of func-
tional equations see, for example [6, 12, 15, 17, 18, 19, 22, 24].

The first stability theorem for the quadratic and Cauchy functional equations
was proved in 1941 by Hyers-Ulam [16] and in 1978 by Rassias [30] then by F. Skof
in 1983 [32] in Banach spaces. In 1984, P.W. Cholewa [9] extended Skof’s result
to an abelian group. In 1992, S. Czerwik [13], in the spirit of Hyers-Ulam-Rassias
generalized the Skof’s theorem.

Recently, the stability problem of the quadratic Cauchy type functional equa-
tions has been investigated by a number of mathematicians, the interested reader
can refer to, for example [1, 4, 7, 8, 19, 20, 21, 22, 23, 25, 30].

The stability problems of several functional equations on a restricted domain
have been extensively investigated by a number of authors, for example [5, 11, 13,
21, 29, 31].

It is very natural to ask if the restricted domainD = {(x, y) ∈ E2 : ‖x‖+‖y‖ ≥
d} can be replaced by a much smaller subset Ω ⊂ D, i.e. a subset of measure zero
in a measurable space E.

In 2013, J. Chung in [10] answered to this question by considering the stability
of the Cauchy functional equation

f(x+ y) = f(x) + f(y)

in a set Ω ⊂ {(x, y) ∈ R2 : ‖x‖+ ‖y‖ ≥ d}, where m(Ω) = 0 and f : R→ R.
In 2014, J. Chung and J.M. Rassias [11] proved the stability of the quadratic

functional equation in a set of measure zero. In 2015, M. Almahalebi in [2], proved
the Hyers-Ulam stability for the Drygas functional equation

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y)

for all (x, y) ∈ Ω, where Ω ⊂ R2 is of Lebesgue measure zero.
Throughout this paper, let E be a real (or complex) vector space and F be

a real (or complex) Banach space.
Our aim is to prove the Hyers-Ulam stability on a set of Lebesgue measure

zero for the K-quadratic functional equation∑
k∈K

f(x+ k · y) = Lf(x) + Lf(y), x, y ∈ E, (1)

where f : E → F are applications and K is a finite subgroup of the group of
automorphisms of E and cardK = L.

These results are applied to the study of an asymptotic behaviour of this
functional equation.

2. Notations and preliminary results

In this section, we need to introduce some notions and notations.
A function A : E → F between two vector spaces E and F is said to be

additive if A(x + y) = A(x) + A(y) for all x, y ∈ E. In this case, it is easily seen
that A(rx) = rA(x) for all x ∈ E and all r ∈ Q.
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Let k ∈ N∗ \ {1} and A : Ek → F be a function, then we say that A is
k-additive if it is additive with respect to each variable. In addition, we say that
A is symmetric if

A(xσ(1), xσ(2), . . . , xσ(k)) = A(x1, x2, . . . , xk),

whenever x1, x2, . . . , xk ∈ E and σ is a permutation of (1, 2, . . . , k).
Let k ∈ N∗\{1} and A : Ek → F be symmetric and k-additive and let Ak(x) =

A(x, x, . . . , x) for x ∈ E, then Ak(rx) = rkAk(x), whenever x ∈ E and r ∈ Q.
In this way, a function Ak : E → F which satisfies for all λ ∈ Q and x ∈ E

Ak(λx) = λkAk will be called a rational-homogeneous form of degree k (assuming
Ak 6≡ 0).

A function p : E → F is called a generalized polynomial (GP) function of
degree m ∈ N if there exist a0 ∈ E and a rational-homogeneous form Ak : E → F
(for 1 ≤ k ≤ m) of degree k, such that

p(x) = a0 +
m∑
k=1

Ak(x)

for all x ∈ E.
Let FE denote the vector space (over a field K) consisting of all maps from E

into F . For h ∈ E, define the linear difference operator ∆h on FE by

∆hf(x) = f(x+ h)− f(x)

for f ∈ FE and x ∈ E. Notice that these difference operators commute (∆h1∆h2 =
∆h2∆h1 for all h1, h2 ∈ E) and if h ∈ E and n ∈ N, then ∆n

h the n-th iterate of
∆h satisfies

∆n
hf(x) =

n∑
k=0

(−1)n−k
(
n

k

)
f(x+ kh)

for all f ∈ FE and all x, h ∈ E.

3. Hyers-Ulam stability of (1)

The Hyers-Ulam stability of (1) was proved by M. Ait Sibaha, B. Bouikhalene
and E. Elqorachi in [1], A. Charifi, B. Bouikhalene and E. Elqorachi in [7] and
R. Łukasik in [26]. The purpose of this section is to establish this stability by
another approach, the approach based on results by Mazur and Orlicz [27] and by
Djoković [14].

Lemma 3.1
Let E be a vector space, F a Banach space, K a finite subgroup of the group of
automorphisms of E and let L = cardK. Let moreover f : E → F satisfy∥∥∥∥∑

k∈K

f(x+ k · y)−
∑
k∈K

f(k · y)− Lf(x)
∥∥∥∥ ≤ δ, x, y ∈ E. (2)
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Then
‖∆L

v f(u)− g(v)‖ ≤ 2L

L
δ, u, v ∈ E,

where g(x) = −
∑L−1
i=0 (−1)L−i

∑(L
i )
j=1 f(

∑
k∈Kij

k · x) and Kij ⊂ K are pairwise
different sets such that cardKij = L− i for j ∈ {1, . . . ,

(
L
i

)
}, i ∈ {0, . . . , L}.

Proof. We have

(L
i )∑

j=1

∑
µ∈K

f

( ∑
k∈Kij

µk · x
)

= L

(L
i )∑

j=1
f

( ∑
k∈Kij

k · x
)
, x ∈ E. (3)

Since for all β ∈ K,

βKij = Kik, i ∈ {0, . . . , L}, j, k ∈
{

1, . . . ,
(
L

i

)}
.

Now, fix u, v ∈ E and let

xi = u+ iv, yij =
∑
k∈Kij

k · v, i ∈ {0, . . . , L}, j ∈
{

1, . . . ,
(
L

i

)}
.

For all β ∈ K, i ∈ {0, . . . , L}, j ∈
{

1, . . . ,
(
L
i

)}
we study two different cases.

Case 1: β−1 ∈ Kij .
In this case, we have i 6= L. So let k ∈ {1, . . . ,

(
L
i+1
)
} be such that Kij =

K(i+1)k ∪ {β−1}. Thus, we have

xi + βyij = u+ iv +
∑
l∈Kij

βl · v = u+ (i+ 1)v +
∑

l∈K(i+1)k

βl · v = xi+1 + βy(i+1)k.

Case 2: β−1 6∈ Kij .
Since i 6= 0, let k ∈ {1, . . . ,

(
L
i−1
)
} be such that K(i−1)k = Kij∪{β−1}. By a similar

calculation to the previous case, we obtain

xi + βyij = xi−1 + βy(i−1)k.

Consequently, we get

L−1∑
i=0

(−1)L−i
(L

i )∑
j=1

∑
µ∈K

f(xi + µ · yij) = 0. (4)

Now, in view of (2), (3) and (4) we have

‖L∆L
v f(u)− Lg(v)‖

=
∥∥∥∥L L∑

i=0
(−1)L−i

(
L

i

)
f(u+ iv) + L

L−1∑
i=0

(L
i )∑

j=1
(−1)L−if

( ∑
k∈Kij

k · v
)∥∥∥∥
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=
∥∥∥∥L L∑

i=0
(−1)L−i

(
L

i

)
f(u+ iv) +

L−1∑
0

(L
i )∑

j=1

∑
µ∈K

(−1)L−if
( ∑
k∈Kij

µk · v
)∥∥∥∥

=
∥∥∥∥ L∑
i=0

(−1)L−i
(L

i )∑
j=1

[∑
µ∈K

f(xi + µ · yij)− Lf(xi)−
∑
µ∈K

f(µ · yij)
]∥∥∥∥

≤ 2Lδ

which ends the proof.

Theorem 3.2
Let E be a vector space, F a Banach space, K a finite subgroup of the group of
automorphisms of E and let L = cardK. Let moreover f : E → F satisfy∥∥∥∥∑

k∈K

f(x+ k · y)−
∑
k∈K

f(k · y)− Lf(x)
∥∥∥∥ ≤ δ, x, y ∈ E. (5)

Then there exists a unique (GP) function p : E → F of degree at most L such that
p is a solution of (1) and

‖f(x)− f(0)− p(x)‖ ≤ 2L+1

L
δ.

Proof. According to (5), we have

‖∆L
v f(u)− g(v)‖ ≤ 2L

L
δ, u, v ∈ E. (6)

Replacing u by u+ v, we get

‖∆L
v f(u+ v)− g(v)‖ ≤ 2L

L
δ. (7)

Using (6) and (7), we obtain

‖∆L+1
v f(u)‖ ≤ 2L+1

L
δ.

Then by [19, Theorem II] there exists a (GP) function q : E → F of degree at most
L such that

‖f(x)− q(x)‖ ≤ 2L+1

L
δ. (8)

For 0 ≤ k ≤ L, there is a rational-homogeneous form Ak : E → F of degree k such
that

q(x) = f(0) +
m∑
k=1

Ak(x). (9)
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By (5) and (8), we get∥∥∥∥∑
k∈K

q(x+ k · y)− Lq(x)− Lq(y)
∥∥∥∥

≤
∥∥∥∥∑
k∈K

(q(x+ k · y)− f(x+ k · y))
∥∥∥∥+

∥∥∥∥∑
k∈K

(q(k · y)− f(k · y))
∥∥∥∥

+ ‖L(q(x)− f(x))‖+
∥∥∥∥∑
k∈K

f(x+ k · y)−
∑
k∈K

f(k · y)− Lf(x)
∥∥∥∥

≤ 2L+1 · δ + 2L+1 · δ + 2L+1 · δ + δ

≤ (3 · 2L+1 + 1)δ

(10)

for all x, y ∈ E. Now (9) says, in light of (10), that for all x, y ∈ E,∥∥∥∥− Lf(0) +
L∑
j=1

∑
k∈K

(
Aj(x+ k · y)−Aj(k · y)−

L∑
j=1

Aj(x)
)∥∥∥∥

≤ (3 · 2L+1 + 1)δ.

(11)

Replacing x by rx and y by ry in (11), where r ∈ Q, we conclude that∥∥∥∥− Lf(0) +
L∑
j=1

rj
∑
k∈K

(
Aj(x+ k · y)−

L∑
j=1

rjLAj(x)

−
∑
k∈K

L∑
j=1

rjAj(k · y)
)∥∥∥∥

≤ (3 · 2L+1 + 1)δ

(12)

for all x, y ∈ E. By continuity, (12) holds for all real r and all x, y ∈ E. Now
suppose that φ : F → R is a continuous linear functional. Then by (12), we get∥∥∥∥− φ(Lf(0)) +

L∑
j=1

rjφ

(∑
k∈K

(
Aj(x+ k · y)

−
L∑
j=1

LAj(x)−
∑
k∈K

L∑
j=1

Aj(y)
))∥∥∥∥

≤ (3 · 2L+1 + 1)δ‖φ‖

for all x, y ∈ E and all r ∈ R.
Since a real polynomial function is bounded if and only if it is constant, from

the last inequality we surmise that, for 1 ≤ j ≤ L,

φ

(∑
k∈K

(
Aj(x+ k · y)− LAj(x)−

∑
k∈K

Aj(k · y)
))

= 0
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for all x, y ∈ E. As φ : F → R is arbitrary continuous linear functional, by the
Hahn-Banach theorem,∑
k∈K

(
Aj(x+ k · y)− LAj(x)−

∑
k∈K

Aj(k · y)
)

= 0, x, y ∈ E, 1 ≤ j ≤ L. (13)

Let p(x) = q(x)− q(0), then p is a (GP) function of degree at most L and by (13)
it is a solution of equation (1)∑

k∈K

(
p(x+ k · y)− Lp(x)−

∑
k∈K

p(k · y)
)

= 0, x, y ∈ E. (14)

Finally, by using (8) and (14), we get

‖f(x)− f(0)− p(x)‖ < 2L+1

L
δ, x ∈ E.

Let p′ be another (GP) function solution of (1) of degree at most L such that

‖f(x)− f(0)− p′(x)‖ < 2L+1

L
δ, x ∈ E.

Then, we get ‖p(x) − p′(x)‖ < 2L+2

L δ, x ∈ E. A similar proof to that in [19,
Theorem III] yields p = p′.

Theorem 3.3
Let E be a vector space, F a Banach space, K a finite subgroup of the group of
automorphisms of E and let L = cardK. Let f : E → F be a function satisfying∥∥∥∥∑

k∈K

f(x+ k · y)− Lf(x)− Lf(y)
∥∥∥∥ ≤ δ, x, y ∈ E. (15)

Then there exists a unique (GP) function p : E → F of degree at most L such that
p is a solution of (1) and

‖f(x)− f(0)− p(x)‖ ≤ 2L+3

L
δ, x ∈ E.

Proof. By posing f ′ = f − f(0), it is easy to show that f ′ satisfies∥∥∥∥∑
k∈K

f ′(x+ k · y)− Lf ′(x)− Lf ′(y)
∥∥∥∥ ≤ 2δ, x, y ∈ E. (16)

First, we observe that ∥∥∥∥Lf ′(y)−
∑
k∈K

f ′(k · y)
∥∥∥∥ ≤ 2δ. (17)

From the above inequalities (16) and (17), we have∥∥∥∥∑
k∈K

f ′(x+ k · y)−
∑
k∈K

f ′(k · y)− Lf ′(x)
∥∥∥∥ ≤ 4δ.

By Theorem 3.2, the result follows.
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4. Stability of equations (1) on a set of measure zero

Let E be a vector space and F be a real (or complex) Banach space. For given
x, y, t ∈ E and a finite subgroup K of the group of automorphisms of E, we define

Px,y,t = {(x, t), (x+ k′ · t, y), (x+ k · y, t); ∀k, k′ ∈ K}.

Let Ω ⊂ E2. Throughout this section we assume that Ω satisfies the condition:
For given x, y ∈ E there exists t ∈ E such that

Px,y,t ⊂ Ω. (C)

In the following, we prove the Hyers-Ulam stability theorem for the generalized
quadratic functional equation (15) in Ω.

Theorem 4.1
Let δ ≥ 0 and suppose that E is a vector space and F is real (or complex) Banach
space. If f : E → F satisfies∥∥∥∥∑

k∈K

f(x+ k · y)− Lf(x)− Lf(y)
∥∥∥∥ ≤ δ

for all (x, y) ∈ Ω, then there exists a unique generalized polynomial (GP) q : E → F
of degree at most L such that

‖f(x)− q(x)‖ ≤ 3 · 2L+3

L
δ, x ∈ E. (18)

Proof. Let
D(x, y) =

∑
k∈K

f(x+ k · y)− Lf(x)− Lf(y).

Since Ω satisfies (C), for given x, y ∈ E, there exists t ∈ E such that

‖D(x+ k · y, t)‖ ≤ δ, ‖D(x+ k′ · t, y)‖ ≤ δ and ‖D(x, t)‖ ≤ δ.

Thus, we have

L

[∑
k∈K

f(x+k · y)− Lf(x)− Lf(y)
]

=
[∑
k∈K

(
Lf(x+ k · y) + Lf(t)−

∑
k′∈K

f(x+ k · y + k′ · t)
)]

+
[ ∑
k′∈K

(
− Lf(x+ k′ · t)− Lf(y) +

∑
k∈K

f(x+ k′ · t+ k · y)
)]

+ L

[ ∑
k′∈K

f(x+ k′ · t)− Lf(x)− Lf(t)
]

= −
∑
k∈K

D(x+ k · y, t) +
∑
k′∈K

D(x+ k′ · t, y) + LD(x, t).
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Using the triangle inequality, we get

L

∥∥∥∥∑
k∈K

f(x+ k · y)− Lf(x)− Lf(y)
∥∥∥∥ ≤ 3Lδ, x, y ∈ E.

This implies that∥∥∥∥∑
k∈K

f(x+ k · y)− Lf(x)− Lf(y)
∥∥∥∥ ≤ 3δ, x, y ∈ E.

Next, according to Theorem 3.3, there exists a unique generalized polynomial (GP)
q : E → F of degree at most L such that

‖f(x)− q(x)‖ ≤ 3 · 2L+3

L
δ, x ∈ E.

This completes the proof.

Corollary 4.2
Suppose that f : E → F satisfies the functional equation∑

k∈K

f(x+ k · y) = Lf(x) + Lf(y)

for all (x, y) ∈ Ω. Then (18) holds for all x, y ∈ E.

Corollary 4.3
Let ε ≥ 0 be fixed. Suppose that f : E → F satisfies the functional inequality

‖f(x+ y) + f(x+ σ(y))− 2f(x)− 2f(y)‖ ≤ ε, x, y ∈ Ω,

where σ : E → F is an involution. Then there is a unique quadratic Q : E → F ,
and an additive A : E → F such that A(σ(x)) = −A(x), x ∈ E and

‖f(x)− f(0)−A(x)−Q(x)‖ ≤ 16ε, x ∈ E.

Proof. By taking L = 2 and K = {I, σ} in Theorem 4.1, there exists a unique
generalized polynomial (GP) p(x) = f(0)−A(x)−Q(x) of degree at most 2 which
is a solution of the following functional equation

f(x+ y) + f(x+ σ(y))− 2f(x)− 2f(y) = 0, x, y ∈ E.

We use [Theorem 6, [25]] to complete the proof.

5. Applications

In this section, we construct a set of measure zero satisfying the condition (C)
for E = R. From now on, we identify R2 with C. Using K = {I}, respectively
K = {I,−I} for R. The following lemma is a crucial key of our construction [28,
Theorem 1.6].
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Lemma 5.1
The set R of real numbers can be partitioned as R = F ∪K, where F is of the first
Baire category, i.e. F is a countable union of nowhere dense subsets of R, and K
is of Lebesgue measure zero.

The following lemma was proved by J. Chung and J.M. Rassias in [10] and [11].

Lemma 5.2
Let K be a subset of R of measure zero such that {K = R\{K} is of first Baire
category. Then, for any countable subsets U ⊂ R, V ⊂ R\{0} and M > 0, there
exists t ≥M such that

U + tV = {u+ tv : u ∈ U, v ∈ V } ⊂ K. (19)

In the following theorem, we give the construction of a set Ω of Lebesgue
measure zero.

Theorem 5.3
Let Ω = exp(−π6 i)(K ×K) be the rotation of K ×K by π

6 , i.e.

Ω =
{

(p, q) ∈ R2 :
√

3
2 p− 1

2q ∈ K,
1
2p+

√
3

2 q ∈ K
}
,

where K is a subset of R of measure zero such that {K = R\{K} is of the first
Baire category. Then Ω satisfies the condition (C) and is of two-dimensional
Lebesgue measure zero.

Proof. By the construction of Ω, the condition (C) is equivalent to the fact that
for every x, y ∈ R, there exists t ∈ R such that

exp
(−π

6 i
)
Px,y,t ⊂ K ×K.

The inclusion (19) is equivalent to

Sx,y,t :=
{√

3
2 u− 1

2v,
1
2u+

√
3

2 v : (u, v) ∈ Px,y,t
}
⊂ K.

It is easy to check that the set Sx,y,t is contained in a set of form U + tV . We
consider two cases

(i) K = {I}. Then

U =
{√

3
2 x; 1

2x;
√

3
2 x− 1

2y; 1
2x+

√
3

2 y;
√

3
2 (x+ y); 1

2(x+ y)
}
,

V =
{
± 1

2 ;
√

3
2

}
.

In this case we find the functional equation of Cauchy

f(x+ y) = f(x) + f(y).
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(ii) K = {I,−I}. Then

U =
{√

3
2 x; 1

2x;
√

3
2 x− 1

2y; 1
2x+

√
3

2 y;
√

3
2 (x± y); 1

2(x± y)
}
,

V =
{
± 1

2 ;±
√

3
2

}
.

In this case we find the quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y).

By Lemma 5.2, for given x, y ∈ R and M > 0 there exists α ≥M such that

Sx,y,t ⊂ U + tV ⊂ K.

Thus, Ω satisfies (C). This completes the proof.

Corollary 5.4
Let d > 0 and Ωd := {(x, y) ∈ Ω : |x|+ |y| ≥ d}. Then, Ωd satisfies (C).

As a consequence of Theorem 4.1 and corollary, we obtain the asymptotic
behaviour of f satisfying the asymptotic condition,then there exists a sequence δn
monotonically decreasing to 0 such that∥∥∥∥∑

k∈K

f(x+ k · y)− Lf(x)− Lf(y)
∥∥∥∥→ 0, as ‖x‖+ ‖y‖ → ∞. (20)

Corollary 5.5
Suppose that f : R → F satisfies the condition (20). Then, f is a generalized
quadratic functional.

Proof. The condition (20) implies that, for each n ∈ N, there exists dn > 0 such
that ∥∥∥∥∑

k∈K

f(x+ k · y)− Lf(x)− Lf(y)
∥∥∥∥ ≤ δn (21)

for all (x, y) ∈ Ωdn
. From previous corollary, Ωdn

:= {(x, y) ∈ Ω : |x|+ |y| ≥ dn}
satisfies (C). Thus, by Theorem 4.1, there exists a unique generalized polynomial
qn : R→ F

‖f(x)− qn(x)‖ ≤ 3 · 2L+3

L
δn (22)

for all x ∈ R. By replacing n ∈ N by m ∈ N in (22) and using the triangle
inequality, we have

‖qn(x)− qn1(x)‖ ≤ 3 · 2L+3

L
δn + 3 · 2L+3

L
δm ≤ 6 · 2L+3

L
(23)

for all x ∈ R. For all n1, n ∈ N and x ∈ R, we have necessarily qn = qn1 + qn(0)−
qn1(0). Since qn(0) = qn1(0) = 0, we have in (23) qn = qn1 . Now, letting n → ∞
in (22), we get the result. This completes the proof.
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If we define Ω ⊂ R2n as an appropriate rotation of 2n-product K2n of K, then
Ω has 2n-dimensional measure zero and satisfies (C). Consequently, we obtain the
following.

Corollary 5.6
Let F be a Banach space. Suppose that f : Rn → F satisfies the functional inequal-
ity ∥∥∥∥∑

k∈K

f(x+ k · y)− Lf(x)− Lf(y)
∥∥∥∥ ≤ ε

for all (x, y) ∈ Ω. Then there exists a unique quadratic mapping q : Rn → F such
that

‖f(x)− q(x)‖ ≤ 3 · 2L+3

L
ε

for all x ∈ Rn.
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