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Abstract. The aim of this paper is to study the superstability problem of
the d’Alembert type functional equation

fea+y+2)+flz+y+oz)+ flea+o(y)+2)+ flo(x)+y+2)
=4f(2)f(y)f(2)

for all z,y,z € G, where G is an abelian group and o: G — G is an endo-
morphism such that o(o(z)) = « for an unknown function f from G into C
or into a commutative semisimple Banach algebra.

1. Introduction

In 1940, Ulam [19] gave a wide ranging talk before the Mathematics Club
of the University of Wisconsin in which he discussed a number of important un-
solved problems and among those the following question concerning the stability
of homomorphisms

Let G1 be a group and let (Ga,d) be a metric group. Given § > 0, does there
exist € > 0 such that if a mapping h: G1 — G satisfies the inequality

d(h(zy), h()h(y)) < 6
for all x,y € G1, then there is a homomorphism a: G1 — Go with
d(h(z),a(z)) < €

forallz € G1?
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In 1941, Hyers [10] considered the case of approximately additive mappings
f: E — F, where F and F' are Banach spaces and f satisfies Hyers inequality

[f(z+y) = f(x) = fy)l <e

for all z,y € E and € > 0. He proved that then there exists a unique additive
mapping 1: E — F satisfying

1f(z) = T(x)]| <e

for all x € E.

The above result was generalized by Bourgin [7] and Aoki [I] in 1949 and
1950. In 1978 and 1982, Hyers’ result was improved by Th.M. Rassias [16] and
J.M. Rassias [15]. Namely, the condition bounded by the constant was replaced by
the condition bounded by two variables. Thereafter it was improved by Gavruta [9]
to the condition bounded by the function.

In 1979, Baker et al. [4] and Bourgin [7] introduced that if f satisfies the
inequality |E1(f) — Ea(f)| < €, then either f is bounded or E;(f) = E2(f). This
concept is now known as the superstability. In 1980, the superstability of the
cosine functional equation (also called the d’Alembert functional equation)

fle+y) + fl@e—y) =2f(=)f(y) (A)

was investigated by Baker [5]; also by Badora [2] in 1998, and Badora and Ger [3]
in 2002 under the condition |f(z +y) + f(z —y) — 2f () f(y)| < €, @(z) or p(y),
respectively. Also the stability of the d’Alembert functional equation is founded
in papers [6] 1T, 13| [18]. In [8] J. Brzdek et al. gave the recent development of
the conditional stability of the homomorphism equation. Recently, G.H. Kim [12]
investigated the stability of the generalized d’Alembert type functional equation
as follows

fle+y) + fle+oy) =2f(2)f(y), (Af)

where f is an unknown function. In [I4] H.M. Kim, G.H. Kim and M.H. Han
proved the superstability of approximate d’Alembert harmonic functions

faty+2)+flety—2)+fl-—y+2)+fly+z-2)=4f(2)f(y)f(2)

on an abelian group and on a commutative semisimple Banach algebra.

In this paper, let (G, +) be an abelian group, C the field of complex numbers, R
denote the set of real numbers, and let o be an endomorphism of G with o (o (z)) =
z for all z € G.

The aim of this paper is to investigate the superstability problem of the gen-
eralized d’Alembert type functional equation as follows

flety+2)+ flaty+o(z)+ flzt+oly) +2)+ flolz)+y+2)
=4f(2)f(y)f(z)

for all z,y, z € G, where G is an abelian group and f: G — C. Moreover, we extend
all superstability results for equation to the superstability on the commutative

semisimple Banach algebra.
In the special case, if o(xz) = —z we obtain the result that is in [I4].

(1)
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2. Superstability of equation ([1)

In this section, we will investigate the superstability of . The functional
equation is connected with the d’Alembert functional equation (Af) as fol-
lows [12].

LEMMA 2.1
Let f be a complez-valued function on an abelian group G such that f(0) > 0.

Then, [ satisfies on G if and only if [ satisfies (Ay) on G.
Proof. Assume that f satisfies (A¢) on G. Then, we have

fatyt+2)+ flety+o(z)+flatoly) +2)+ flo(z) +y+2)
=2f(z+y)f(2) + flx+o(y) +2) + flo(z+o(y)) + 2)
=2f(x+y)f(z) +2f(z+0v))f(2)
=2f(z)(flz+y)+ f(z +a(y))
=4f(x)f(y)f(2)
for all z,y,z € G.
For the converse, we consider f satisfying on G. Puttingx =y=2=0
in (1) and as f(0) > 0, we get f(0) = 1. Setting y = z = 0 in (), we obtain
flo(z)) = f(x)

for all x € G. Next, taking z := 0 in , we get

2f(x+y)+2f(x+0oy) = fle+y) + flz+y)+ fla+o(y)+ flo(z+o(y))
=fl@+y)+fl@t+y) +fl@+oly)+ flol@)+y)
=4f(x)f(y)f(0)

for all z,y € G. Then, f satisfies the d’Alembert functional equation (A ) on G.
This completes the proof.

THEOREM 2.2
Let f: G — C be a function and let o: G — [0, +o0] satisfy the inequality
flaty+2)+ fle+y+o(z)+ fla+oly) +2)
+ flo(x) +y+2) —4f(2)f(y) f(2)| (2)
< ¢(z)
for all x,y,z € G. Then, either f is bounded or f satisfies the functional equa-

tion .

Proof. If f is unbounded, then we can choose a sequence {y, }nen in G such that

lim [f(y)| = Tim [f(o(ya))] = lim_|F(o(~ya))| = o0

n—o0

and

|f (yn) f(o(=yn))| > 1.
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Taking y = y, and z = o(—y,) in (2), we get

|f(@+yn —o(yn)) + fo(@) +yn — o(yn)) = f(2)(4f (yn) f(0(=yn)) — 2)| < o(x)
for all x € G. Then
f@+yn—o(yn)) + f(0(@) + yn — o(yn))
4f (yn)f(0(=yn)) — 2
< p()
=14 (yn) f(o(=yn)) — 2|
for all x € G. Passing to the limit as n — oo in , we obtain the following
. f@tyn—o(yn)) + f(o(@) + yn — o(yn))
flo) = g, 1 () Flo( ) 2
for all x € G. From 7 we will see that

flo(z)) = f(z) (5)

— /(=)

for all x € G.
Now, we will apply (3|) to derive functional equation . Putting y, —o(yn)+y
in the place of y in (2), we get
|[f(x+yn—0on) +y+2)+ f@+yn—o(yn) +y +0(2))
+f@tolyn —olyn) +y) +2) + flo(@) +yn —o(yn) +y +2)
—4f (@) f(yn — o (yn) + y) f(2)]
< ¢(z)
for all z,y, z € G. Putting y,, — o(y,) + o(y) in the place of y in , we obtain
|f(@+yn —0(yn) +0(y) +2) + [z + yn — o(yn) + o(y) + 0(2))
T f@+o(yn—oyn) +0(y)) +2) + f(o(@) +yn —o(yn) + o(y) + 2)
—4f (@) f(yn — o (yn) + () f(2)]
< ¢(z)
for all z,y, z € G. Combining @ and @ gives
|f(@+yn —a(yn) +y+2) + fl@+0(yn — o(yn) + (y)) +2)

(6)

(7)

+ f(@+yn —0o(yn) +y+0(2) + f(0(®) + yn —0(yn) +o(y) + 2)
+ f(@+0o(Yn —0(yn) +y) +2) + f(x +yn —0(yn) +0(y) + 2) ®)
+ flo(x) +yn —0(yn) +y+2) + flx 4+ yn — 0(yn) +0(y) +0(2))

(
(y) +
—4f (@) f(2)(f (Yn — o (yn) +y) + F(Yn — o (yn) + 0(y)))]
< 2¢(x)
for all z,y, z € G. Using the fact and , we see that

i JE Y+ 2t yn —0yn)) + flo(x) +yn — 0(yn) +0(y) +0(2))
n—c0 Af(yn)f(o(=yn)) — 2

=fl@z+y+2)
for all x,y, z € G. Similarly,
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f@+yn—0oyn) +y+0(2) + f(0(2) + yn — 0(yn) + o(y) + 2)

S 17 () (o (=) — 2
= f(z+y+o(2)),
i J& A+ 0n = 0(yn) +y) +2) + f(2 +yn —0(yn) +(y) +2)
n—+00 4f(yn>f(0(_yn)) -2
=flz+o(y) +2)
and
i 10@) Y0 —0(yn) +y +2) + f@+ Yy —0lyn) + o(y) + 0(2))
n—00 4f(yn)f(0(_yn)) -2

= flo(x) +y+2)
for all x,y, z € G. Therefore, dividing inequality (8) by [4f(y»)f(o(—yn)) —2| and
taking the limit as n — oo, we get
f@+y+2)+fl@et+y+o@z)+fz+oly)+2)+ flol@) +y+2)
=4f(x)f(y)f(2)
for all ,y, z € G. This completes the proof.
COROLLARY 2.3
Let f: G — C be a function and ¢: G — [0, +00[ satisfy the inequality
fx+y+z)+ flety+o(x)+fl@toly)+2)
+ flo(z) +y+2) —4f(2)f(y) f(2)]
< @(y) orp(z)
for all x,y,z € G. Then, either f is bounded or f satisfies the functional equa-
tion .
Proof. Similarly as in the proof of Theorem we conclude the desired result.
COROLLARY 2.4 ([14, Theorem 2.2])
Let f: G — C be a function and ¢: G — [0, +00[ satisfy the inequality
l[fz+y+2)+flz+y—2)+ fla—y+z)
+fly+z—x)—4f(x)f(y)f(2)]
< p(x) or p(y) or ¢(2)
forall x,y,z € G. Then, either f is bounded or f satisfies the functional equation
faety+2)+flzty—2)+f@—y+2)+ fly+z—2)=4f(2)f(y)f(z) on G.
Proof. It suffices to take o(x) = —z in Theorem [2.2
COROLLARY 2.5
Let f: G — C be a function and ¢: G — [0, +00[ satisfy the inequality
[f(@+y+2) = f@)f(W)f(2)] < ) or o(y) or ¢(2)
for allz,y,z € G. Then, either f is bounded or f satisfies the functional equation
fl@+y+2z)=fx)f(y)f(z) on G.
Proof. Tt suffices to take o(x) = x in Theorem [2.2
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3. Extension to Banach algebra

In this section, let (G,+) be an abelian group and (E, | - ||) be a commutative
semisimple Banach algebra. All the results in Section 2 can be extended to the
superstability of on the commutative semisimple Banach algebra.

THEOREM 3.1
Let f: G — E be a function and ¢: G — [0, +00] satisfy the inequality

[flz+y+2)+ fle+y+az)+ flz+aly)+2)
+ flo(z) +y+2) —4f(2) f(y) f(2)]] 9)
< o(x)

forallxz,y,z € G. For an arbitrary linear multiplicative functional x* € E*, if the
superposition x* o f is unbounded, then f satisfies .

Proof. Suppose that @ holds, and fix an arbitrary linear multiplicative functional
x* € E*. Let ||z*|| = 1 without loss of generality. Then, for every z,y,z € G, we
get

pla) > [[fe+y+2)+ fla+y+o(2) + fle+oly) +2)
+flo(@) +y+2) —4f (@) f(y) )]
= sup [Z(fle+y+2)+flz+y+o(z)+flz+oy)+2)

llzll=1

+flo(@) +y+2) —4f (@) f () ()
@ e filx+y+2)+ (@ o f)lx+y+o(2)+ (@ o f)lz+o(y) +2)
+ (&7 o f)(o(x) +y+2) —4(z" o f)(z)(x" o f)(y)(z" o £)(2))]

which states that the superposition z* o f: G — C yields a solution of the in-
equality , since the superposition z* o f is unbounded, Theorem shows
that the superposition z* o f is a solution of equation . In other words, bear-
ing the linear multiplicativity of z* in mind, for all x,y,z € G, the difference
D,f(x,y,2): G x G x G — C falls into the kernel of z*, where D, f(z,y,z2) :=
e+t )+ faty+o(=)+ fla+oly) +2)+ Fo@) +y+2)—4f @) ) f(2).
Therefore, in view of the unrestricted choice of z*, we infer that

D, f(z,y,z ﬂ{Ker x* : a" is a linear multiplicative member of E*}

for all z,y,z € G. Since the algebra E has been assumed to be semisimple, the
last term of the above formula coincides with the singleton {0}, i.e

Va,y,2 € G D, f(z,y,2) =0
as claimed. This completes the proof.

REMARK 3.2
By the similar manner, we can prove that if the difference D, f(z,y, z) is bounded
by ¢(y) or ¢(z), we obtain the same result as in Theorem
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COROLLARY 3.3
Let ¢: G — [0, +00[ be a function and f: G — E satisfy the inequality

[fety+2)+flaty—2)+fle—y+2)+ fly+z—a)—4f(2)f(y)f(2)]
< p(x) or ¢(y) or ¢(2)

forallx,y,z € G. For an arbitrary linear multiplicative functional x* € E*, if the
superposition x* o f is unbounded, then f satisfies

f@ty+z)+flaty—2)+fl@—y+2)+ fly+z—2)=4f(x)f(y)f(2)
forall x,y,z € G.

THEOREM 3.4
Let o: R — [0, 400 and f: R — C satisfy the inequality

flz+y+2)+ flety+o(2)+ flz+o(y) +2)
+ flo(@) +y+2) —4f (@) f(y) f(2)]
< p(z)

forallx,y,z € R. If f is an unbounded harmonic function, then there is a constant
a € C*\ iR such that f(z) = M and f is a solution of the equation (A¢).

Proof. By Theorem f satisfies the functional equation . Suppose that f is
unbounded and f(0) = 0. Putting y = z := 0 in (I]), we get

3f(x) + flo(x)) = 4f () f(0)> =0 (10)

for all z € R. Replacing = by o(z) in and then combining the equalities,
we see that f(o(z)) = —f(z) for all z € R, so f(z) = 0 for all z € R. This is
a contradiction. Therefore, |f(0)| > 0. Hence, f satisfies also the equation by
Lemma[2.1] It is well known that a harmonic solution f: R — C of the d’Alembert

functional equation (Af) has to have the form f(z) = em%ewm for all z € R,

where « is a complex number (see [I7, Theorem 1]). Since f is unbounded, the
constant « of that form falls into the set & € C*\ iR. This completes the proof.

REMARK 3.5
Similarly, one can prove that if the difference D, f(z,y, z) is bounded by ¢(y) or
©(z), we obtain the same result as in Theorem [3.4

COROLLARY 3.6
Assume that p: R — [0, +o0[ and f: R — C satisfy the inequality

fety+2)+flaty—2)+fle—y+2)+fly+z-2)—4f(@)f(y)f(2)]
< (x) or ¢(y) or ¢(2)

forallz,y,z € R. If f is an unbounded harmonic function, then there is a constant
B € C\R such that f(z) = cos(Bz) and f is a solution of the equation (A].

Proof. Tt suffices to take o(x) = —x and 8 = i in Theorem
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