FOLIA 182

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XV (2016)

Maria Robaszewska
 Affine analogues of the Sasaki-Shchepetilov connection

Abstract

For two-dimensional manifold M with locally symmetric connection ∇ and with ∇-parallel volume element vol one can construct a flat connection on the vector bundle $T M \oplus E$, where E is a trivial bundle. The metrizable case, when M is a Riemannian manifold of constant curvature, together with its higher dimension generalizations, was studied by A.V. Shchepetilov [J. Phys. A: 36 (2003), 3893-3898]. This paper deals with the case of non-metrizable locally symmetric connection. Two flat connections on $T M \oplus(\mathbb{R} \times M)$ and two on $T M \oplus\left(\mathbb{R}^{2} \times M\right)$ are constructed. It is shown that two of those connections - one from each pair - may be identified with the standard flat connection in \mathbb{R}^{N}, after suitable local affine embedding of (M, ∇) into \mathbb{R}^{N}.

1. Introduction

In the article [9] R. Sasaki proposed to add the property of describing pseudospherical surfaces to other remarkable properties - such as applicability of the inverse scattering method, infinite number of conservation laws and Bäcklund transformations - which characterize soliton equations in $1+1$ dimensions. He expressed the $\mathbf{s l}(2, \mathbb{R})$-valued 1-form Ω, which arises in the corresponding linear scattering problem $d v=\Omega v, v=\binom{v_{1}}{v_{2}}$, by 1 -forms ω^{1}, ω^{2} and ω_{1}^{2}

$$
\Omega=\left(\begin{array}{cc}
-\frac{1}{2} \omega^{2} & \frac{1}{2}\left(\omega_{1}^{2}+\omega^{1}\right) \\
\frac{1}{2}\left(-\omega^{2}{ }_{1}+\omega^{1}\right) & \frac{1}{2} \omega^{2}
\end{array}\right)
$$

[^0]in such a way, that the integrability condition $d \Omega-\Omega \wedge \Omega=0$ is equivalent to the structural equations $d \omega^{1}=\omega^{2}{ }_{1} \wedge \omega^{2}, d \omega^{2}=-\omega^{2}{ }_{1} \wedge \omega^{1}$ and $d \omega^{2}{ }_{1}=\omega^{1} \wedge \omega^{2}$ of a pseudospherical surface $(K=-1)$. This $\mathbf{s l}(2, \mathbb{R})$-valued 1-form Ω itself can be interpreted as the connection form of a connection on some principal $S L(2, \mathbb{R})$ bundle. The condition $d \Omega-\Omega \wedge \Omega=0$ means that the curvature of this connection vanishes. In this respect the connection Ω differs from the Levi-Civita connection of the considered pseudospherical metric. On the other hand, Ω appeared to be somehow related to the Levi-Civita connection, because the Levi-Civita connection form $\left(\begin{array}{cc}0 & -\omega^{2} \\ \omega^{2}{ }_{1} & 0\end{array}\right)$ "is contained" in Ω. As might be expected, the question of finding the geometric interpretation of Ω occurred.

In the paper [10] A.V. Shchepetilov explained the geometric meaning of the Sasaki connection. Using an equivalent representation of Ω, $\mathbf{s o}(2,1)$-valued, he constructed a flat connection $\widehat{\nabla}$ on the vector bundle $T M \oplus E$, where $T M$ is the tangent bundle and $E=\mathbb{R} \times M$ is a trivial one-dimensional vector bundle (our notation is slightly different from that in [10])

$$
\begin{equation*}
\hat{\nabla}_{X}(Y \oplus f)=\left(\nabla_{X} Y+f X\right) \oplus(X(f)+g(X, Y)) \tag{1}
\end{equation*}
$$

Here g is a metric on M, ∇ is its Levi-Civita connection, $f \in \mathcal{C}^{\infty}(M)$ is a section of E and X, Y are vector fields on M.

Shchepetilov considered also manifolds with metric of constant positive curvature $K=+1$. The corresponding flat connection $\widehat{\nabla}$ on $T M \oplus E$ is

$$
\begin{equation*}
\widehat{\nabla}_{X}(Y \oplus f)=\left(\nabla_{X} Y+f X\right) \oplus(X(f)-g(X, Y)) \tag{2}
\end{equation*}
$$

The aim of this paper is to construct a similar flat connection $\widehat{\nabla}$ for a twodimensional manifold with non-metrizable locally symmetric connection ∇ and with ∇-parallel volume element. Our main motivation for research is as follows. Firstly, manifold with locally symmetric linear connection can be thought of as a generalization of a constant sectional curvature Riemannian manifold. Secondly, sometimes more important than (M, g) or (M, ∇) alone is an embedding of M into \mathbb{R}^{3}. For example, every isometric embedding of a pseudospherical surface (M, g) into \mathbb{R}^{3} corresponds to some particular solution of the sine-Gordon equation. Therefore restriction to those non-flat locally symmetric connections which are induced on hypersurfaces in \mathbb{R}^{n+1} is legitimated. If such hypersurface f is degenerate and its type number r is greater than 1 , then around each generic point of M there exists a local cylinder decomposition which contains as a part a non-degenerate hypersurface in \mathbb{R}^{r+1} with some locally symmetric connection (see [4]). On the other hand, if f is non-degenerate and $n>2$, then ∇ is the Blaschke connection, $\nabla h=0, S=\rho \mathrm{id}, \rho=$ const, $\rho \neq 0$ and $f(M)$ is an open part of a quadric with center [4]. Similarly as in the second proof of Berwald theorem in [3] one can then define a pseudo-scalar product G in \mathbb{R}^{n+1} such that $G\left(f_{*} X, f_{*} Y\right)=h(X, Y), G\left(f_{*} X, \xi\right)=0$ and $G(\xi, \xi)=\rho$, where ξ is the affine normal. It is easy to check that relative to this pseudo-scalar product f is a hypersurface of constant sectional curvature ρ. If f is non-degenerate, $n=2$ and the induced locally symmetric connection satisfies the condition $\operatorname{dim} \operatorname{im} R=2$, then there also exists a pseudo-scalar product on $\mathbb{R}^{n+1}=\mathbb{R}^{3}$ relative to which f has constant Gaussian curvature and ξ is perpendicular to f [6].

On the contrary, if $f: M \rightarrow \mathbb{R}^{n+1}$ is of type number 1 or if $f: M \rightarrow \mathbb{R}^{3}$ is nondegenerate and $\operatorname{dimim} R=1$, then the connection as a connection of 1-codimensional nullity ($\operatorname{dim} \operatorname{ker} R=n-1$) is not metrizable [7], therefore we have reason for generalizing Shchepetilov's construction. The present paper deals with the case $n=2$.

2. Preliminaries

Let M be a connected two-dimensional real manifold and let ∇ be a locally symmetric connection on M, satisfying the condition $\operatorname{dimim} R=1$, where for $p \in M$

$$
\left.\operatorname{im} R\right|_{p}:=\operatorname{span}\left\{R(X, Y) Z: X, Y, Z \in T_{p} M\right\}
$$

and R is the curvature tensor of ∇. Such connections were studied by B. Opozda in [5]. Opozda proved that for every $p \in M$ there is a coordinate system (u, v) around p such that

$$
\begin{equation*}
\nabla_{\partial_{u}} \partial_{u}=\nabla_{\partial_{u}} \partial_{v}=0 \quad \text { and } \quad \nabla_{\partial_{v}} \partial_{v}=\varepsilon u \partial_{u} \tag{3}
\end{equation*}
$$

where $\varepsilon \in\{1,-1\}$. A local coordinate system in which a locally symmetric connection ∇ is expressed by (3) will be called a canonical coordinate system for ∇ [5]. It is not unique. It is easy to check that if u, v and \bar{u}, \bar{v} are canonical coordinate systems then on each connected component of the intersection of their domains we have $\bar{u}=A u+\chi(v), \bar{v}=\delta v+B$, where A, B, δ are constants, $\delta^{2}=1$, and χ satisfies the differential equation $\chi^{\prime \prime}+\varepsilon \chi=0$.

The Ricci tensor $\operatorname{Ric}(X, Y):=\operatorname{trace}[V \mapsto R(V, X) Y]$ of such a connection is symmetric and for every $p \in M$ there exists a ∇-parallel volume element around p. Here we assume that a ∇-parallel volume element vol exists on the whole M.

It follows, that for every $p \in M$ we can find around p a local basis $\left(X_{1}, X_{2}\right)$ of $T M$, satisfying the conditions:

$$
\begin{equation*}
X_{1} \in \operatorname{ker} \operatorname{Ric}, \quad \operatorname{Ric}\left(X_{2}, X_{2}\right)=\varepsilon \quad \text { and } \quad \operatorname{vol}\left(X_{1}, X_{2}\right)=1 \tag{4}
\end{equation*}
$$

For example, on the domain of canonical coordinates (u, v) as in (3) we may take $X_{1}=\frac{1}{c} \partial_{u}$ and $X_{2}=\partial_{v}$, where c is the non-zero constant such that vol $=$ $c d u \wedge d v$. Let ω^{1}, ω^{2} be the dual basis for $\left(X_{1}, X_{2}\right)$. The local connection form is $\left(\omega^{i}{ }_{j}\right)=\left(\begin{array}{cc}0 & \omega^{1}{ }_{2} \\ 0 & 0\end{array}\right)$ and the structural equations are $d \omega^{1}=-\omega^{1}{ }_{2} \wedge \omega^{2}, d \omega^{2}=0$ and $d \omega^{1}{ }_{2}=\varepsilon \omega^{1} \wedge \omega^{2}$.

The following proposition is easy to check.
Proposition 2.1
Let M be a two-dimensional manifold with locally symmetric connection ∇ satisfying condition $\operatorname{dim} \operatorname{im} R=1$. Let ω^{1}, ω^{2} and $\omega^{i}{ }_{j}$ be the dual basis and the local connection forms for some local basis of TM satisfying the condition (4). Then each of the following four 1-forms Ω_{i}

$$
\Omega_{1}=\left(\begin{array}{ccc}
0 & -\omega_{2}^{1} & \omega^{1} \\
0 & 0 & \omega^{2} \\
0 & -\varepsilon \omega^{2} & 0
\end{array}\right), \quad \Omega_{2}=\left(\begin{array}{ccc}
0 & -\omega^{1} & \varepsilon \omega^{2} \\
0 & 0 & 0 \\
-\omega^{2} & \omega^{1} & 0
\end{array}\right)
$$

$$
\Omega_{3}=\left(\begin{array}{cccc}
0 & -\omega_{2}^{1} & \omega^{1} & \omega^{2} \\
0 & 0 & \omega^{2} & 0 \\
0 & -\varepsilon \omega^{2} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad \Omega_{4}=\left(\begin{array}{cccc}
0 & -\omega^{1} & \varepsilon \omega^{2} & 0 \\
0 & 0 & 0 & 0 \\
-\omega^{2} & \omega^{1} & 0 & 0 \\
0 & \omega^{2} & 0 & 0
\end{array}\right)
$$

satisfies the condition $d \Omega_{i}-\Omega_{i} \wedge \Omega_{i}=0$.
Those $\operatorname{gl}(N, \mathbb{R})$-valued $(N=3$ or $N=4)$ 1-forms were obtained in [8] as the local connection forms of connections on some principal $G L(N, \mathbb{R})$-bundle P and seem to be analogous to the Sasaki connection form. The bundle $P(M, G), G=$ $G L(N, \mathbb{R})$, is an extension of the bundle $Q(M, H)$ consisting of all linear frames on M which satisfy (4). The structure group is $H:=\left\{\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right): t \in \mathbb{R}\right\} \cup\left\{\left(\begin{array}{cc}-1 & t \\ 0 & -1\end{array}\right):\right.$ $t \in \mathbb{R}\}$. Here we need not explain what the bundle $P(M, G)$ is. It suffices to know that there exists $f: Q \rightarrow P$ such that the triple $\left(f, \mathrm{id}_{M}, \iota\right)$ is a homomorphism of principal fibre bundles $Q(M, H)$ and $P(M, G)$. The homomorphism $\iota: H \rightarrow$ G of structure groups is given by $\iota(a):=\left(\begin{array}{cc}a & 0 \\ 0 & I_{N-2}\end{array}\right)$, where I_{N-2} is the identity $(N-2) \times(N-2)$ matrix. Each of the forms Ω_{i} is a local connection form associated with a local section $f \circ \sigma$ of P, where σ is some local section of Q.

In the construction of P and Ω in [8] and in the present paper we consider the left action of H on $Q: a * q:=q a^{-1}$, where $\left(v_{1}, v_{2}\right) h:=\left(h^{1}{ }_{1} v_{1}+h^{2}{ }_{1} v_{2}, h_{2}^{1} v_{1}+h^{2}{ }_{2} v_{2}\right)$ for $h=\left(\begin{array}{cc}h^{1}{ }_{1} & h^{1}{ }_{2} \\ h^{2}{ }_{1} & h^{2}\end{array}\right) \in H$, and some left action of G on P. Another possible way is to consider traditionally a right action, but we have then $-\Omega$ instead of Ω.

3. The connections on the vector bundle $T M \oplus E$

We will use the definition of the covariant derivative of a section of an associated bundle which comes from [1], and is described for example in [2]. Since we consider here the left action of G on P and the right action of G on \mathbb{R}^{N}, $z * c:=c^{-1} z$, some details may be different from that of [1] and [2].

Let $T M$ be the tangent bundle of M and let E be the trivial bundle, $E=$ $\mathbb{R}^{N-2} \times M$.

Proposition 3.1
The bundle $T M \oplus E$ is a vector bundle associated to P with fibre \mathbb{R}^{N}

$$
P \times_{G} \mathbb{R}^{N}=\left(P \times \mathbb{R}^{N}\right) / \sim,
$$

with the equivalence relation \sim given by $\left(c p, z * c^{-1}\right) \sim(p, z)$.
Proof. For $x \in M$ we take a basis $q=\left(v_{1}, v_{2}\right) \in Q$ of $T_{x} M$ and identify $\left(z^{1} v_{1}+\right.$ $\left.z^{2} v_{2}\right) \oplus\left(z^{3}, \ldots, z^{N}\right)$ from $\left.(T M \oplus E)\right|_{x}$ with $[(f(q), z)] \in\left(P \times \mathbb{R}^{N}\right) / \sim$. This identification is correct, because if we take another basis $q^{\prime}=\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in Q_{x}$, then $q^{\prime}=a * q=q a^{-1}$ for some $a \in H$ and $z^{1} v_{1}+z^{2} v_{2}=z^{\prime 1} v_{1}^{\prime}+z^{\prime 2} v_{2}^{\prime}$ with $z^{\prime 1}=$ $a^{1}{ }_{1} z^{1}+a_{2}^{1} z^{2}, z^{\prime 2}=a^{2}{ }_{1} z^{1}+a^{2}{ }_{2} z^{2}$. It follows that $\left(z^{11} v_{1}^{\prime}+z^{\prime 2} v_{2}^{\prime}\right) \oplus\left(z^{\prime 3}, \ldots, z^{\prime N}\right)=$ $\left(z^{1} v_{1}+z^{2} v_{2}\right) \oplus\left(z^{3}, \ldots, z^{N}\right)$ for $z^{\prime}=\iota(a) z=z *(\iota(a))^{-1}$. We obtain $\left[\left(f\left(q^{\prime}\right), z^{\prime}\right)\right]=$ $\left[\left(f(a * q), z *(\iota(a))^{-1}\right)\right]=\left[\left(\iota(a) f(q), z *(\iota(a))^{-1}\right)\right]=[(f(q), z)]$.

Let $[(p, z)] \in P \times_{G} \mathbb{R}^{N}$ and let $\pi(p)=x$, where $\pi: P \rightarrow M$. Let $q=\left(v_{1}, v_{2}\right) \in$ Q_{x}, then $f(q) \in P_{x}$. Since G acts transitively on fibres of P, there exists $b \in G$
such that $p=b f(q)$. It follows that $[(p, z)]=[(b f(q), z)]=[(b f(q),(z * b) *$ $\left.\left.b^{-1}\right)\right]=[(f(q), z * b)]=\left[\left(f(q), b^{-1} z\right)\right]$, therefore we have to identify $[(p, z)]$ with $\left(y^{1} v_{1}+y^{2} v_{2}\right) \oplus\left(y^{3}, \ldots, y^{N}\right)$, where $y=b^{-1} z$.

To each local section η of an associated vector bundle $P \times_{G} \mathbb{R}^{N}$ corresponds some mapping $\widetilde{\eta}:\left.P\right|_{U} \rightarrow \mathbb{R}^{N}$ - called the Crittenden mapping - which satisfies the condition $\widetilde{\eta}(b p)=\widetilde{\eta}(p) * b^{-1}$. Since we have actually defined the right action of G on \mathbb{R}^{N} using the left action, $x * c:=c^{-1} x$, we can write this condition simply as $\widetilde{\eta}(b p)=b \widetilde{\eta}(p)$. By definition of the Crittenden mapping, $[(p, \widetilde{\eta}(p))]=\eta(\pi(p))$. Conversely, to each mapping $\widetilde{\eta}:\left.P\right|_{U} \rightarrow \mathbb{R}^{N}$ satisfying the condition $\widetilde{\eta}(b * p)=$ $\widetilde{\eta}(p) * b^{-1}$ corresponds a local section of the associated bundle.

Let X be a vector field on M. For every connection form Ω_{i} from Proposition 2.1 we will find the covariant derivative $\hat{\nabla}_{X} \eta$ of a local section η of $T M \oplus E$.

Theorem 3.2

Let $\eta=Y \oplus \Psi$, with a vector field Y on $U \subset M$ and $\Psi: U \rightarrow \mathbb{R}^{N(i)}$, be a local section of $T M \oplus E$. Here $N(1)=N(2)=1$ and $N(3)=N(4)=2$. Let $\widehat{\nabla}_{X}^{i} \eta$ denote the covariant derivative of η with respect to the connection corresponding to local connection form Ω_{i} from Proposition 2.1. Then

$$
\begin{aligned}
\widehat{\nabla}_{X}^{1}(Y \oplus \Psi) & =\left(\nabla_{X} Y-\Psi X\right) \oplus(X(\Psi)+\operatorname{Ric}(X, Y)) \\
\widehat{\nabla}_{X}^{2}(Y \oplus \Psi) & =\left(\nabla_{X} Y-\Psi L X\right) \oplus(X(\Psi)-\operatorname{vol}(X, Y)), \\
\widehat{\nabla}_{X}^{3}\left(Y \oplus \left(\Psi^{1},\right.\right. & \left.\left.\Psi^{2}\right)\right) \\
& =\left(\nabla_{X} Y-\Psi^{1} X-\varepsilon \Psi^{2} L X\right) \oplus\left(X\left(\Psi^{1}\right)+\operatorname{Ric}(X, Y), X\left(\Psi^{2}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \hat{\nabla}_{X}^{4}\left(Y \oplus\left(\Psi^{1}, \Psi^{2}\right)\right) \\
& \quad=\left(\nabla_{X} Y-\Psi^{1} L X\right) \oplus\left(X\left(\Psi^{1}\right)-\operatorname{vol}(X, Y), X\left(\Psi^{2}\right)-\varepsilon \operatorname{Ric}(X, Y)\right),
\end{aligned}
$$

with the $(1,1)$ tensor field L such that $\operatorname{vol}(L X, Y)=\operatorname{Ric}(X, Y)$ for every X, Y.
Proof. By definition of the covariant derivative, the Crittenden mapping corresponding to $\widehat{\nabla}_{X} \eta$ is equal to $X^{H}(\widetilde{\eta})$, where X^{H} is the horizontal lift of X to $\left.P\right|_{U}$.

We use a local section $\tau=f \circ \sigma$ of P, where $\sigma=\left(V_{1}, V_{2}\right)$ is a local section of Q. Let $Y=Y^{1} V_{1}+Y^{2} V_{2}$, then $\tilde{\eta} \circ \tau=\left(Y^{1}, Y^{2}, \Psi\right)$.

Let $\widetilde{\Omega}$ be the connection form on P. The local connection form is $\tau^{*} \widetilde{\Omega}=\Omega_{\sigma}$. We have

$$
\widetilde{\widehat{\nabla}_{X} \eta(\tau(x))}=X_{\tau(x)}^{H}(\tilde{\eta}), \quad X_{\tau(x)}^{H}=d_{x} \tau\left(X_{x}\right)+B_{\tau(x)}^{*},
$$

where the right-invariant vector field $B=-\Omega_{\sigma}\left(X_{x}\right)$, which we easily obtain from the condition $\widetilde{\Omega}\left(X_{\tau(x)}^{H}\right)=0$:

$$
0=\widetilde{\Omega}_{\tau(x)}\left(d_{x} \tau\left(X_{x}\right)\right)+\widetilde{\Omega}_{\tau(x)}\left(B_{\tau(x)}^{*}\right)=\left(\tau^{*} \widetilde{\Omega}\right)_{x}\left(X_{x}\right)+B=\Omega_{\sigma}\left(X_{x}\right)+B
$$

The first part of $X_{\tau(x)}^{H}(\widetilde{\eta})$ is equal to

$$
\left(d_{x} \tau\left(X_{x}\right)\right)(\widetilde{\eta})=X_{x}(\widetilde{\eta} \circ \tau)=\left(X_{x}\left(Y^{1}\right), X_{x}\left(Y^{2}\right), X_{x}(\Psi)\right) .
$$

The second part is

$$
B_{\tau(x)}^{*}(\widetilde{\eta})=\left.\frac{d}{d t} \widetilde{\eta}\left(b_{t} \tau(x)\right)\right|_{t=0}=\left.\frac{d}{d t} b_{t} \widetilde{\eta}(\tau(x))\right|_{t=0}=\left.\frac{d}{d t} b_{t}\right|_{t=0} \widetilde{\eta}(\tau(x))=B \widetilde{\eta}(\tau(x)) .
$$

Here $\left(b_{t}\right)$ is 1-parameter subgroup of G generated by B. It follows that

$$
\widetilde{\hat{\nabla}_{X} \eta(\tau(x))}=\left(\begin{array}{c}
X_{x}\left(Y^{1}\right) \tag{5}\\
X_{x}\left(Y^{2}\right) \\
X_{x}(\Psi)
\end{array}\right)-\Omega_{\sigma}\left(X_{x}\right)\left(\begin{array}{c}
Y^{1}(x) \\
Y^{2}(x) \\
\Psi(x)
\end{array}\right) .
$$

For $\Omega_{\sigma}=\Omega_{1}$ we obtain
and

$$
\begin{aligned}
\hat{\nabla}_{X} \eta= & \left(\left(X\left(Y^{1}\right)+\omega_{2}^{1}(X) Y^{2}-\omega^{1}(X) \Psi\right) V_{1}+\left(X\left(Y^{2}\right)-\omega^{2}(X) \Psi\right) V_{2}\right) \\
& \oplus\left(X(\Psi)+\varepsilon \omega^{2}(X) Y^{2}\right) .
\end{aligned}
$$

Since $\nabla_{X} V_{1}=0$, we have

$$
\begin{aligned}
\nabla_{X} Y & =\nabla_{X}\left(Y^{1} V_{1}+Y^{2} V_{2}\right) \\
& =X\left(Y^{1}\right) V_{1}+Y^{1} \nabla_{X} V_{1}+X\left(Y^{2}\right) V_{2}+Y^{2} \nabla_{X} V_{2} \\
& =X\left(Y^{1}\right) V_{1}+X\left(Y^{2}\right) V_{2}+Y^{2} \omega_{2}^{1}(X) V_{1} .
\end{aligned}
$$

We have also

$$
\begin{aligned}
\operatorname{Ric}(X, Y) & =\operatorname{Ric}\left(\omega^{1}(X) V_{1}+\omega^{2}(X) V_{2}, Y^{1} V_{1}+Y^{2} V_{2}\right) \\
& =\omega^{2}(X) Y^{2} \operatorname{Ric}\left(V_{2}, V_{2}\right) \\
& =\omega^{2}(X) Y^{2} \varepsilon
\end{aligned}
$$

because V_{1} is a local section of ker Ric.
We obtain finally

$$
\begin{equation*}
\hat{\nabla}_{X}(Y \oplus \Psi)=\left(\nabla_{X} Y-\Psi X\right) \oplus(X(\Psi)+\operatorname{Ric}(X, Y)) . \tag{6}
\end{equation*}
$$

If we take $\Omega_{\sigma}=\Omega_{2}$, then we obtain from (5)

$$
\widetilde{\widehat{\nabla}_{X} \eta} \circ \tau=\left(\begin{array}{c}
X\left(Y^{1}\right) \\
X\left(Y^{2}\right) \\
X(\Psi)
\end{array}\right)-\left(\begin{array}{ccc}
0 & -\omega_{2}^{1}(X) & \varepsilon \omega^{2}(X) \\
0 & 0 & 0 \\
-\omega^{2}(X) & \omega^{1}(X) & 0
\end{array}\right)\left(\begin{array}{c}
Y^{1} \\
Y^{2} \\
\Psi
\end{array}\right)
$$

which gives

$$
\begin{aligned}
\hat{\nabla}_{X}(Y \oplus \Psi)= & \left(\left(X\left(Y^{1}\right)+\omega_{2}^{1}(X) Y^{2}-\varepsilon \omega^{2}(X) \Psi\right) V_{1}+X\left(Y^{2}\right) V_{2}\right) \\
& \oplus\left(X(\Psi)+\omega^{2}(X) Y^{1}-\omega^{1}(X) Y^{2}\right)
\end{aligned}
$$

$$
=\left(\nabla_{X} Y-\Psi \varepsilon \omega^{2}(X) V_{1}\right) \oplus(X(\Psi)-\operatorname{vol}(X, Y)),
$$

because $\operatorname{vol}\left(V_{1}, V_{2}\right)=1$.
Let ($\left.\widetilde{V}_{1}, \widetilde{V}_{2}\right)$ be another local basis of $T M$ satisfying (4). Then in the intersection of the corresponding domains we have $\widetilde{V}_{1}=\delta V_{1}, \widetilde{V}_{2}=t V_{1}+\delta V_{2}$ with $\delta \in\{1,-1\}$. For the new dual basis we obtain $\widetilde{\omega}^{1}=\delta \omega^{1}-t \omega^{2}, \widetilde{\omega}^{2}=\delta \omega^{2}$. It follows that $\widetilde{\omega}^{2} \widetilde{V}_{1}=\omega^{2} V_{1}$, therefore the vector field $L X:=\varepsilon \omega^{2}(X) V_{1}$ is defined on the whole M and L is a $(1,1)$ tensor field.

Note that for every Z we have

$$
\begin{align*}
\operatorname{vol}(L X, Z) & =\operatorname{vol}\left(\varepsilon \omega^{2}(X) V_{1}, Z\right)=\varepsilon \omega^{2}(X) \omega^{2}(Z) \operatorname{vol}\left(V_{1}, V_{2}\right)=\varepsilon \omega^{2}(X) \omega^{2}(Z) \\
& =\operatorname{Ric}(X, Z) . \tag{7}
\end{align*}
$$

For the second connection we finally obtain the global formula

$$
\begin{equation*}
\hat{\nabla}_{X}(Y \oplus \Psi)=\left(\nabla_{X} Y-\Psi L X\right) \oplus(X(\Psi)-\operatorname{vol}(X, Y)) . \tag{8}
\end{equation*}
$$

For $\Omega_{\sigma}=\Omega_{3}$ we have
hence

$$
\begin{aligned}
& \hat{\nabla}_{X}\left(Y \oplus\left(\Psi^{1}, \Psi^{2}\right)\right) \\
& \quad=\left(\left(X\left(Y^{1}\right)+\omega_{2}^{1}(X) Y^{2}-\omega^{1}(X) \Psi^{1}-\omega^{2}(X) \Psi^{2}\right) V_{1}+\left(X\left(Y^{2}\right)-\omega^{2}(X) \Psi^{1}\right) V_{2}\right) \\
& \quad \oplus\left(X\left(\Psi^{1}\right)+\varepsilon \omega^{2}(X) Y^{2}, X\left(\Psi^{2}\right)\right),
\end{aligned}
$$

which gives

$$
\begin{align*}
& \widehat{\nabla}_{X}\left(Y \oplus\left(\Psi^{1}, \Psi^{2}\right)\right) \tag{9}\\
& \quad=\left(\nabla_{X} Y-\Psi^{1} X-\varepsilon \Psi^{2} L X\right) \oplus\left(X\left(\Psi^{1}\right)+\operatorname{Ric}(X, Y), X\left(\Psi^{2}\right)\right) .
\end{align*}
$$

For $\Omega_{\sigma}=\Omega_{4}$ we obtain

$$
\widetilde{\hat{\nabla}_{X} \eta} \circ \tau=\left(\begin{array}{c}
X\left(Y^{1}\right) \\
X\left(Y^{2}\right) \\
X\left(\Psi^{1}\right) \\
X\left(\Psi^{2}\right)
\end{array}\right)-\left(\begin{array}{cccc}
0 & -\omega^{1}(X) & \varepsilon \omega^{2}(X) & 0 \\
0 & 0 & 0 & 0 \\
-\omega^{2}(X) & \omega^{1}(X) & 0 & 0 \\
0 & \omega^{2}(X) & 0 & 0
\end{array}\right)\left(\begin{array}{c}
Y^{1} \\
Y^{2} \\
\Psi^{1} \\
\Psi^{2}
\end{array}\right)
$$

and

$$
\begin{align*}
& \hat{\nabla}_{X}\left(Y \oplus\left(\Psi^{1}, \Psi^{2}\right)\right) \\
& \quad=\left(\nabla_{X} Y-\Psi^{1} L X\right) \oplus\left(X\left(\Psi^{1}\right)-\operatorname{vol}(X, Y), X\left(\Psi^{2}\right)-\varepsilon \operatorname{Ric}(X, Y)\right) . \tag{10}
\end{align*}
$$

4. Flatness of $\widehat{\nabla}$

Theorem 4.1
Each of four connections $\widehat{\nabla}^{i}$ in Theorem 3.2 is flat.
Proof. We will compute

$$
\widehat{R}(X, Y)(Z \oplus \Psi)=\left(\widehat{\nabla}_{X} \widehat{\nabla}_{Y}-\widehat{\nabla}_{Y} \widehat{\nabla}_{X}-\widehat{\nabla}_{[X, Y]}\right)(Z \oplus \Psi)
$$

for each of four connections (6), (8), (9) and (10).
If we use $\nabla_{X} Y-\nabla_{Y} X-[X, Y]=T(X, Y)=0$, then for the connection (6) we obtain

$$
\begin{aligned}
& \widehat{R}(X, Y)(Z \oplus \Psi) \\
& \quad=(R(X, Y) Z-(\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y)) \\
& \quad \oplus\left(\left(\nabla_{X} \operatorname{Ric}\right)(Y, Z)-\left(\nabla_{Y} \operatorname{Ric}\right)(X, Z)-\Psi(\operatorname{Ric}(X, Y)-\operatorname{Ric}(Y, X))\right)
\end{aligned}
$$

But Ric is symmetric, $\nabla R=0$ implies ∇ Ric $=0$, and for each two-dimensional manifold

$$
\begin{equation*}
R(X, Y) Z=\operatorname{Ric}(Y, Z) X-\operatorname{Ric}(X, Z) Y \tag{11}
\end{equation*}
$$

Therefore $\widehat{R}(X, Y)(Z \oplus \Psi)=0 \oplus 0$.
For the connection (8) we obtain

$$
\begin{aligned}
& \widehat{R}(X, Y)(Z \oplus \Psi) \\
& \quad=\left(R(X, Y) Z+\operatorname{vol}(Y, Z) L X-\operatorname{vol}(X, Z) L Y-\Psi\left(\left(\nabla_{X} L\right) Y-\left(\nabla_{Y} L\right) X\right)\right) \\
& \quad \oplus\left(\left(\nabla_{Y} \operatorname{vol}\right)(X, Z)-\left(\nabla_{X} \operatorname{vol}\right)(Y, Z)+\Psi(\operatorname{vol}(X, L Y)-\operatorname{vol}(Y, L X))\right)
\end{aligned}
$$

From $\nabla \mathrm{vol}=0$ it follows that $R \cdot \mathrm{vol}=0$, therefore

$$
\begin{aligned}
0 & =(R(X, Y) \cdot \operatorname{vol})(Z, W)=-\operatorname{vol}(R(X, Y) Z, W)-\operatorname{vol}(Z, R(X, Y) W) \\
& =-\operatorname{vol}(R(X, Y) Z, W)+\operatorname{vol}(R(X, Y) W, Z)
\end{aligned}
$$

hence

$$
\begin{equation*}
\operatorname{vol}(R(X, Y) Z, W)=\operatorname{vol}(R(X, Y) W, Z) \tag{12}
\end{equation*}
$$

For an arbitrary vector field W using (12), (7) and (11) we obtain

$$
\begin{aligned}
& \operatorname{vol}(R(X, Y) Z+\operatorname{vol}(Y, Z) L X-\operatorname{vol}(X, Z) L Y, W) \\
& \quad=\operatorname{vol}(R(X, Y) W, Z)+\operatorname{vol}(Y, Z) \operatorname{Ric}(X, W)-\operatorname{vol}(X, Z) \operatorname{Ric}(Y, W) \\
& \quad=\operatorname{vol}(R(X, Y) W+\operatorname{Ric}(X, W) Y-\operatorname{Ric}(Y, W) X, Z) \\
& \quad=0
\end{aligned}
$$

From the non-degeneracy of vol it follows that

$$
\begin{equation*}
R(X, Y) Z+\operatorname{vol}(Y, Z) L X-\operatorname{vol}(X, Z) L Y=0 \tag{13}
\end{equation*}
$$

Moreover, ∇ Ric $=0, \nabla \mathrm{vol}=0$ and (7) imply $\nabla L=0$. We have also $\operatorname{vol}(X, L Y)-$ $\operatorname{vol}(Y, L X)=-\operatorname{vol}(L Y, X)+\operatorname{vol}(L X, Y)=-\operatorname{Ric}(Y, X)+\operatorname{Ric}(X, Y)=0$. Hence $\widehat{R}(X, Y)(Z \oplus \Psi)=0 \oplus 0$ for $\widehat{\nabla}$ given by (8).

For the connection (9) we obtain

$$
\begin{aligned}
\widehat{R}(X, Y) & \left(Z \oplus\left(\Psi^{1}, \Psi^{2}\right)\right) \\
= & \left(R(X, Y) Z-\operatorname{Ric}(Y, Z) X+\operatorname{Ric}(X, Z) Y-\varepsilon \Psi^{2}\left(\left(\nabla_{X} L\right)(Y)-\left(\nabla_{Y} L\right)(X)\right)\right) \\
& \oplus\left(\left(\nabla_{X} \operatorname{Ric}\right)(Y, Z)-\left(\nabla_{Y} \operatorname{Ric}\right)(X, Z)-\Psi^{1}(\operatorname{Ric}(X, Y)-\operatorname{Ric}(Y, X))\right. \\
& \left.\quad+\varepsilon \Psi^{2}(\operatorname{Ric}(Y, L X)-\operatorname{Ric}(X, L Y)), 0\right) \\
= & 0 \oplus(0,0)
\end{aligned}
$$

Note that im $L \subset$ ker Ric.
For (10) we have

$$
\begin{aligned}
& \widehat{R}(X, Y)\left(Z \oplus\left(\Psi^{1}, \Psi^{2}\right)\right) \\
& \quad=\left(R(X, Y) Z+\operatorname{vol}(Y, Z) L X-\operatorname{vol}(X, Z) L Y-\Psi^{1}\left(\left(\nabla_{X} L\right)(Y)-\left(\nabla_{Y} L\right)(X)\right)\right) \\
& \quad \oplus\left(\left(\nabla_{Y} \operatorname{vol}\right)(X, Z)-\left(\nabla_{X} \operatorname{vol}\right)(Y, Z)+\Psi^{1}(\operatorname{vol}(X, L Y)-\operatorname{vol}(Y, L X))\right. \\
& \left.\quad \quad \varepsilon\left(\nabla_{Y} \operatorname{Ric}\right)(X, Z)-\varepsilon\left(\nabla_{X} \operatorname{Ric}\right)(Y, Z)+\varepsilon \Psi^{1}(\operatorname{Ric}(X, L Y)-\operatorname{Ric}(Y, L X))\right) \\
& =0 \oplus(0,0) .
\end{aligned}
$$

5. Some remarks about interpretation of $\widehat{\nabla}$

As is shown in [10], in the metric case using (at least local) embedding of (M, g) with $K= \pm 1$ into Euclidean or pseudoeuclidean space \mathbf{E} we may identify $\widehat{\nabla}$ with the restriction of the flat connection on $T \mathbf{E}=\mathbf{E} \times \mathbf{E}$ to $\mathbf{E} \times M$ and identify the trivial one-dimensional summand E with the normal bundle of the surface.

We consider now the case of non-metrizable locally symmetric connection on M, $\operatorname{dim} M=2$. Let $f: M \rightarrow \mathbb{R}^{3}$ be an immersion and let ∇ be the connection induced on M by f and the transversal vector field ξ. If we identify the bundle $f_{*}(T M) \oplus \mathbb{R} \xi$ with $T M \oplus E$, then to the vector field $f_{*}(Y)+\Psi \xi$ corresponds the section $Y \oplus \Psi$ of $T M \oplus E$. The Gauss and Weingarten formulae yield that to $D_{X}\left(f_{*} Y+\Psi \xi\right)$ corresponds

$$
\begin{equation*}
\widehat{D}_{X}(Y \oplus \Psi)=\left(\nabla_{X} Y-\Psi S X\right) \oplus(X(\Psi)+h(X, Y)+\Psi \tau(X)) \tag{14}
\end{equation*}
$$

where h is the affine fundamental form, S is the shape operator and τ is the transversal connection form (see [3] for the definitions). We look for f and ξ such that $\widehat{D}=\widehat{\nabla}$. Comparing the right-hand side of (14) with that of (6) and (8) for the section $0 \oplus 1$ gives $\tau=0$, which means that we may restrict ourselves to equiaffine transversal vector fields.

Furthermore, since h is always symmetric and vol is anti-symmetric, we see that there are no f and ξ which allow to identify in the above described way the connection (8) with the standard connection D on the bundle $\mathbb{R}^{3} \times M$.

As concerns (6), it should be $h=$ Ric, which implies that we should consider some realization of ∇ on a degenerate surface f with the type number $t f$ equal to 1 . Such realizations were described by B. Opozda in [7]. Using a general description
given in Proposition 6.2 of [7] and claiming that $\xi=-f$, we easily obtain the following particular local realizations of ∇

$$
\begin{equation*}
f(u, v)=(u, \cos v, \sin v) \in \mathbb{R}^{3} \quad \text { for } \varepsilon=1 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
f(u, v)=\left(u, \frac{\sqrt{2}}{2} e^{-v}, \frac{\sqrt{2}}{2} e^{v}\right) \in \mathbb{R}^{3} \quad \text { for } \varepsilon=-1 . \tag{16}
\end{equation*}
$$

Here u, v is some fixed local canonical coordinate system for ∇. The volume element $\mathrm{vol}=d u \wedge d v$ is the element induced by (f, ξ) from \mathbb{R}^{3}.

For a centro-affine immersion $(f, \xi=-f)$ and $n=2$ we have $S X=X$ and $\operatorname{Ric}(X, Y)=h(X, Y) \operatorname{tr} S-h(S X, Y)=(n-1) h(X, Y)=h(X, Y)$. It follows that using the immersion 15 or we may identify with the standard connection D.

To obtain $\widehat{\nabla}=\widehat{D}$ for $\widehat{\nabla}$ given by 9 we also choose and fix some local canonical coordinate system u, v for ∇ and use for example the immersion $f: M \rightarrow \mathbb{R}^{4}$, $f(u, v)=(u, \cos v, \sin v, 0)$ if $\varepsilon=1$ and $f(u, v)=\left(u, \frac{\sqrt{2}}{2} e^{-v}, \frac{\sqrt{2}}{2} e^{v}, 0\right)$ if $\varepsilon=-1$, and the two-dimensional transversal bundle spanned by $\xi_{1}(u, v)=-f(u, v)$ and $\xi_{2}(u, v)=(-v, 0,0,1)$. The induced connection (which is equal to ∇), the affine fundamental forms h^{1}, h^{2}, the shape operators S_{1}, S_{2}, and the normal connection forms $\tau^{i}{ }_{j}$ are defined by the following decompositions (cf [3])

$$
\begin{aligned}
D_{X} f_{*} Y & =f_{*} \nabla_{X} Y+h^{1}(X, Y) \xi_{1}+h^{2}(X, Y) \xi_{2} \\
D_{X} \xi_{1} & =-f_{*} S_{1} X+\tau_{1}^{1}(X) \xi_{1}+\tau_{1}^{2}(X) \xi_{2} \\
D_{X} \xi_{2} & =-f_{*} S_{2} X+\tau_{2}^{1}(X) \xi_{1}+\tau_{2}^{2}(X) \xi_{2}
\end{aligned}
$$

We obtain $\tau^{i}{ }_{j}=0, S_{1} X=X, S_{2}=d v(\cdot) \partial_{u}=\varepsilon L, h^{2}=0$ and $h^{1}\left(\partial_{u}, \partial_{u}\right)=$ $h^{1}\left(\partial_{u}, \partial_{v}\right)=0, h^{1}\left(\partial_{v}, \partial_{v}\right)=\varepsilon$. The volume element vol $=d u \wedge d v$ is induced from \mathbb{R}^{4}, $\operatorname{vol}(X, Y)=\operatorname{det}\left(f_{*} X, f_{*} Y, \xi_{1}, \xi_{2}\right)$. Identifying the vector field $f_{*}(Y)+$ $\Psi^{1} \xi_{1}+\Psi^{2} \xi_{2}$ with the section $Y \oplus\left(\Psi^{1}, \Psi^{2}\right)$ of $T M \oplus E$ we obtain $\widehat{\nabla}_{X}\left(Y \oplus\left(\Psi^{1}, \Psi^{2}\right)\right)$ as in (9) from $D_{X}\left(f_{*} Y+\Psi^{1} \xi_{1}+\Psi^{2} \xi_{2}\right)$.

Similarly as it was for (6), the above immersion f is degenerate. By definition (see [3]), an immersion $f: M^{2} \rightarrow \mathbb{R}^{4}$ is non-degenerate if the symmetric bilinear function G_{σ} is non-degenerate. For a local frame field $\sigma=\left(X_{1}, X_{2}\right)$ the function G_{σ} is defined by the formula (cf [3])

$$
\begin{aligned}
G_{\sigma}(Y, Z)= & \frac{1}{2}\left(\operatorname{det}\left(f_{*}\left(X_{1}\right), f_{*}\left(X_{2}\right), D_{Y} f_{*}\left(X_{1}\right), D_{Z} f_{*}\left(X_{2}\right)\right)\right. \\
& \left.+\operatorname{det}\left(f_{*}\left(X_{1}\right), f_{*}\left(X_{2}\right), D_{Z} f_{*}\left(X_{1}\right), D_{Y} f_{*}\left(X_{2}\right)\right)\right) .
\end{aligned}
$$

For $\sigma=\left(\partial_{u}, \partial_{v}\right)$ we obtain $G_{\sigma}=0$.
It is impossible to obtain in a similar way the connection 10 , because vol is anti-symmetric.

6. Some further remarks

In general, to each immersion (f, ξ) and to each local basis $\sigma=\left(X_{1}, X_{2}\right)$ of $T M$ corresponds some $G L(3, \mathbb{R})$-valued 1-form Ω_{σ}

$$
\Omega_{\sigma}=\left(\begin{array}{ccc}
-\omega_{1}^{1} & -\omega_{2}^{1} & S^{1}(\cdot) \\
-\omega_{1}^{2} & -\omega_{2}^{2} & S^{2}(\cdot) \\
-h\left(\cdot, X_{1}\right) & -h\left(\cdot, X_{2}\right) & -\tau
\end{array}\right) .
$$

Here $\omega^{i}{ }_{j}$ are local connection forms of the induced connection and $S=S^{1}(\cdot) X_{1}+$ $S^{2}(\cdot) X_{2}$ is the shape operator. The condition $d \Omega_{\sigma}-\Omega_{\sigma} \wedge \Omega_{\sigma}=0$ is equivalent to the fundamental Gauss, Codazzi and Ricci equations. The formula (5) gives on $T M \oplus E$ a flat connection \widehat{D} described by formula 14 .

The considered in the present paper 1-forms Ω_{i} were constructed as satisfying additional condition $\Omega_{i}=A \omega^{1}+B \omega^{2}+C \omega^{i}{ }_{j}$ with constant A, B and C. For given Ω_{σ} such constant A, B and C may not exist, in such a case the connection \widehat{D} is always different from $\widehat{\nabla}$. For example, (M, ∇) can be affinely immersed also as a non-degenerate surface in \mathbb{R}^{3}. Such immersions and transversal fields are described in [5]. If we use one of them, then we obtain \widehat{D} different from (6) and (8).

For each given connection ∇ on M, for each $(1,1)$ tensor field A and $(0,2)$ tensor field α we can define some connection $\widehat{\nabla}^{A, \alpha}$ on $T M \oplus E$ by the formula

$$
\widehat{\nabla}^{A, \alpha}(Y \oplus \Psi)=\left(\nabla_{X} Y+\Psi A X\right) \oplus(X(\Psi)+\alpha(X, Y))
$$

We may look for such connections ∇ for which there exist A and α such that $\widehat{\nabla}^{A, \alpha}$ is flat.

It is easy to compute

$$
\begin{aligned}
& \widehat{R}^{A, \alpha}(X, Y)(Y \oplus \Psi) \\
& \quad=\left(R(X, Y) Z+\alpha(Y, Z) A X-\alpha(X, Z) A Y+\Psi\left(\left(\nabla_{X} A\right)(Y)-\left(\nabla_{Y} A\right)(X)\right)\right) \\
& \quad \oplus\left(\left(\nabla_{X} \alpha\right)(Y, Z)-\left(\nabla_{Y} \alpha\right)(X, Z)+\Psi(\alpha(X, A Y)-\alpha(Y, A X))\right)
\end{aligned}
$$

7. The case of indefinite metric

To complete the description we consider now a two-dimensional manifold with indefinite metric g of constant curvature κ. We can assume, by replacing g by $-g$ if necessary, that $\kappa>0$. Let $\kappa=\frac{1}{\rho^{2}}$. We take a local basis X_{1}, X_{2} such that $g\left(X_{1}, X_{1}\right)=1=-g\left(X_{2}, X_{2}\right), g\left(X_{1}, X_{2}\right)=0$. The local connection forms are $\omega_{1}^{1}=\omega^{2}{ }_{2}=0, \omega_{2}^{1}=\omega^{2}{ }_{1}=: \omega$. The structural equations are $d \omega^{1}=-\omega \wedge \omega^{2}$, $d \omega^{2}=-\omega \wedge \omega^{1}, d \omega=-\kappa \omega^{1} \wedge \omega^{2}$ and the 1-form

$$
\Omega_{\sigma}=\left(\begin{array}{ccc}
0 & -\omega & -\frac{1}{\rho} \omega^{1} \\
-\omega & 0 & -\frac{1}{\rho} \omega^{2} \\
\frac{1}{\rho} \omega^{1} & -\frac{1}{\rho} \omega^{2} & 0
\end{array}\right)
$$

satisfies the condition $d \Omega_{\sigma}-\Omega_{\sigma} \wedge \Omega_{\sigma}=0$ [8]. Using (5] we obtain

$$
\begin{align*}
\widehat{\nabla}_{X}(Y \oplus \Psi)= & \left(\left(X\left(Y^{1}\right)+\omega(X) Y^{2}+\frac{1}{\rho} \omega^{1}(X) \Psi\right) X_{1}+\left(X\left(Y^{2}\right)+\omega(X) Y^{1}\right.\right. \\
& \left.\left.+\frac{1}{\rho} \omega^{2}(X) \Psi\right) X_{2}\right) \oplus\left(X(\Psi)-\frac{1}{\rho}\left(\omega^{1}(X) Y^{1}-\omega^{2}(X) Y^{2}\right)\right) \tag{17}\\
= & \left(\nabla_{X} Y+\frac{1}{\rho} \Psi X\right) \oplus\left(X(\Psi)-\frac{1}{\rho} g(X, Y)\right) .
\end{align*}
$$

Let $\mathbb{R}^{2,1}=\mathbb{R}^{3}$ with the scalar product $\left\langle\left(v^{1}, v^{2}, v^{3}\right),\left(w^{1}, w^{2}, w^{3}\right)\right\rangle=v^{1} w^{1}+v^{2} w^{2}-$ $v^{3} w^{3}$. Let $Q=\left\{x \in \mathbb{R}^{3}:\langle x, x\rangle=\rho^{2}\right\}$. Let $f: M \rightarrow Q \subset \mathbb{R}^{2,1}$ be a local isometric immersion. Then $g(X, Y)=\left\langle f_{*}(X), f_{*}(Y)\right\rangle$ and the connection induced by f and the normal vector field $\xi=\frac{1}{\rho} f$ is the Levi-Civita connection of g. We have $h(X, Y)=g(S X, Y)$ and $S X=-\frac{1}{\rho} X$. From 14 we obtain

$$
\widehat{D}_{X}(Y \oplus \Psi)=\left(\nabla_{X} Y+\frac{1}{\rho} \Psi(X)\right) \oplus\left(X(\Psi)-\frac{1}{\rho} g(X, Y)\right)
$$

and we see that $\widehat{D}=\widehat{\nabla}$.
If $\kappa=-\frac{1}{\rho^{2}}$, then to $-g$ corresponds the positive curvature $-\kappa=\frac{1}{\rho^{2}}$ and the formula (17) gives the flat connection

$$
\begin{align*}
\widehat{\nabla}_{X}(Y \oplus \Psi) & =\left(\nabla_{X} Y+\frac{1}{\rho} \Psi X\right) \oplus\left(X(\Psi)-\frac{1}{\rho}(-g)(X, Y)\right) \tag{18}\\
& =\left(\nabla_{X} Y+\frac{1}{\rho} \Psi X\right) \oplus\left(X(\Psi)+\frac{1}{\rho} g(X, Y)\right)
\end{align*}
$$

If $\rho=1$, then from (18) we obtain (1) and from (17) we obtain (2). It follows that Shchepetilov's formulae hold also for indefinite metric g.

8. Summary

For a locally symmetric connection ∇ with one-dimensional $\operatorname{im} R$ we have constructed two flat connections on the vector bundle $T M \oplus(\mathbb{R} \times M)$ and two flat connections on $T M \oplus\left(\mathbb{R}^{2} \times M\right)$. From each pair only one connection may be identified with the standard connection in $\mathbb{R}^{N}, N=3$ or $N=4$, after suitable local embedding of (M, ∇) into \mathbb{R}^{N}. Those embeddings are degenerate.

References

[1] Crittenden, Richard J. "Covariant differentiation." Quart. J. Math. Oxford Ser. (2) 13 (1962): 285-298. Cited on 40
[2] Gancarzewicz, Jacek. Zarys wspótczesnej geometrii różniczkowej. Warszawa: Script, 2010. Cited on 40.
[3] Nomizu, Katsumi and Takeshi Sasaki. "Affine differential geometry. Geometry of affine immersions." Vol. 111 of Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, 1994. Cited on 3845 and 46
[4] Nomizu, Katsumi and Barbara Opozda. "Locally symmetric connections on possibly degenerate affine hypersurfaces." Bull. Polish Acad. Sci. Math. 40, no. 2 (1992): 143-150. Cited on 38
[5] Opozda, Barbara. "Locally symmetric connections on surfaces." Results Math. 20, no. 3-4 (1991): 725-743. Cited on 39 and 47
[6] Opozda, Barbara. "Some relations between Riemannian and affine geometry." Geom. Dedicata 47, no. 2, (1993): 225-236. Cited on 38
[7] Opozda, Barbara. "A characterization of affine cylinders." Monatsh. Math. 121, no. 1-2 (1996): 113-124. Cited on 3945 and 46
[8] Robaszewska, Maria. "On some flat connection associated with locally symmetric surface." Ann. Univ. Paedagog. Crac. Stud. Math. 13 (2014): 19-44. Cited on 40 and 48.
[9] Sasaki, Ryu. "Soliton equations and pseudospherical surfaces." Nuclear Phys. B 154, no. 2 (1979): 343-357. Cited on 37
[10] Shchepetilov, Alexey V. "The geometric sense of the Sasaki connection." J. Phys. A 36, no. 13 (2003): 3893-3898. Cited on 38 and 45

Institute of Mathematics Pedagogical University of Cracow
Podchorażych 2
30-084 Kraków
Poland
E-mail: robaszew@up.krakow.pl

Received: July 25, 2015; final version: July 8, 2016; available online: July 22, 2016.

[^0]: AMS (2010) Subject Classification: 53C07, 53B05, 53B15.
 Keywords and phrases: connection on a vector bundle, associated vector bundle, connection form, locally symmetric connection.

