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Comparative growth analysis of Wronskians in the
light of their relative orders

Abstract. In this paper we study the comparative growth properties of a com-
position of entire and meromorphic functions on the basis of the relative order
(relative lower order) of Wronskians generated by entire and meromorphic
functions.

1. Introduction, definitions and notations

Let C be the set of all finite complex numbers. Also let f be a meromorphic
function and g be an entire function defined in C. The maximum modulus function
relating to entire g is defined asMg(r) = max{|g(z)| : |z| = r}. For a meromorphic
function f , Mf (r) cannot be identified as f is not analytic. In this case one may
characterize another function Tf (r) known as Nevanlinna’s characteristic function
of f , playing the same role as the maximum modulus function in the following way

Tf (r) = Nf (r) +mf (r),

where the function Nf (r, a) resp. Nf (r, a), known as counting function of a-points
(distinct a-points) of meromorphic f is defined as follows

Nf (r, a) =
∫ r

0

nf (t, a)− nf (0, a)
t

dt+ nf (0, a) log r

resp.
Nf (r, a) =

∫ r

0

nf (t, a)− nf (0, a)
t

dt+ nf (0, a) log r.

In addition, we represent by nf (r, a) (nf (r, a)) the number of a-points (distinct
a-points) of f in |z| ≤ r and an∞-point is a pole of f . In many occasions Nf (r,∞)
and Nf (r,∞) are symbolized by Nf (r) and Nf (r), respectively.
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On the other hand, the function mf (r,∞) alternatively indicated by mf (r),
known as the proximity function of f , is defined as

mf (r) = 1
2π

∫ 2π

0
log+ |f(reiθ)| dθ, where log+ x = max(log x, 0) for all x > 0.

Also we may imply m(r, 1
f−a ) by mf (r, a).

If f is entire, then the Nevanlinna’s characteristic function Tf (r) of f is defined
as

Tf (r) = mf (r).

Moreover, Mf (r) and Tf (r) are both strictly increasing and continuous func-
tions of r when the entire function f is non-constant. Also their inverses
M−1
f (r) : (|f(0)|,∞) → (0,∞) and T−1

f : (Tf (0),∞) → (0,∞) respectively exist,
where lims→∞M−1

g (s) =∞ and lims→∞ T−1
f (s) =∞.

In this connection we immediately remind the following definition which is
relevant.

Definition 1.1 ([2])
A non-constant entire function f is said have the Property (A) if for any σ > 1
and for all sufficiently large r, [Mf (r)]2 ≤ Mf (rσ) holds. For the examples of
functions with or without the Property (A), one may see [2].

However, in the case of any two entire functions f and g, the ratio Mf (r)
Mg(r)

as r → ∞ is illustrated as the growth of f with respect to g in terms of their
maximum moduli. Analogously, while f and g are both meromorphic functions,
the ratio Tf (r)

Tg(r) as r → ∞ is illustrated as the growth of f with respect to g in
terms of their Nevanlinna’s characteristic functions. Also the concept of the growth
measuring tools such as order and lower order which are conventional in complex
analysis and the growth of entire or meromorphic functions can be studied in terms
of their orders and lower orders – normally defined in terms of their growths with
respect to the exp function which are shown in the following definition.

Definition 1.2
The order ρf (resp. the lower order λf ) of an entire function f is defined as

ρf = lim sup
r→∞

log logMf (r)
log logMexp z(r)

= lim sup
r→∞

log logMf (r)
log(r)

resp.

λf = lim inf
r→∞

log logMf (r)
log logMexp z(r)

= lim inf
r→∞

log logMf (r)
log(r) .

When f is meromorphic, one may easily prove that

ρf = lim sup
r→∞

log Tf (r)
log Texp z(r)

= lim sup
r→∞

log Tf (r)
log( rπ ) = lim sup

r→∞

log Tf (r)
log(r) +O(1)
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resp.

λf = lim inf
r→∞

log Tf (r)
log Texp z(r)

= lim inf
r→∞

log Tf (r)
log( rπ ) = lim inf

r→∞

log Tf (r)
log(r) +O(1) .

Both entire and meromorphic functions have the regular growth if their order
coincides with their lower orders.

Bernal [1, 2] initiated the idea of the relative order of an entire function f
with respect to another entire function g, symbolized by ρg(f) to keep away from
comparing growth just with exp z which is as follows

ρg(f) = inf{µ > 0 : Mf (r) < Mg(rµ) for all r > r0(µ) > 0}

= lim sup
r→∞

logM−1
g Mf (r)
log r .

The definition agrees with the classical one [10] if g(z) = exp z.
Likewise, one may define the relative lower order of an entire function f with

respect to another entire function g symbolized by λg(f) in the following way

λg(f) = lim inf
r→∞

logM−1
g Mf (r)
log r .

Widening this notion, Lahiri and Banerjee [9] established the definition of the
relative order of a meromorphic function with respect to an entire function which
is as follows.

Definition 1.3 ([9])
Let f be any meromorphic function and g be any entire function. The relative
order of f with respect to g is defined as

ρg(f) = inf{µ > 0 : Tf (r) < Tg(rµ) for all large r}

= lim sup
r→∞

log T−1
g Tf (r)
log r .

Similarly, one may define the relative lower order of a meromorphic function f
with respect to an entire function g in the following way

λg(f) = lim inf
r→∞

log T−1
g Tf (r)
log r .

It is known (cf. [9]) that if g(z) = exp z, then Definition 1.3 coincides with the
classical definition of the order of a meromorphic function f .

The following definitions are also well known.

Definition 1.4
A meromorphic function a ≡ a(z) is called small with respect to f if T (r, a) =
S(r, f), where S(r, f) = o{T (r, f)}, i.e. S(r,f)

T (r,f) → 0 as r →∞.
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Definition 1.5
Let a1, a2, . . . , ak be linearly independent meromorphic functions and small with
respect to f . We denote by L(f) = W (a1, a2, . . . , ak, f) the Wronskian determi-
nant of a1, a2, . . . , ak, f , i.e.

L(f) =

∣∣∣∣∣∣∣∣∣
a1 a2 . . . ak f
a′1 a′2 . . . a′k f ′

...
...

...
...

...
a

(k)
1 a

(k)
2 . . . a

(k)
k f (k)

∣∣∣∣∣∣∣∣∣ .
Definition 1.6
If a ∈ C ∪ {∞}, the quantity

δ(a; f) = 1− lim sup
r→∞

N(r, a; f)
Tf (r) = lim inf

r→∞

m(r, a; f)
Tf (r)

is called the Nevanlinna’s deficiency of the value a.

From the second fundamental theorem, it follows that the set of values of
a ∈ C ∪ {∞} for which δ(a; f) > 0 is countable and

∑
a 6=∞ δ(a; f) + δ(∞; f) ≤ 2

(cf. [7, p.43]). If in particular,
∑
a 6=∞ δ(a; f) + δ(∞; f) = 2, we say that f has the

maximum deficiency sum.
In this paper we wish to prove some newly developed results based on the

growth properties of the relative order and the relative lower order of Wronskians
generated by entire and meromorphic functions. We do not explain the standard
definitions and notations in the theory of entire and meromorphic functions as
those are available in [7] and [11].

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1 ([3])
Let f be meromorphic and g be entire, then for all sufficiently large values of r

Tf◦g(r) 6 {1 + o(1)} Tg(r)
logMg(r)

Tf (Mg(r)).

Lemma 2.2 ([4])
Let f be meromorphic and g be entire and suppose that 0 < µ < ρg ≤ ∞. Then
for a sequence of values of r tending to infinity

Tf◦g(r) ≥ Tf (exp(rµ)).

Lemma 2.3 ([8])
Let f be meromorphic and g be entire such that 0 < ρg < ∞ and 0 < λf . Then
for a sequence of values of r tending to infinity

Tf◦g(r) > Tg(exp(rµ)),

where 0 < µ < ρg.
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Lemma 2.4 ([6])
Let f be an entire function which satisfies the Property (A), β > 0, δ > 1 and
α > 2. Then

βTf (r) < Tf (αrδ).

Lemma 2.5 ([5])
If f be a transcendental meromorphic function with the maximum deficiency sum
and g be a transcendental entire function of regular growth having non zero finite
order and

∑
a6=∞ δ(a; g) + δ(∞; g) = 2, then the relative order and relative lower

order of L(f) with respect to L(g) are same as those of f with respect to g, i.e.

ρL[g](L[f ]) = ρg(f) and λL[g](L[f ]) = λg(f).

3. Theorems

In this section we present the main results of the paper.

Theorem 3.1
Let f be a transcendental meromorphic function with the maximum deficiency sum
and h be a transcendental entire function of the regular growth having non zero
finite order with

∑
a6=∞ δ(a;h) + δ(∞;h) = 2 and 0 < λh(f) ≤ ρh(f) < ∞. Also

let g be an entire function with finite order. If h satisfies the Property (A), then
for every positive constant µ and each α ∈ (−∞,∞)

lim
r→∞

{log T−1
h Tf◦g(r)}1+α

log T−1
L[h]TL[f ](exp rµ)

= 0, where µ > (1 + α)ρg.

Proof. Let us suppose that β > 1 + o(1) and δ > 1. If 1 + α ≤ 0, then the
theorem is obvious. We consider 1 + α > 0.

Since T−1
h (r) is an increasing function of r, it follows from Lemma 2.1,

Lemma 2.4 and the inequality Tg(r) ≤ logMg(r) (cf. [7]) for all sufficiently large
values of r that

T−1
h Tf◦g(r) 6 T−1

h [{1 + o(1)}Tf (Mg(r))],

i.e.
T−1
h Tf◦g(r) 6 β[T−1

h Tf (Mg(r))]δ,

i.e.
log T−1

h Tf◦g(r) 6 δ log T−1
h Tf (Mg(r)) +O(1), (1)

i.e.
log T−1

h Tf◦g(r) 6 δ(ρh(f) + ε)rρg+ε +O(1). (2)

Again, for all sufficiently large values of r, we get in view of Lemma 2.5 that

log T−1
L[h]TL[f ](exp rµ) ≥ (λL[h](L[f ])− ε)rµ,

i.e.
log T−1

L[h]TL[f ](exp rµ) ≥ (λh(f)− ε)rµ. (3)
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Hence, for all sufficiently large values of r, we obtain from (2) and (3) that

{log T−1
h Tf◦g(r)}1+α

log T−1
L[h]TL[f ](exp rµ)

≤ [δ(ρh(f) + ε)rρg+ε +O(1)]1+α

(λh(f)− ε)rµ , (4)

where we choose 0 < ε < min{λh(f), µ
1+α − ρg}. So from (4) we obtain that

lim
r→∞

{log T−1
h Tf◦g(r)}1+α

log T−1
L[h]TL[f ](exp rµ)

= 0.

This proves the theorem.

Remark 3.2
In Theorem 3.1 if we take the condition 0 < ρh(f) < ∞ instead of 0 < λh(f) ≤
ρh(f) <∞, the theorem remains true with “limit inferior” in place of “limit”.

In view of Theorem 3.1, the following theorem can be carried out.

Theorem 3.3
Let f be a meromorphic function and g, h be any two transcendental entire func-
tions with the maximum deficiency sum where g is with finite order, h is of the
regular growth having non zero finite order, λh(g) > 0 and ρh(f) <∞. If h satisfy
the Property (A), then for every positive constant µ and each α ∈ (−∞,∞)

lim
r→∞

{log T−1
h Tf◦g(r)}1+α

log T−1
L[h]TL[g](exp rµ)

= 0, where µ > (1 + α)ρg.

The proof is omitted.

Remark 3.4
If we take in Theorem 3.3 the condition ρh(g) > 0 instead of λh(g) > 0, the
theorem remains true with “limit” replaced by “limit inferior”.

Theorem 3.5
Let f be a transcendental meromorphic function with

∑
a 6=∞ δ(a; f) + δ(∞; f) = 2

and g be an entire function with λg < µ < ∞. Also let h be any transcendental
entire function of the regular growth having non zero finite order with the maximum
deficiency and satisfies Property (A) and 0 < λh(f) ≤ ρh(f) < ∞. Then for
a sequence of values of r tending to infinity

T−1
h Tf◦g(r) < T−1

L[h]TL[f ](exp rµ).

Proof. Let us consider δ > 1. Since T−1
h (r) is an increasing function of r, it

follows from (1) that for a sequence of values of r tending to infinity

log T−1
h Tf◦g(r) 6 δ(ρh(f) + ε)rλg+ε +O(1). (5)
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Now, (3) and (5), for a sequence of values of r tending to infinity, yield

log T−1
L[h]TL[f ](exp rµ)

log T−1
h Tf◦g(r)

≥ (λh(f)− ε)rµ

δ(ρh(f) + ε)rλg+ε +O(1) . (6)

As λg < µ, we can choose ε (> 0) in such a way that

λg + ε < µ < ρg. (7)

Thus, from (6) and (7), we obtain that

lim sup
r→∞

log T−1
L[h]TL[f ](exp rµ)

log T−1
h Tf◦g(r)

=∞. (8)

From (8), we obtain for a sequence of values of r tending to infinity and also for
K > 1

T−1
L[h]TL[f ](exp rµ) > T−1

h Tf◦g(r).

Thus the theorem follows.

In the line of Theorem 3.5, we may state the following result without its proof.

Theorem 3.6
Let g be any transcendental entire function with

∑
a6=∞ δ(a; g) + δ(∞; g) = 2,

λg < µ < ∞ and h be any transcendental entire function of the regular growth
having non zero finite order with the maximum deficiency sum and satisfy the
Property (A). Let moreover, f be a meromorphic function with finite relative order
with respect to h. Then for a sequence of values of r tending to infinity

T−1
h Tf◦g(r) < T−1

L[h]TL[g](exp rµ)

when λh(g) > 0.

Theorem 3.7
Let f be a meromorphic function and h, g be any two transcendental entire func-
tions with

∑
a6=∞ δ(a;h) + δ(∞;h) = 2,

∑
a 6=∞ δ(a; g) + δ(∞; g) = 2, λh(f) > 0

and 0 < ρh(g) < ∞. If h is of the regular growth having non zero finite order,
then

lim sup
r→∞

log T−1
h Tf◦g(r)

log T−1
L[h]TL[g](exp rµ)

=∞,

where 0 < µ < ρg.

Proof. Let 0 < µ < µ′ < ρg. As T−1
h (r) is an increasing function of r, it

follows from Lemma 2.2 for a sequence of values of r tending to infinity that

log T−1
h Tf◦g(r) ≥ log T−1

h Tf (exp(rµ
′
)),

i.e.
log T−1

h Tf◦g(r) ≥ (λh(f)− ε)rµ
′
. (9)
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Again for all sufficiently large values of r we get in view of Lemma 2.5 that

log T−1
L[h]TL[g](exp rµ) ≤ (ρL[h](L[g]) + ε)rµ,

i.e.
log T−1

L[h]TL[g](exp rµ) ≤ (ρh(g) + ε)rµ. (10)

Therefore combining (9) and (10), we obtain for a sequence of values of r tending
to infinity that

log T−1
h Tf◦g(r)

log T−1
L[h]TL[g](exp rµ)

≥ (λh(f)− ε)rµ′

(ρh(g) + ε)rµ . (11)

Since µ < µ′, the theorem follows from (11).

Corollary 3.8
Under the assumptions of Theorem 3.7,

T−1
h Tf◦g(r) ≥ T−1

L[h]TL[g](exp rµ), 0 < µ < ρg.

Proof. In view of Theorem 3.7, we get for a sequence of values of r tending
to infinity that

log T−1
h Tf◦g(r) ≥ K log T−1

L[h]TL[g](exp rµ) for K > 1,

i.e.
log T−1

h Tf◦g(r) ≥ log{T−1
L[h]TL[g](exp rµ)}K ,

i.e.
log T−1

h Tf◦g(r) ≥ log T−1
L[h]TL[g](exp rµ),

i.e.
T−1
h Tf◦g(r) ≥ T−1

L[h]TL[g](exp rµ)

from which the corollary follows.

Similarly one may state the following theorem and corollary without their
proofs as those can be carried out in the line of Theorem 3.7 and Corollary 3.8,
respectively.

Theorem 3.9
Let f be a transcendental meromorphic function with the maximum deficiency sum
and h be an transcendental entire function of regular growth having non zero finite
order with

∑
a6=∞ δ(a; )h + δ(∞;h) = 2. If h satisfies 0 < λh(f) ≤ ρh(f) < ∞,

then for any entire function g

lim sup
r→∞

log T−1
h Tf◦g(r)

log T−1
L[h]TL[f ](exp rµ)

=∞,

where 0 < µ < ρg.
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Corollary 3.10
Under the assumptions of Theorem 3.9,

T−1
h Tf◦g(r) ≥ T−1

L[h]TL[f ](exp rµ), 0 < µ < ρg.

As an application of Theorem 3.5 and Corollary 3.10, we may state the fol-
lowing result.

Theorem 3.11
Let f be a transcendental meromorphic function with

∑
a 6=∞ δ(a; f) + δ(∞; f) = 2

and g be an entire function with λg < µ < ρg. Let moreover, h be any transcenden-
tal entire function of the regular growth having non zero finite order with the max-
imum deficiency and satisfying the Property (A) and let 0 < λh(f) ≤ ρh(f) <∞.
Then

lim inf
r→∞

T−1
h Tf◦g(r)

T−1
L[h]TL[f ](exp rµ)

≤ 1 ≤ lim sup
r→∞

T−1
h Tf◦g(r)

T−1
L[h]TL[f ](exp rµ)

.

The proof is omitted.
Similarly, in view of Theorem 3.6 and Corollary 3.8, the following theorem can

be carried out.

Theorem 3.12
Let h be any transcendental entire function of the regular growth having non zero
finite order with the maximum deficiency sum and satisfying the Property (A)
and let g be any transcendental entire function with

∑
a6=∞ δ(a; g) + δ(∞; g) = 2,

0 < λg < µ < ρg < ∞ and 0 < λh(g) ≤ ρh(g) < ∞. Moreover, let f be
a meromorphic function with 0 < λh(f) ≤ ρh(f) <∞. Then

lim inf
r→∞

T−1
h Tf◦g(r)

T−1
L[h]TL[g](exp rµ)

≤ 1 ≤ lim sup
r→∞

T−1
h Tf◦g(r)

T−1
L[h]TL[g](exp rµ)

.

The proof is omitted.

Theorem 3.13
Let f be a transcendental meromorphic function with

∑
a 6=∞ δ(a; f) + δ(∞; f) = 2

and let h be any transcendental entire function of the regular growth having non
zero finite order with the maximum deficiency sum and 0 < λh(f) ≤ ρh(f) < ∞.
Then for any entire function g

lim sup
r→∞

log[2] T−1
h Tf◦g(exp rB)

log[2] T−1
L[h]TL[f ](exp rµ)

=∞,

where 0 < µ < ρg and B > 0.

Proof. Let 0 < µ′ < ρg. As T−1
h (r) is an increasing function of r, it follows

from (9), for a sequence of values of r tending to infinity that

log[2] T−1
h Tf◦g(r) ≥ O(1) + µ′ log r.
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Hence, for a sequence of values of r tending to infinity, we get

log[2] T−1
h Tf◦g(exp rB) ≥ O(1) + µ′rB . (12)

Again in view of Lemma 2.5, we have for all sufficiently large values of r that

log T−1
L[h]TL[f ](exp rµ) ≤ (ρL[h](L[f ]) + ε)rµ,

i.e.
log T−1

L[h]TL[f ](exp rµ) ≤ (ρh(f) + ε)rµ,

i.e.
log[2] T−1

L[h]TL[f ](exp rµ) ≤ O(1) + µ log r. (13)

Now combining (12) with (13) we obtain for a sequence of values of r tending to
infinity that

log[2] T−1
h Tf◦g(exp rB)

log[2] T−1
L[h]TL[f ](exp rµ)

≥ O(1) + µ′rB

O(1) + µ log r ,

which completes the proof.

In view of Theorem 3.13, we can state the following result.

Theorem 3.14
Let h be any transcendental entire function of the regular growth having non zero
finite order with the maximum deficiency sum and let g be any transcendental
entire function with

∑
a 6=∞ δ(a; g) + δ(∞; g) = 2, λh(f) > 0 and 0 < ρh(g) < ∞.

Then for any meromorphic function f

lim sup
r→∞

log[2] T−1
h Tf◦g(exp rB)

log[2] T−1
L[h]TL[g](exp rµ)

=∞,

where 0 < µ < ρg and B > 0.

The proof is omitted.

Theorem 3.15
Let f be a transcendental meromorphic function with

∑
a 6=∞ δ(a; f) + δ(∞; f) = 2

and let h be any transcendental entire function of the regular growth having non
zero finite order with the maximum deficiency sum and λh(f) > 0. Then for any
entire function g with 0 < ρg ≤ ∞

lim sup
r→∞

log T−1
h Tf◦g(r)

log T−1
L[h]TL[f ](r)

=∞.

Proof. Since T−1
h (r) is an increasing function of r, we get from Lemma 2.2

for a sequence of values of r tending to infinity that

log T−1
h Tf◦g(r) ≥ log T−1

h Tf (exp(rµ)),
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i.e.
log T−1

h Tf◦g(r) ≥ (λh(f)− ε)rµ, (14)

where 0 < µ < ρg ≤ ∞.
Also for all sufficiently large values of r, in view of Lemma 2.5, we obtain that

log T−1
L[h]TL[f ](r) ≤ (ρL[h](L[f ]) + ε) log r,

i.e.
log T−1

L[h]TL[f ](r) ≤ (ρh(f) + ε) log r. (15)

Therefore from (14) and (15), for a sequence of values of r tending to infinity, we
obtain that

log T−1
h Tf◦g(r)

log T−1
L[h]TL[f ](r)

≥ (λh(f)− ε)rµ′

(ρh(f) + ε) log r ,

i.e.

lim sup
r→∞

log T−1
h Tf◦g(r)

log T−1
L[h]TL[f ](r)

=∞.

Thus the theorem follows.

Theorem 3.16
Let h be any transcendental entire function of the regular growth having non zero
finite order with the maximum deficiency sum and let g be any transcendental
entire function with

∑
a 6=∞ δ(a; g) + δ(∞; g) = 2 and λh(g) > 0. Then for any

meromorphic function f

lim sup
r→∞

log T−1
h Tf◦g(r)

log T−1
L[h]TL[g](r)

=∞,

where 0 < ρg <∞ and 0 < λf .

The proof of Theorem 3.16 is omitted as it can be carried out in the line of
Theorem 3.15 and with the help of Lemma 2.3.

Theorem 3.17
Let f be a transcendental meromorphic function with

∑
a 6=∞ δ(a; f) + δ(∞; f) = 2

and let h be any transcendental entire function of the regular growth having non
zero finite order with the maximum deficiency sum and 0 < λh(f) ≤ ρh(f) < ∞.
Moreover, let g be an entire function with non zero order. Then for every positive
constant A and every real number α

lim sup
r→∞

log T−1
h Tf◦g(r)

{log T−1
L[h]TL[f ](rA)}1+α =∞.

Proof. If α be such that 1+α ≤ 0, then the theorem is trivial. So we suppose
that 1 + α > 0.
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From the definition of ρL[h](L[f ]) and from from Lemma 2.5 it follows that for
all sufficiently large values of r

log T−1
L[h]TL[f ](rA) ≤ (ρL[h](L[f ]) + ε)A log r,

i.e.
log T−1

L[h]TL[f ](rA) ≤ (ρh(f) + ε)A log r,
i.e.

{log T−1
L[h]TL[f ](rA)}1+α ≤ (ρh(f) + ε)1+αA1+α(log r)1+α. (16)

Now from (14) and (16), it follows that for a sequence of values of r tending to
infinity

log T−1
h Tf◦g(r)

{log T−1
L[h]TL[f ](rA)}1+α >

(λh(f)− ε)rµ

(ρh(f) + ε)1+αA1+α(log r)1+α .

Since rµ

(log r)1+α →∞ as r →∞, the proof is completed.

In the line of Theorem 3.17 and with the help of Lemma 2.2, one may state
the following result (the proof will be omitted).

Theorem 3.18
Let f be a transcendental meromorphic function with

∑
a 6=∞ δ(a; f) + δ(∞; f) = 2

and non zero finite lower order and let g be an entire function with non zero finite
order. Moreover, let h be any transcendental entire function of the regular growth
having non zero finite order with the maximum deficiency sum, ρh(f) < ∞ and
λh(g) > 0. Then for every positive constant A and every real number α

lim sup
r→∞

log T−1
h Tf◦g(r)

{log T−1
L[h]TL[f ](rA)}1+α =∞.

Theorem 3.19
Let h be any transcendental entire function of the regular growth having non zero
finite order with the maximum deficiency sum and let g be any transcendental
entire function with

∑
a6=∞ δ(a; g) + δ(∞; g) = 2 and ρh(g) < ∞. Also let f be

a meromorphic function with 0 < λh(f). Then for every positive constant A and
every real number α

lim sup
r→∞

log T−1
h Tf◦g(r)

{log T−1
L[h]TL[g](rA)}1+α =∞.

Theorem 3.20
Let h be any transcendental entire function of the regular growth having non zero
finite order with the maximum deficiency sum and let g be any transcendental
entire function with non zero finite order,

∑
a 6=∞ δ(a; g) + δ(∞; g) = 2 and 0 <

λh(g) ≤ ρh(g) < ∞. Let moreover, f be a meromorphic function with non zero
finite lower order. Then for every positive constant A and every real number α

lim sup
r→∞

log T−1
h Tf◦g(r)

{log T−1
L[h]TL[g](rA)}1+α =∞.
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We omit the proofs of Theorem 3.19 and Theorem 3.20 as those can be carried
out in the line of Theorem 3.17 and Theorem 3.18, respectively.

4. Conclusion

The main aim of this paper is to extend the notion of order to the relative
order in case of the growth properties of Wronskians generated by transcendental
meromorphic functions. In fact, the relative order of growth gives a quantita-
tive assessment of how different functions scale each other and until what extent
they are self-similar in growth. Actually, in this paper we have established some
theorems in this connection. Here, we are trying to extend the notion of growth
properties of Wronskians on the basis of the relative order and the relative lower
order. But still there are some problems to be investigated further. One of such
problems is the study of the growth properties of any type of differential poly-
nomial of higher dimension on the basis of the generalized relative order and the
generalized relative lower order characterized by slowly changing functions. These
type of studies can be regarded as open problems for the future workers in this
branch.
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