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Stability of a generalization of the Fréchet
functional equation

Abstract. We prove some stability and hyperstability results for a genera-
lization of the well known Fréchet functional equation, stemming from one
of the characterizations of the inner product spaces. As the main tool we
use a fixed point theorem for some function spaces. We end the paper with
some new inequalities characterizing the inner product spaces.

1. Introduction

The following theorem has been proved in [2] (N and Z stand, as usual, for the
sets of all positive integers and integers, respectively; moreover, Zg := Z \ {0}).

THEOREM 1

Let (X,4) be a commutative group, Xo := X \ {0}, Y be a Banach space, and
f:X =Y, ¢:Zy — [0,00) and L: Xo® — [0,00) satisfy the following three
conditions:

M:={meZy: c(-2m)+ 2¢c(m+ 1)+ 2¢(—m) + c(2m + 1) < 1} # 0,

L(kx, ky, kz) < c(k)L(z,y,2),  x,y,2€ Xo, me M,

1
ke{-2m,m+1,—m,2m+ 1}, (L)

[fe+y+2)+f@)+ fy)+ () = fla+y) - fla+2) - fly+2)] < L(x,y,2),
for all x,y,z € Xo. Then there is a unique function F: X =Y satisfying

Fle+y+2)+F@)+Fly)+Fe)=Flx+y)+Flz+2)+Fly+2) (2)
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for all x,y,z € X and such that
If(z) = F(x)ll < pr(x), =€ Xo,
where

. L((2m + 1)z, —mz, —mz)
PLl@) = T om) — 20(m + 1) — 2e(=m) — c@m + 1)’

z € Xp.

Equation is sometimes called the Fréchet functional equation. The reason
for this is that M. Fréchet [12] used it to characterize the inner product spaces in
a similar way as Jordan and von Neumann [I5] did using the parallelogram law.
Namely, he proved that a normed space (X, || -||) is an inner product space if and
only if, for all z,y,z € X,

lz + 5+ 2l + 2l® + lyl* + 1207 = [l + yl* + [l + 21 + [ly + 2% (3)

For more information we refer to [Tl 10} 21, 22} 23].
Theorem [1| yields the subsequent characterization of inner product spaces
(see [2, Corollary 5(i)]).

COROLLARY 2
Let X be a normed space and Xo := X \ {0}. Write

D(@,y,2) = [l +y+ 27+ l2l® + Iyl + l21* = =+ ylI* = |2+ 2[I* - lly + 2|

for x,y,z € X. Assume that there exist wg,a;,s; € R such that a; > 0 and
wos; <0 fori=1,2,3 and

D(z,y, 2)
sup < 0.
wy.zexo (a1]|z]*t + azlly[[*2 + as|z([*)*

Then X is an inner product space.

Actually it is assumed in [2], Corollary 5(i)] that wgs; > 0 for i = 1, 2,3, but it
is a mistake; the inequality should be as in Corollary [2}
Equation (2)) can also be written in the form

Agy-f(0)=0 and f(0)=0, (4)
where A denotes the Fréchet difference operator defined by
Ayf(x) = Ay f(z) = fle+y) - f(z), zyes,

At,z = AtoAza A? = At,t7 t,z € 57
At,u,z = AtOAuOAz, A? = At,t,t; t,U,ZGS
for functions mapping a commutative group (.S, +) into a group (see [2]). Moreover,

can be written as
Cgf('r7 Y, Z) = 07
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where
sz(zayv Z) = Cf(ZE, Y+ Z) - Cf(ll?,y) - Cf(l’, Z)
and
Cflzy) = fla+y) - f@) = fy),
i.e. C2f is the Cauchy difference of f of the second order.

It is known (see [2, [I8]) that every solution f of , mapping a commutative
group (G, +) into a real linear space X, has the form f = a + ¢ with an additive
function a: G — X and a quadratic function ¢q: G — X.

In this paper we show that results analogous to Theorem [I] can be proved for
the following more general functional equation

Arf(z+y+2) + Ao f(x) + Asf(y) + Aaf(2)
=Asf(z +y) + Aef(x +2) + Arf(y + 2),

in the class of functions mapping a commutative group X into a Banach space Y
over a field K € {R,C}, where Aq,..., A; € K are fixed (R and C denote the sets
of real and complex numbers, respectively). It is easily seen that becomes

The results we prove correspond also to some outcomes in [8, [T} 16}, 19, 25].

The results in [2] as well as our main theorem have been motivated by the
notion of hyperstability of functional equations (see, e.g., [3, [4, [5] (13 [20]), intro-
duced in connection with the issue of stability of functional equations (for more
details see, e.g., [I4, [I7]).

(5)

2. Auxiliary fixed point result

We need the subsequent fixed point theorem proved for function spaces in [6];
it will be the main tool in the proof of our main theorem (R, stands for the set of
nonnegative reals and A? denotes the family of all functions mapping a set B # ()
into a set A # ()). For related outcomes we refer to [7} [0]; a similar approach to
stability of functional equations has been already applied in [5], 24].

THEOREM 3
Let the following three hypotheses be valid.

(H1) S is a nonempty set, E is a Banach space, and functions fi,...,fr: S — S
and Ly, ..., Lg: S — Ry are given.

(H2) T: ES — E® is an operator satisfying the inequality
k
ITé(x) = Tu(@)| <Y Li@)lE(fil@) — u(fu@))ll,  &ueE% zes.
i=1
(H3) A: RS = R, % is defined by

k

Ad(x) := ZLZ(x)(S(fz(x)), SeR,, zeb.
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Assume that functionse: S — Ry and ¢: S — FE fulfil the following two conditions

ITe(x) — (@)l <e(x),  ze€s,

e*(x) := ZA”&‘(SL‘) < 00, xeSs.
n=0
Then there exists a unique fixed point v of T with

lo(z) = ()| < e*(x), =x€S.
Moreover,

Y(z) = lim T p(z), x €S

n—oo

3. The main result
The next theorem is the main result of the paper.

THEOREM 4 ~
Let (X, +) be a commutative group, X := X*\ {(0,0,0)}, Y be a Banach space,
and Ay,...,A7 € K€ {R,C} such that Ay #0 and

Ao+ Az + Ay = A5 + Ag + Ar. (6)

Assume that f: X — Y, ¢t Zy — [0,00) and L: X — [0,00) satisfy and the
following two conditions:
M :={m € Zy : |A7|c(—2m) + | A5 + Aglc(m + 1) )
+ Az + Asle(—=m) + [Az|c(2m + 1) < |A1]} # 0,
[Arf(z +y+2) + Ao f () + A3 f(y) + Asf(2) — As f(z + y)

~ 8
—Aﬁf(m+z)—A7f(y+z)||gL(x,y,x), (x,y,z)GX. ( )

Then there exists a unique function F: X — Y satisfying forall x,y,z € X
and such that

[f(x) = F@)l < pr(z),  2€Xo:=X\{0}, (9)

where L 0 )
m—+1)x, —mx, —mx
;= inf ! ’
pu(z) = inf, (A1 — Bom ’

B = |Az|e(=2m) + | A5 + Agle(m + 1) 4+ |As + Agle(—m) + |Az|e(2m + 1).

(10)
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Proof. First we consider the case Ay = 1. Replacing x by (2m + 1)z and
taking y = z = —mux in we obtain

1f(2) + A2 f((2m + 1)z) + (As + Aa) f(—mz)
— (A5 + Ag) f((m + 1)) — A7 f(=2mz)| (11)
< L((2m + 1)z, —mz, —mz) =: (), x € Xo, m € Zy.

Next put
Tmé(x) := A7{(—2mx) + (A5 + Ag)E((m + 1))
— (As + Ay)&(—mzx) — A8((2m + 1)), ceyX ze X, me,.
It is easy to notice that, by (6,
T [(0) =0, neN, m € Zy, (12)
and inequality can be written as
[T f(z) = f(@)| S em(z), € Xo, m e Zo.

Define an operator A,,: Rf“ — Rf“ for m € Zg by

Amn(z) := [Az|n(=2mx) + |A5 + Ag|n((m + 1))

+ |As + Agln(—ma) + |A2n((2m + 1)x)

for n € Rfo and z € Xy. Notice that, for each m € Zg, the operator A := A,,, has
the form described in (H3) with k =4, S = Xy, E =Y and

filz) = =2mz, fo(x) = (m+ Dz, f3(x) =-—mz, fi(z)=(2m+ 1)z,
Li(z) = [Az7], Lo(z) = |As + Agl, Ls(z) =[As + Aal, La(z) =[A2[, z€ Xo.

Moreover, for every &, € YX0 2 € Xo, m € Zo,

[ Tmé(x) = Trp(@)]|
= [|A7§(—2mx) + (A5 + Ag)&((m + 1)z) — (A3 + As)é(—ma)
— A26((2m + D)x) — Azp(—2mz) — (A5 + Ag)p((m + 1)z)
+ (A3 + Ay p(—mz) + Aop((2m + 1)z) ||
< [A7[|I(§ — ) (—2maz)[| + [A5 + Agl|[(§ — ) ((m + D))
+ Az + Aal|[(€ — p) (=ma)[| + [A2[[|(§ — p)((2m + D)z)|

)€ = w(fil)],

H'M.>

where
€= =& —nly), yeXo.
Note that, in view of , we have

Amer(x) < Bmer(x), k,m € Zg, x € Xo. (13)
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By induction it is easy to show that the linearity of A,, implies
Aner(z) < (Bm)"er(x) (14)

for x € Xy, k,n € N. So, we receive the following estimation

)= Y Nen(@) £ S aen( = 2 e Moz e Xy
n=0 m

n=0

By Theorem [3| (with S = Xy and E = Y), for each m € M there exists
a function F),: Xo — Y such that

F\(2) = AgFy(—2ma) + (As + Ag)Fly((m + 1))
— (A3 + Ay)E),(—mz) — AsF] ((2m + 1)z), z € Xo

and

If(2) = Fr (@)l <
Moreover,
F! (z) = lim T f(z), z € Xo, m € M.
n—oo
Now, define F,,: X — Y by
F(0)=0, F,(x):=F, (z), xz € Xo, m € M.
Then it is easily seen that, by ,
F,(z) = li_>m T f(x), reX,meM.
Next, by induction we show that

[T f(z+y+2) + AT f(2) + AT fy) + Aa T f(2)
— AT f(@+y) — AsTo f(@ + 2) — A7 T f(y + 2| (15)
< (Bm)" L2y, 2)
for every (z,y,2) € X, n € Ny := NU{0}, m € M.

Fix m € M. For n = 0 condition becomes . So, take | € Ny and
suppose that holds for n =1 and (z,y,2) € X. Then we have

ITo f( 4y +2) + AT f(2) + AsTo f(y) + AaT T f(2)
— AT fe+y) = AsTo e+ 2) — AsT fly + 2)
= | AT f(=2m(z 4y + 2)) + (A5 + A6) T f((m + 1) (z + y + 2))
— (A3 + AT f(—m(z + y + 2)) — AT f(2m + 1) (z + y + 2))
+ A7 Ao T f(—2ma) 4 (As + Ag) Ao T f((m + 1))
— (A3 + A1) AT, f(—ma) — Ay AT, f((2m + 1))



Stability of a generalization of the Fréchet functional equation [75]

+ A7 AT F(—2my) + (As + Ae) AsTL f(m + 1)y)

— (Ag + A AT f(—my) — A2 AsT), f((2m + 1)y)

+ A7 Ay T f(—2mz) + (As + Ag) AT f((m 4 1)2)

— (A3 + A ATy f(=mz) — A Ag T f((2m + 1)2)

— A7 AsT f(=2m(z +y)) — (A5 + Ae) As T f(m + 1) (2 + y))

+ (A3 + A As Ty f (=m(z +y)) + A2 As Ty f((2m + 1) (2 + )

— A7 AGTL f(—2m(z + 2)) — (As + Ag) AsTL f((m + 1) (z + 2))

+ (A3 4+ AN AT f(—m(z + 2)) + As As T f(2m + 1) (z + 2))

— A7 AT f(=2m(y + 2)) — (A5 + A6) A7 T, f((m + 1) (y + 2))

+ (Az + AN AT, f(=m(y + 2)) + A2 A7 T f(2m + 1) (y + 2))|

< (ﬂm)l(|A7|L(72mx, —2my, —2mz)

+ |45 + As|L((m + Dz, (m + 1)y, (m + 1)z)

+ |As + A4|L(—max, —my, —mz) + |A2|L((2m + 1)z, 2m + 1)y, (2m + 1)2))
< (Bm) ' L(2,y, 2)

for every (z,y, z) € X, which ends the proof of (L5).
Letting n — oo in , we obtain

Fo(x+y+2)+ AsF,(x) + AsF(y) + AaFp(2) (16)
=AsF (x4 y) + A¢F(x + 2) + A7Fn(y + 2), (z,9,2) € X.

So, we have proved that, for each m € M there exists a function F,,: X — Y
satisfying the equation for (x,y,z) € X and such that

em(x
5@ - Pl < 2280 s e x, a7)
Next, we show that F,, = F} for all m,k € M. So, fix m,k € M. Note that
Fy, satisfies with m replaced by k. Hence, replacing z by (2m+ 1)z and taking
y=2z=—mzin , we obtain that 7, F; = Fj for j = m, k and

1Fne) - Pl < 2804 28 e x,,

whence, by the linearity of A and | .,
Al e () n Al er(x)
1- Bm 1- Bk

B (x) = Fy(2)|| = 1T Fm (2) = Ty Fi ()] <

< (Bm)"em () + (Br)"ex(x)
1- ﬂm 1- 5]@
for every © € Xy and n € N. Therefore, letting n — oo we get F,,, = Fy, =: F.
Thus, in view of (L7)), we have proved that

(@) - Fa)] < Z2)

1—- ﬁm ’
whence we derive @

reX, z#0, meM,
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Since (in view of (L6))) it is easy to notice that F is a solution to (5) (i.e.
holds for all z,y, z € X), it remains to prove the statement concerning the unique-
ness of F. So, let G: X — Y be also a solution of (5)) and ||f(z) — G(x)|| < pr(z)
for x € X, v # 0. Then

IG(x) - F@)| < 200(x),  w€X, a0, (18)

Further, 7,,G = G for each m € Zy. Hence, with a fixed m € M, by we get

|G(z) = F(x)|| = | THG(x) — TaF(x)|| < 2A7 pp(x) < 2A5Em (@)

o 1- /Bm
_ 2Bu)"em(@)
- 1- Bm
for x € Xy and n € N. Consequently, letting n — co we obtain that G = F, and

that ends the proof in the case A; = 1.
If A; # 1, then can be rewritten in the form

[ f(x+y+2) + A5 f(x) + A3 f(y) + ALf(2) — A5 f(x +y)

_(19)
_A/Gf(x+z)_A{7f(y+Z)|| SL/(.I,y,Z), (Z’,y,Z)EX,
where "

A=t =2,...,7
3 A17 ? y s by

L ~

L/<x7y7'z) = Ma (xayaz) S X7

| A

and it is easily seen that the statement can be easily deduced from the case A; = 1.

The following hyperstability result can be deduced from Theorem [ It cor-
responds to the recent hyperstability outcomes in [5 24] and some classical sta-
bility results concerning the Cauchy equation (see, e.g., [3, p.3], [14, p.15,16] and

17, p.2]).

COROLLARY 5 R

Let (X, +) be a commutative group, X := X3\{(0,0,0)}, Y be a Banach space over
K e {R,C}, Ay,...,A7 € K, A1 # 0 and @ be valid. Assume that f: X =Y,
¢t Zo — [0,00) and L: X — [0,00) satisfy conditions @, @. and

sup By, < |A41], inf L((2m+ 1)z, —mzx,—mzx) =0, ze X, x#0.
meM meM

Then there exists a function F: X — Y satisfying for all z,y,z € Xy such
that f(z) = F(x) for x € Xy.

Proof. Tt is easily seen that pr(z) = 0 for each x € Xy, where py, is defined
by . Hence Theorem M| implies the statement.
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REMARK 6
If, in Theorem 4

L(z,y,2) = (aa[|z]]” + azllyl]” + esllz]")",  (z,9,2) € X, (20)

with some «;, p,w € R such that a; > 0 for i =1,2,3, p > 0 and w < 0, then it is
easily seen that the function c¢ can, for instance, have the form ¢(m) = |m|P*.

The next corollary generalizes Corollary [2] to some extent; it shows possible
application of the main result of this paper.

COROLLARY 7
Let X be a normed space over K € {R,C}, Xo := X\{0}, A1,..., A7 €K, A1 #0,
and @ be valid. Write

D(w,y,2) = |[Arllz +y + 2I* + Azfla]|* + As|lyll* + Aal|2]*
— Asllz +yl?* — Agllz + 2|* — Azlly + 2|l

for z,y,z € X. Assume that there exist a;,w,p € R such that p > 0, w < 0,
a; >0 fori=1,2,3 and

D
sup (,y,2) <.

(@ myex (@llzlP +aolly[[P + asl|z][F)*

Then X is an inner product space.

Proof. Write f(z) = ||z||* for z € X. Then, with L and ¢ of the forms
described in Remark@, from Corollary and @ we easily derive that f is a solution

to equation .
We show that A; = ... = A;. Replacing z by az, y by Sz and z by vz in (5),
where «a, 3,7 € K, we obtain
(A1 + B +7)? + Aza? + A3B% + Agy?) 2|2
= (As(a+B)" + As(a+7)* + A7(B+7))l=]?,  z€X,

whence

A(a+ B4+7)? + Aza? + A3f% + Ayy?

(21)
=As(a+B)? + As(a+7)* +A7(B+7)?,  aB.y€eK

Taking « = 1, 8 =~ = 0 in (21) we have A1 + A2 = A5 + Ag, and next, with
f=—-—a=1and vy=0in e obtain the equality As + A3 = Ag + A7 and
consequently

Ay — A3 = A5 — Ar. (22)

Analogously, with 5 =1, a=v=0and 8 = —y =1, @ = 0 we obtain

Al - A4 = A7 - A67 (23)
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andy=1,a==0and a=—y=1, =0 gives
A — Ay = Ag — As. (24)

Further, inserting, l =a=-f=—-y,l=—-a==—yand l = —a=—-§=1v
into , we respectively get

Ay + Ag + Az + Ay = 447,
Al + Ay + As + Ay = 4Ag,
Ay + A+ Az + Ay = 4As5,

whence A5 = Ag = A7 and consequently, by 7, Ay = Ay = A3 = A,. This
and @ finally yield A; = ... = A7.
Thus we have proved that holds, which implies the statement.
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