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Abstract. In the paper based on the question of Zhang and Lü [15], we present
one theorem which will improve and extend results of Banerjee-Majumder [2]
and a recent result of Li-Huang [9].

1. Introduction

Let f be a non-constant meromorphic function defined in the open complex
plane C. We adopt the standard notations of the Nevanlinna theory of meromor-
phic functions as explained in [6].

If for some a ∈ C∪ {∞}, f and g have the same set of a-points with the same
multiplicities, we say that f and g share the value a CM (counting multiplicities)
and if we do not consider the multiplicities, then f , g are said to share the value
a IM (ignoring multiplicities). When a = ∞ the zeros of f − a means the poles
of f .

It will be convenient to denote by E any set of positive real numbers of finite
linear measure, not necessarily the same at each occurrence. For any non-constant
meromorphic function f , the symbol S(r, f) stands for any quantity satisfying

S(r, f) = o(T (r, f)) (r →∞, r 6∈ E).

A meromorphic function a = a(z) (6≡ ∞) is called a small function with respect
to f provided that T (r, a) = S(r, f) as r → ∞, r 6∈ E. If a = a(z) is a small
function we say that f and g share a IM or a CM according if f − a and g − a
share 0 IM or 0 CM, respectively. We use I to denote any set of infinite linear
measure of 0 < r <∞.

AMS (2010) Subject Classification: 30D35.



[106] Abhijit Banerjee and Bikash Chakraborty

It is known that the hyper order of f , denoted by ρ2(f), is defined by

ρ2(f) = lim sup
r→∞

log log T (r, f)
log r .

The subject on sharing values between entire functions and their derivatives
was first studied by Rubel and Yang ([12]). In 1977, they proved that if a non-
constant entire function f and f ′ share two distinct finite numbers a, b CM, then
f = f ′. In 1979, analogous result for IM sharing was obtained by Mues and
Steinmetz in the following manner.

Theorem A ([11])
Let f be a non-constant entire function. If f and f ′ share two distinct values
a, b IM, then f ′ ≡ f .

Subsequently, similar considerations have been made with respect to higher
derivatives and more general differential expressions as well.

Above theorems motivate the researchers to study the relation between an
entire function and its derivative counterpart for one CM shared value. In 1996,
in this direction the following famous conjecture was proposed by Brück ([3]).

Conjecture
Let f be a non-constant entire function such that the hyper order ρ2(f) of f is not
a positive integer or infinite. If f and f ′ share a finite value a CM, then f ′−a

f−a = c,
where c is a non-zero constant.

Brück himself proved the conjecture for a = 0. For a 6= 0, Brück ([3]) obtained
the following result in which additional supposition was required.

Theorem B ([3])
Let f be a non-constant entire function. If f and f ′ share the value 1 CM and if
N(r, 0; f ′) = S(r, f), then f ′−1

f−1 is a non-zero constant.

Next we recall the following definitions.

Definition 1.1 ([8])
Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f | ≥ p) (N(r, a; f | ≥ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not less
than p.

(ii) N(r, a; f | ≤ p) (N(r, a; f | ≤ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not greater
than p.

Definition 1.2 ([14])
For a ∈ C ∪ {∞} and a positive integer p we denote by Np(r, a; f) the sum
N(r, a; f) +N(r, a; f | ≥ 2) + . . .+N(r, a; f | ≥ p). Clearly N1(r, a; f) = N(r, a; f).
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Definition 1.3 ([14])
For a ∈ C ∪ {∞} and a positive integer p we put

δp(a, f) = 1− lim sup
r→∞

Np(r, a; f)
T (r, f) .

Clearly, 0 ≤ δ(a, f) ≤ δp(a, f) ≤ δp−1(a, f) ≤ . . . ≤ δ2(a, f) ≤ δ1(a, f) =
Θ(a, f) ≤ 1.

Definition 1.4
For two positive integers n, p we define

µp = min{n, p} and µ∗p = p+ 1− µp.

Then clearly
Np(r, 0; fn) ≤ µpNµ∗p(r, 0; f).

Definition 1.5 ([2])
Let z0 be a zero of f − a of multiplicity p and a zero of g− a of multiplicity q. We
denote by NL(r, a; f) the counting function of those a-points of f and g, where
p > q ≥ 1, by N1)

E (r, a; f) the counting function of those a-points of f and g, where
p = q = 1 and by N (2

E (r, a; f) the counting function of those a-points of f and g,
where p = q ≥ 2, each point in these counting functions is counted only once. In
the same way we can define NL(r, a; g), N1)

E (r, a; g), N (2
E (r, a; g).

Definition 1.6 ([7])
Let k be a nonnegative integer or infinity. For a ∈ C∪{∞} we denote by Ek(a; f)
the set of all a-points of f , where an a-point of multiplicity m is counted m times
if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share
the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is
an a-point of f with multiplicity m (≤ k) if and only if it is an a-point of g with
multiplicity m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and
only if it is an a-point of g with multiplicity n (> k), where m is not necessarily
equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or
(a,∞), respectively.

With the notion of weighted sharing of values Lahiri-Sarkar ([8]) improved the
result of Zhang ([13]). In ([14]) Zhang extended the result of Lahiri-Sarkar ([8])
and replaced the concept of value sharing by small function sharing.

In 2008 Zhang and Lü ([15]) considered the uniqueness of the n-th power
of a meromorphic function sharing a small function with its k-th derivative and
proved the following theorem.
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Theorem C ([15])
Let k (≥ 1), n (≥ 1) be integers and f be a non-constant meromorphic function.
Also let a(z) (6≡ 0,∞) be a small function with respect to f . Suppose fn − a and
f (k) − a share (0, l). If l =∞ and

(3 + k)Θ(∞, f) + 2Θ(0, f) + δ2+k(0, f) > 6 + k − n
or l = 0 and

(6 + 2k)Θ(∞, f) + 4Θ(0, f) + 2δ2+k(0, f) > 12 + 2k − n,

then fn ≡ f (k).

In the same paper Zhang and Lü ([15]) raised the following question: What will
happen if fn and [f (k)]s share a small function? In 2010, Chen and Zhang ([5]) gave
a answer to the above question. Unfortunately there were some gaps in the proof
of the theorems in ([5]) which was latter rectified by Banerjee and Majumder ([2]).
In 2010 Banerjee and Majumder ([2]) proved two theorems one of which further
improved Theorem C whereas the other answers the open question of Zhang and
Lü ([15]) in the following manner.

Theorem D ([2])
Let k (≥ 1), n (≥ 1) be integers and f be a non-constant meromorphic function.
Also let a(z) (6≡ 0,∞) be a small function with respect to f . Suppose fn − a and
f (k) − a share (0, l). If l ≥ 2 and

(3 + k)Θ(∞, f) + 2Θ(0, f) + δ2+k(0, f) > 6 + k − n
or l = 1 and (7

2 + k
)

Θ(∞, f) + 5
2Θ(0, f) + δ2+k(0, f) > 7 + k − n

or l = 0 and

(6 + 2k)Θ(∞, f) + 4Θ(0, f) + δ2+k(0, f) + δ1+k(0, f) > 12 + 2k − n,

then fn = f (k).

Theorem E ([2])
Let k (≥ 1), n (≥ 1), m (≥ 2) be integers and f be a non-constant meromorphic
function. Also let a(z) (6≡ 0,∞) be a small function with respect to f . Suppose
fn − a and [f (k)]m − a share (0, l). If l = 2 and

(3 + 2k)Θ(∞, f) + 2Θ(0, f) + 2δ1+k(0, f) > 7 + 2k − n (1.1)
or l = 1 and(7

2 + 2k
)

Θ(∞, f) + 5
2Θ(0, f) + 2δ1+k(0, f) > 8 + 2k − n (1.2)

or l = 0 and

(6 + 3k)Θ(∞, f) + 4Θ(0, f) + 3δ1+k(0, f) > 13 + 3k − n, (1.3)

then fn ≡ [f (k)]m.
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For m = 1 it can be easily proved that Theorem D is a better result than The-
orem E. Also we observe that in the conditions (1.1)–(1.3) there was no influence
of m.

Very recently, in order to improve the results of Zhang ([14]), Li-Huang ([9])
obtained the following theorem. In view of Lemma 2.1 proved latter on, we see
that the following result obtained in ([9]) is better than that of Theorem D for
n = 1.

Theorem F ([9])
Let f be a non-constant meromorphic function, k (≥ 1), l (≥ 0) be integers and
also let a(z) (6≡ 0,∞) be a small function with respect to f . Suppose f − a and
f (k) − a share (0, l). If l ≥ 2 and

(3 + k)Θ(∞, f) + δ2(0, f) + δ2+k(0, f) > k + 4
or l = 1 and(7

2 + k
)

Θ(∞, f) + 1
2Θ(0, f) + δ2(0, f) + δ2+k(0, f) > k + 5

or l = 0 and

(6 + 2k)Θ(∞, f) + 2Θ(0, f) + δ2(0, f) + δ1+k(0, f) + δ2+k(0, f) > 2k + 10,

then f ≡ f (k).

Next we recall the following definition.

Definition 1.7 ([6])
Let n0j , n1j , . . . , nkj be nonnegative integers. The expression

Mj [f ] = (f)n0j (f (1))n1j . . . (f (k))nkj

is called a differential monomial generated by f of degree dMj
= d(Mj) =

∑k
i=0 nij

and weight ΓMj
=
∑k
i=0(i+ 1)nij .

The sum P [f ] =
∑t
j=1 bjMj [f ] is called a differential polynomial generated by

f of degree d(P ) = max{d(Mj) : 1 ≤ j ≤ t} and weight ΓP = max{ΓMj
: 1 ≤

j ≤ t}, where T (r, bj) = S(r, f) for j = 1, 2, . . . , t.
The numbers d(P ) = min{d(Mj) : 1 ≤ j ≤ t} and k (the highest order of the

derivative of f in P [f ]) are called respectively the lower degree and order of P [f ].
P [f ] is said to be homogeneous if d(P )=d(P ). Moreover, P [f ] is called a linear

differential polynomial generated by f if d(P ) = 1. Otherwise, P [f ] is called a non-
linear differential polynomial.

We denote by Q = max{ΓMj
− d(Mj) : 1 ≤ j ≤ t} = max{n1j + 2n2j + . . .+

knkj : 1 ≤ j ≤ t}.
Also for the sake of convenience for a differential monomial M [f ] we denote

by λ = ΓM − dM .

Recently Charak-Lal ([4]) considered the possible extension of Theorem D in
the direction of the question of Zhang and Lü ([15]) up to differential polynomial.
They proved the following result.
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Theorem G ([4])
Let f be a non-constant meromorphic function and n be a positive integer and
a(z) (6≡ 0,∞) be a meromorphic function satisfying T (r, a) = o(T (r, f)) as r →∞.
Let P [f ] be a non-constant differential polynomial in f . Suppose fn and P [f ] share
(a, l). If l ≥ 2 and

(3 +Q)Θ(∞, f) + 2Θ(0, f) + d(P )δ(0, f) > Q+ 5 + 2d(P )− d(P )− n

or l = 1 and(7
2 +Q

)
Θ(∞, f) + 5

2Θ(0, f) + d(P )δ(0, f) > Q+ 6 + 2d(P )− d(P )− n

or l = 0 and

(6 + 2Q)Θ(∞, f) + 4Θ(0, f) + 2d(P )δ(0, f) > 2Q+ 4d(P )− 2d(P ) + 10− n,

then fn ≡ P [f ].

This is a supplementary result corresponding to Theorem D because putting
P [f ] = f (k) one cannot obtain Theorem D, rather in this case a set of stronger
conditions are obtained as particular case of Theorem F. So it is natural to ask
the next question.

Question 1.8
Is it possible to improve Theorem D in the direction of Theorem F up to differential
monomial so that the result give a positive answer to the question of Zhang and
Lü [15]?

To seek the possible answer of Question 1.1 is the motivation of the paper.
The following theorem is the main result of this paper which gives a positive

answer of Zhang and Lü([15]).

Theorem 1.9
Let k (≥ 1), n (≥ 1) be integers and f be a non-constant meromorphic function
and M [f ] be a differential monomial of degree dM and weight ΓM and k is the
highest derivative in M [f ]. Also let a(z) (6≡ 0,∞) be a small function with respect
to f . Suppose fn − a and M [f ]− a share (0, l). If l ≥ 2 and

(3 + λ)Θ(∞, f) + µ2δµ∗2 (0, f) + dMδ2+k(0, f) > 3 + ΓM + µ2 − n (1.4)

or l = 1 and(7
2 + λ

)
Θ(∞, f) + 1

2Θ(0, f) + µ2δµ∗2 (0, f) + dMδ2+k(0, f) > 4 + ΓM + µ2 − n

or l = 0 and

(6 + 2λ)Θ(∞, f) + 2Θ(0, f) + µ2δµ∗2 (0, f) + dMδ2+k(0, f) + dMδ1+k(0, f)
> 8 + 2ΓM + µ2 − n,

(1.5)

then fn ≡M [f ] .
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However the following question is still open.

Question 1.10
Is it possible to extend Theorem 1.9 up to differential polynomial instead of dif-
ferential monomial?

Following example shows that in Theorem 1.9 a(z) 6≡ 0,∞ is necessary.

Example 1.11
Let us take f(z) = ee

z and M = f ′, then M and f share 0 (or, ∞) and the
deficiency conditions stated in Theorem 1.9 is satisfied as 0,∞ both are exceptional
values of f but f 6≡M .

The next example shows that the deficiency conditions stated in Theorem 1.9
are not necessary.

Example 1.12
Let f(z) = Aez + Be−z, AB 6= 0. Then N(r, f) = S(r, f) and N(r, 0; f) =
N(r,−BA ; e2z) ∼ T (r, f). Thus Θ(∞, f) = 1 and Θ(0, f) = δp(0, f) = 0.

It is clear that M [f ] = f ′′ and f share a(z) = 1
z and the deficiency conditions

in Theorem 1.9 is not satisfied, but M ≡ f .

In the next example we see that fn cannot be replaced by arbitrary polynomial
P [f ] = a0f

n + a1f
n−1 + . . .+ an in Theorem 1.9 for IM sharing (l = 0) case.

Example 1.13
If we take f(z) = ez, P [f ] = f2 + 2f and M [f ] = f (3), then P + 1 = (M + 1)2.
Thus P and M share (−1, 0). Also Θ(0, f) = Θ(∞, f) = δp(0, f) = δ(0, f) = 1 as
0 and ∞ are exceptional values of f . Thus (1.5) of Theorem 1.9 is satisfied but
P 6≡M .

In view of Example 1.13 the following question is inevitable.

Question 1.14
Is it possible to replace fn by arbitrary polynomial P [f ] = a0f

n+a1f
n−1+. . .+an

in Theorem 1.9 for l ≥ 1?

2. Lemmas

In this section we present some lemmas needed in the sequel. Let F , G be
two non-constant meromorphic functions. Henceforth we shall denote by H the
following function.

H =
(F ′′
F ′
− 2F ′

F − 1

)
−
(G′′
G′
− 2G′

G− 1

)
.

Lemma 2.1
1 + δ2(0, f) ≥ 2Θ(0, f).
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Proof.

2Θ(0, f)− δ2(0, f)− 1 = lim sup
r→∞

N2(r, 0; f)
T (r, f) − lim sup

r→∞

2N(r, 0; f)
T (r, f)

≤ lim sup
r→∞

N2(r, 0; f)− 2N(r, 0; f)
T (r, f)

≤ 0.

The following three lemmas can be proved using Milloux Theorem ([6]). So
we omit the details.

Lemma 2.2
Let f be a non-constant meromorphic function andM [f ] be a differential monomial
of degree dM and weight ΓM . Then T (r,M) ≤ dMT (r, f) +λN(r,∞; f) +S(r, f).

Lemma 2.3
N(r, 0;M) ≤ T (r,M)− dMT (r, f) + dMN(r, 0; f) + S(r, f).

Lemma 2.4
N(r, 0;M) ≤ dMN(r, 0; f) + λN(r,∞; f) + S(r, f).

Lemma 2.5 ([10])
Let f be a non-constant meromorphic function and let

R(f) =
∑n
i=0 aif

i∑m
j=0 bjf

j

be an irreducible rational function in f with constant coefficients {ai} and {bj},
where an 6= 0 and bm 6= 0. Then

T (r,R(f)) = pT (r, f) + S(r, f),

where p = max{n,m}.

Lemma 2.6
N(r,∞; M

fdM
) ≤ dMN(r, 0; f) + λN(r,∞; f) + S(r, f).

Proof. Let z0 be a pole of f of order t. Then it is a pole of M
fdM

of order n1 +
2n2 + . . .+ knk = λ.

Let z0 be a zero of f of order s. Then it is a pole of M
fdM

of order at most
sdM . So, N(r,∞; M

fdM
) ≤ dMN(r, 0; f) + λN(r,∞; f) + S(r, f).

Lemma 2.7
For any two non-constant meromorphic functions f1 and f2,

Np(r,∞; f1f2) ≤ Np(r,∞; f1) +Np(r,∞; f2).
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Proof. Let z0 be a pole of fi of order ti for i = 1, 2. Then z0 be a pole of f1f2 of
order at most t1 + t2.

Case 1. Let t1 ≥ p and t2 ≥ p. Then t1 + t2 ≥ p. So z0 is counted at most
p times in the left hand side of the above counting function, whereas the same is
counted p+ p times in the right hand side of the above counting function.

Case 2. Let t1 ≥ p and t2 < p.
Subcase 2.1. Let t1 + t2 ≥ p. So z0 is counted at most p times in the left hand
side of the above counting function, whereas the same is counted as p+max{0, t2}
times in the right hand side of the above counting function.
Subcase 2.2. Let t1 + t2 < p. This case is occurred if t2 is negative, i.e. if z0 is
a zero of f2. Then z0 is counted at most max{0, t1 + t2} times whereas the same
is counted p times in the right hand side of the above expression.

Case 3. Let t1 < p and t2 ≥ p. Then t1 + t2 ≥ p. This case can be disposed
off as done in Case 2.

Case 4. Let t1 < p and t2 < p.
Subcase 4.1. Let t1 + t2 ≥ p. Then z0 is counted at most p times whereas the
same is counted max{0, t1}+ max{0, t2} times in the right hand side of the above
expression.
Subcase 4.2. Let t1 + t2 < p. Then z0 is counted at most max{0, t1 + t2} times
whereas z0 is counted max{0, t1}+ max{0, t2} times in the right hand side of the
above counting functions. Combining all the cases, Lemma 2.7 follows.

Lemma 2.8 ([8])
Np(r, 0; f (k)) ≤ Np+k(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.9
For the differential monomial M [f ],

Np(r, 0;M [f ]) ≤ dMNp+k(r, 0; f) + λN(r,∞; f) + S(r, f).

Proof. Clearly for any non-constant meromorphic function f , Np(r, f) ≤ Nq(r, f)
if p ≤ q.

Now by using the above fact and Lemma 2.7, Lemma 2.8, we get

Np(r, 0;M [f ]) ≤
k∑
i=0

niNp(r, 0; f (i)) + S(r, f)

≤
k∑
i=0

ni{Np+i(r, 0; f) + iN(r,∞; f)}+ S(r, f)

≤
k∑
i=0

niNp+i(r, 0; f) + λN(r,∞; f) + S(r, f)

≤
k∑
i=0

niNp+k(r, 0; f) + λN(r,∞; f) + S(r, f)

≤ dMNp+k(r, 0; f) + λN(r,∞; f) + S(r, f).



[114] Abhijit Banerjee and Bikash Chakraborty

Lemma 2.10
Let f be a non-constant meromorphic function and a(z) be a small function in f .
Let us define F = fn

a , G = M
a . Then FG 6≡ 1.

Proof. On contrary assume FG ≡ 1. Then in view of Lemma 2.6 and the First
Fundamental Theorem, we get

(n+ dM )T (r, f) = T
(
r,

M

fdM

)
+ S(r, f)

≤ dMN(r, 0; f) + λN(r,∞; f) + S(r, f)
= S(r, f),

which is a contradiction.

Lemma 2.11 ([2])
Let F and G share (1, l) and N(r, F ) = N(r,G) and H 6≡ 0, where F , G and H
are defined as earlier. Then

N(r,∞;H) ≤ N(r,∞;F ) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N0(r, 0;F ′)
+N0(r, 0;G′) +NL(r, 1;F ) +NL(r, 1;G) + S(r, f).

Lemma 2.12
Let F and G share (1, l). Then NL(r, 1;F ) ≤ 1

2N(r,∞;F ) + 1
2N(r, 0;F ) +S(r, F )

if l ≥ 1 and NL(r, 1;F ) ≤ N(r,∞;F ) +N(r, 0;F ) + S(r, F ) if l = 0.

Proof. Let l ≥ 1. Then multiplicity of any 1-point of F counted in NL(r, 1;F ) is
at least 3 as l ≥ 1. Therefore, NL(r, 1;F ) ≤ 1

2N(r, 0;F ′|F 6= 0) ≤ 1
2N(r,∞;F )

+ 1
2N(r, 0;F ) + S(r, F ).
Let l = 0. Then multiplicity of any 1-point of F counted in NL(r, 1;F ) is at

least 2 as l = 0. So, NL(r, 1;F ) ≤ N(r, 0;F ′|F 6= 0) ≤ N(r,∞;F ) + N(r, 0;F )
+ S(r, F ).

Lemma 2.13
Let F and G share (1, l) and H 6≡ 0. Then

N(r, 1;F ) +N(r, 1;G) ≤ N(r,∞;H) +N
(2
E (r, 1;F ) +NL(r, 1;F )

+NL(r, 1;G) +N(r, 1;G) + S(r, f).

Proof. Clearly,

N(r, 1;F ) = N(r, 1;F | = 1) +N
(2
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G)

and by simple calculation,

N(r, 1;F | = 1) ≤ N(r, 0;H) + S(r, f) ≤ N(r,∞;H) + S(r, f).
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Lemma 2.14
Let f be a non-constant meromorphic function and a(z) be a small function of f .
Let F = fn

a and G = M
a such that F and G shares (1,∞). Then one of the

following cases holds:

(1) T (r) ≤ N2(r, 0;F ) + N2(r, 0;G) + N(r,∞;F ) + N(r,∞;G) + NL(r,∞;F )
+NL(r,∞;G) + S(r),

(2) F ≡ G,

(2) FG ≡ 1,

where T (r) = max{T (r, F ), T (r,G)} and S(r) = o(T (r)), r ∈ I, I is a set of
infinite linear measure of r ∈ (0,∞).

Proof. Let z0 be a pole of f which is not a pole or zero of a(z). Then z0 is a pole
of F and G simultaneously. Thus F and G share those pole of f which is not zero
or pole of a(z). Clearly,

N(r,H) ≤ N(r, 0;F ≥ 2) +N(r, 0;G ≥ 2) +NL(r,∞;F ) +NL(r,∞;G)
+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, f).

The rest of proof can be carried out in the line of proof of Lemma 2.13 of [1]. So
we omit the details.

3. Proof of the theorem

Proof. Let F = fn

a and G = M [f ]
a . Then F − 1 = fn−a

a , G − 1 = M [f ]−a
a . Since

fn and M [f ] share (a, l), it follows that F and G share (1, l) except the zeros and
poles of a(z). Now we consider the following cases.

Case 1. Let H 6≡ 0.
Subcase 1.1. Suppose l ≥ 1, then using the Second Fundamental Theorem and
Lemmas 2.13, 2.11 we have

T (r, F ) + T (r,G) ≤ N(r,∞;F ) +N(r,∞;G) +N(r, 0;F ) +N(r, 0;G)

+N(r,H) +N
(2
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G)

+N(r, 1;G)−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, f)
≤ 2N(r,∞;F ) +N(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G)

+N
(2
E (r, 1;F ) + 2NL(r, 1;F ) + 2NL(r, 1;G)

+N(r, 1;G) + S(r, f).

(3.1)

Subsubcase 1.1.1. For l = 1 from inequality (3.1) and in view of Lemmas 2.12, 2.9
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we obtain

T (r, F ) + T (r,G) ≤ 2N(r,∞;F ) +N(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G)

+N
(2
E (r, 1;F ) + 2NL(r, 1;F ) + 2NL(r, 1;G)

+N(r, 1;G) + S(r, f)

≤ 5
2N(r,∞;F ) +N(r,∞;G) + 1

2N(r, 0;F ) + µ2Nµ∗2 (r, 0; f)

+N2(r, 0;G) +N
(2
E (r, 1;F ) +NL(r, 1;F ) + 2NL(r, 1;G)

+N(r, 1;G) + S(r, f)

≤ 5
2N(r,∞;F ) +N(r,∞;G) + 1

2N(r, 0;F )) + µ2Nµ∗2 (r, 0; f)

+N2(r, 0;G) +N(r, 1;G) + S(r, f),

i.e. for any ε > 0

nT (r, f) ≤
(
λ+ 7

2

)
N(r,∞; f) + 1

2N(r, 0; f) + µ2Nµ∗2 (r, 0; f)

+ dMN2+k(r, 0; f) + S(r, f)

≤
{(
λ+ 7

2

)
−
(
λ+ 7

2

)
Θ(∞, f) + 1

2 −
1
2Θ(0, f) + µ2 − µ2δµ∗2 (0, f)

+ dM − dMδ2+k(0, f) + ε
}
T (r, f) + S(r, f).

i.e. {(
λ+ 7

2

)
Θ(∞, f) + 1

2Θ(0, f) + µ2δµ∗2 (0, f) + dMδ2+k(0, f)− ε
}
T (r, f)

≤ (ΓM + µ2 + 4− n)T (r, f) + S(r, f),

which is a contradiction.
Subsubcase 1.1.2. Let l ≥ 2. Using the inequality (3.1) and Lemma 2.9, we get

T (r, F ) + T (r,G) ≤ 2N(r,∞;F ) +N(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G)

+N
(2
E (r, 1;F ) + 2NL(r, 1;F ) + 2NL(r, 1;G)

+N(r, 1;G) + S(r, f)
≤ 2N(r,∞;F ) +N(r,∞;G) + µ2Nµ∗2 (r, 0; f)

+N2(r, 0;G) +N(r, 1;G) + S(r, f),

i.e. for any ε > 0

nT (r, f) ≤ (λ+ 3)N(r,∞; f) + µ2Nµ∗2 (r, 0; f) + dMN2+k(r, 0; f) + S(r, f)
≤
{

(λ+ 3)− (λ+ 3)Θ(∞, f) + µ2 − µ2δµ∗2 (0, f)
+ dM − dMδ2+k(0, f) + ε

}
T (r, f) + S(r, f),
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i.e.

{(λ+ 3)Θ(∞, f) + µ2δµ∗2 (0, f) + dMδ2+k(0, f)− ε}T (r, f)
≤ (ΓM + 3 + µ2 − n)T (r, f) + S(r, f),

which is a contradiction.
Subcase 1.2. Let l = 0. Then by using the Second Fundamental Theorem and
Lemma 2.13, 2.11, 2.12, 2.9 we get

T (r, F ) + T (r,G)
≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1;F ) +N(r,∞;G) +N(r, 0;G)

+N(r, 1;G)−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, F ) + S(r,G)
≤ N(r,∞;F ) +N(r, 0;F ) +N(r,∞;G) +N(r, 0;G) +N(r,∞;H)

+N
(2
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N(r, 1;G)

−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, F ) + S(r,G)
≤ 2N(r,∞;F ) +N(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G)

+N
(2
E (r, 1;F ) + 2NL(r, 1;F ) + 2NL(r, 1;G) +N(r, 1;G) + S(r, f)

≤ 2N(r,∞;F ) +N(r,∞;G) + µ2Nµ∗2 (r, 0, f) +N2(r, 0;G)
+ 2(N(r,∞;F ) +N(r, 0;F )) +N(r,∞;G) +N(r, 0;G)

+N
(2
E (r, 1;F ) +NL(r, 1;G) +N(r, 1;G) + S(r, f)

≤ 4N(r,∞;F ) + µ2Nµ∗2 (r, 0, f) +N2(r, 0;G) + 2N(r,∞;G)
+N(r, 0;G) + 2N(r, 0;F ) + T (r,G) + S(r, f),

(3.2)

i.e. for any ε > 0

nT (r, f) ≤ (2λ+ 6)N(r,∞; f) + 2N(r, 0; f) + µ2Nµ∗2 (r, 0, f)
+ dMN1+k(r, 0; f) + dMN2+k(r, 0; f) + S(r, f)
≤
{

(2λ+ 6)− (2λ+ 6)Θ(∞, f) + 2− 2Θ(0, f) + µ2 − µ2δµ∗2 (0, f)
+ 2dM − dMδ1+k(0, f)− dMδ2+k(0, f) + ε

}
T (r, f) + S(r, f),

i.e. {
(2λ+ 6)Θ(∞, f) + 2Θ(0, f) + µ2δµ∗2 (0, f) + dMδ1+k(0, f)

+ dMδ2+k(0, f)− ε
}
T (r, f)

≤ (2ΓM + 8 + µ2 − n)T (r, f) + S(r, f),

which is a contradiction.
Case 2. Let H ≡ 0. On integration we get

1
G− 1 ≡

A

F − 1 +B,

where A(6= 0), B are complex constants. Then F and G share (1,∞). Moreover,
by the construction of F and G we see that F and G share (∞, 0) also.
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So using Lemma 2.9 and condition (1.4), we obtain

N2(r, 0;F ) +N2(r, 0;G) +N(r,∞;F ) +N(r,∞;G)
+NL(r,∞;F ) +NL(r,∞;G) + S(r)
≤ µ2Nµ∗2 (r, 0; f) + dMN2+k(r, 0; f) + (λ+ 3)N(r,∞; f) + S(r)
≤
{

(3 + λ+ dM + µ2)− ((λ+ 3)Θ(∞, f) + δµ∗2 (0, f)
+ dMδ2+k(0, f))

}
T (r, f) + S(r)

< T (r, F ) + S(r).

Hence inequality (1) of Lemma 2.14 does not hold. Again in view of Lemma 2.10,
we get F ≡ G, i.e. fn ≡M [f ].
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