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Abstract. In the present paper, we prove weighted inequalities for the Dunkl
transform (which generalizes the Fourier transform) when the weights belong
to the well-known class Bp. As application, we obtain the Pitt’s inequality
for power weights.

1. Introduction

A key tool in the study of special functions with reflection symmetries are
Dunkl operators. The basic ingredient in the theory of these operators are root
systems and finite reflection groups, acting on Rd. The Dunkl operators are com-
muting differential-difference operators Ti, 1 ≤ i ≤ d associated to an arbitrary
finite reflection group W on Rd (see [7]). These operators attached with a root
system R can be considered as perturbations of the usual partial derivatives by
reflection parts. These reflection parts are coupled by parameters, which are given
in terms of a non-negative multiplicity function k.

Dunkl theory was further developed by several mathematicians (see [6, 14]) and
later was applied and generalized in different ways by many authors (see [1, 2]).
The Dunkl kernel Ek has been introduced by C.F. Dunkl in [8]. For a family
of weight functions wk invariant under a reflection group W , we use the Dunkl
kernel and the measure wk(x)dx to define the generalized Fourier transform Fk,
called the Dunkl transform, which enjoys properties similar to those of the classical
Fourier transform. If the parameter k ≡ 0, then wk(x) = 1, so that Fk becomes
the classical Fourier transform and the Ti, 1 ≤ i ≤ d reduce to the corresponding

AMS (2010) Subject Classification: 42B10, 46E30, 44A35
This work was completed with the support of the DGRST research project LR11ES11,
University of Tunis El Manar.



[122] Chokri Abdelkefi and Mongi Rachdi

partial derivatives ∂
∂xi

, 1 ≤ i ≤ d. Therefore Dunkl analysis can be viewed as a
generalization of classical Fourier analysis (see next section, Remark 2.1).

Let µ be a non-negative locally integrable function on (0,+∞). We say that
µ ∈ Bp, 1 < p < +∞ if there is a constant bp > 0 such that for all s > 0,∫ +∞

s

µ(t)
tp

dt ≤ bp
1
sp

∫ s

0
µ(t) dt. (1)

In the particular case when µ is non-increasing, one has µ ∈ Bp.
The weighted Hardy inequality [16] (see also [9, 13]) states that if µ and ϑ

are locally integrable weight functions on (0,+∞) and 1 < p ≤ q < +∞, then
there is a constant c > 0 such that for all non-increasing, non-negative Lebesgue
measurable function f on (0,+∞), the inequality(∫ +∞

0

(1
t

∫ t

0
f(s) ds

)q
µ(t) dt

) 1
q ≤ c

(∫ +∞

0
(f(t))pϑ(t) dt

) 1
p (2)

is satisfied if and only if

sup
s>0

(∫ s

0
µ(t) dt

) 1
q
(∫ s

0
(ϑ(t)) dt

)− 1
p

< +∞ (3)

and
sup
s>0

(∫ +∞

s

µ(t)
tq

dt
) 1
q
(∫ s

0

(1
t

∫ t

0
ϑ(l) dl

)−p′
ϑ(t) dt

) 1
p′
< +∞. (4)

Hardy’s result still remains to be an important one as it is closely related to the
Hardy-Littlewood maximal functions in harmonic analysis [17].

The aim of this paper is to prove under the Bp condition (1) and using the
weight characterization of the Hardy operator, weighted Dunkl transform inequal-
ities for general non-negative locally integrable functions u, v on Rd,(∫

Rd
|Fk(f)(x)|qu(x) dνk(x)

) 1
q ≤ c

(∫
Rd
|f(x)|pv(x) dνk(x)

) 1
p

,

where 1 < p ≤ 2 ≤ q < +∞ and f ∈ Lpk,v(Rd). Lpk,v(Rd) denote the space
Lp(Rd, v(x)dνk(x)) with νk the weighted measure associated to the Dunkl opera-
tors defined by

dνk(x) := wk(x)dx with density wk(x) =
∏
ξ∈R+

|〈ξ, x〉|2k(ξ), x ∈ Rd.

R+ being a positive root system and 〈., .〉 the standard Euclidean scalar product
on Rd (see next section). As application, we make a study of power weights in this
context. This all leads to the Pitt´s inequality:
for 1 < p ≤ 2 ≤ q < +∞, −(2γ + d) < α < 0, 0 < β < (2γ + d)(p − 1) and
f ∈ Lpk,v(Rd), one has(∫

Rd
|Fk(f)(x)|q‖x‖α dνk(x)

) 1
q ≤ c

(∫
Rd
|f(x)|p‖x‖β dνk(x)

) 1
p

,
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with the index constraint 1
2γ+d (αq + β

p ) = 1 − 1
p −

1
q , where γ =

∑
ξ∈R+

k(ξ).
This extend to the Dunkl analysis some results obtained for the classical Fourier
analysis in [4].

The contents of this paper are as follows. In section 2, we collect some basic
definitions and results about harmonic analysis associated with Dunkl operators.

The section 3 is devoted to the proofs of the weighted Dunkl transform in-
equalities when the weights belong to the class Bp. As application, we obtain for
power weights the Pitt´s inequality.

Along this paper we use c to denote a suitable positive constant which is not
necessarily the same in each occurrence and we write for x ∈ Rd, ‖x‖ =

√
〈x, x〉.

Furthermore, we denote by

• E(Rd) the space of infinitely differentiable functions on Rd,

• S(Rd) the Schwartz space of functions in E(Rd) which are rapidly decreasing
as well as their derivatives,

• D(Rd) the subspace of E(Rd) of compactly supported functions.

2. Preliminaries

In this section, we recall some notations and results in Dunkl theory and we
refer for more details to the surveys [15].

Let W be a finite reflection group on Rd, associated with a root system R.
For α ∈ R, we denote by Hα the hyperplane orthogonal to α. For a given β ∈
Rd \

⋃
α∈RHα, we fix a positive subsystem R+ = {α ∈ R : 〈α, β〉 > 0}. We denote

by k a non-negative multiplicity function defined on R with the property that k is
W -invariant. We associate with k the index

γ =
∑
ξ∈R+

k(ξ) ≥ 0

and a weighted measure νk given by

dνk(x) := wk(x)dx, where wk(x) =
∏
ξ∈R+

|〈ξ, x〉|2k(ξ), x ∈ Rd.

Further, we introduce the Mehta-type constant ck by

ck =
(∫

Rd
e−
‖x‖2

2 wk(x) dx
)−1

.

For every 1 ≤ p ≤ +∞, we denote respectively by Lpk(Rd), Lpk,u(Rd), Lpk,v(Rd)
the spaces Lp(Rd, dνk(x)), Lp(Rd, u(x)dνk(x)), Lp(Rd, v(x)dνk(x)) and Lpk(Rd)rad
the subspace of those f ∈ Lpk(Rd) that are radial. We use respectively ‖ ‖p,k,
‖ ‖p,k,u, ‖ ‖p,k,v as a shorthand for ‖ ‖Lp

k
(Rd), ‖ ‖Lp

k,u
(Rd), ‖ ‖Lp

k,v
(Rd).

By using the homogeneity of degree 2γ of wk, it is shown in [14] that for
a radial function f in L1

k(Rd), there exists a function F on [0,+∞) such that
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f(x) = F (‖x‖), for all x ∈ Rd. The function F is integrable with respect to the
measure r2γ+d−1dr on [0,+∞) and we have∫

Rd
f(x) dνk(x) =

∫ +∞

0

(∫
Sd−1

f(ry)wk(ry) dσ(y)
)
rd−1dr

=
∫ +∞

0

(∫
Sd−1

wk(ry) dσ(y)
)
F (r)rd−1dr (5)

= dk

∫ +∞

0
F (r)r2γ+d−1dr,

where Sd−1 is the unit sphere on Rd with the normalized surface measure dσ and

dk =
∫
Sd−1

wk(x) dσ(x) =
c−1
k

2γ+ d
2−1Γ(γ + d

2 )
. (6)

The Dunkl operators Tj , 1 ≤ j ≤ d, on Rd associated with the reflection
group W and the multiplicity function k are the first-order differential-difference
operators given by

Tjf(x) = ∂f

∂xj
(x) +

∑
α∈R+

k(α)αj
f(x)− f(ρα(x))

〈α, x〉
, f ∈ E(Rd), x ∈ Rd,

where ρα is the reflection on the hyperplane Hα and αj = 〈α, ej〉, (e1, . . . , ed)
being the canonical basis of Rd.

Remark 2.1
In the case k ≡ 0, the weighted function wk ≡ 1 and the measure νk associated
to the Dunkl operators coincide with the Lebesgue measure. The Tj reduce to
the corresponding partial derivatives. Therefore Dunkl analysis can be viewed as
a generalization of classical Fourier analysis.

For y ∈ Cd, the system{
Tju(x, y) = yju(x, y), 1 ≤ j ≤ d,
u(0, y) = 1

admits a unique analytic solution on Rd, denoted by Ek(x, y) and called the Dunkl
kernel. This kernel has a unique holomorphic extension to Cd × Cd. We have for
all λ ∈ C and z, z′ ∈ Cd, Ek(z, z′) = Ek(z′, z), Ek(λz, z′) = Ek(z, λz′) and for
x, y ∈ Rd, |Ek(x, iy)| ≤ 1.

The Dunkl transform Fk is defined for f ∈ D(Rd) by

Fk(f)(x) = ck

∫
Rd
f(y)Ek(−ix, y) dνk(y), x ∈ Rd.
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We list some known properties of this transform:

i) The Dunkl transform of a function f ∈ L1
k(Rd) has the following basic pro-

perty
‖Fk(f)‖∞ ≤ ‖f‖1,k.

ii) The Dunkl transform is an automorphism on the Schwartz space S(Rd).

iii) When both f and Fk(f) are in L1
k(Rd), we have the inversion formula

f(x) =
∫
Rd
Fk(f)(y)Ek(ix, y) dνk(y), x ∈ Rd.

iv) (Plancherel’s theorem) The Dunkl transform on S(Rd) extends uniquely to
an isometric automorphism on L2

k(Rd).

Since the Dunkl transform Fk(f) is of strong-type (1,∞) and (2, 2), then by in-
terpolation, we get for f ∈ Lpk(Rd) with 1 ≤ p ≤ 2 and p′ such that 1

p + 1
p′ = 1,

the Hausdorff-Young inequality

‖Fk(f)‖p′,k ≤ c‖f‖p,k.

The Dunkl transform of a function in L1
k(Rd)rad is also radial. More precisely,

according to ([14, proposition 2.4]), we have for x ∈ R, the following results:∫
Sd−1

Ek(ix, y)wk(y) dσ(y) = dkjγ+ d
2−1(‖x‖),

and for f be in L1
k(Rd)rad,

Fk(f)(x) =
∫ +∞

0

(∫
Sd−1

Ek(−irx, y)wk(y) dσ(y)
)
F (r)r2γ+d−1dr

= dk

∫ +∞

0
jγ+ d

2−1(r‖x‖)F (r)r2γ+d−1dr,

(7)

where F is the function defined on [0,+∞) by F (‖x‖) = f(x) and jγ+ d
2−1 the

normalized Bessel function of the first kind and order γ + d
2 − 1 given by

jγ+ d
2−1(λx) =

2γ+ d
2−1Γ(γ + d

2 )
J
γ+ d

2−1(λx)

(λx)γ+ d
2−1

if λx 6= 0,

1 if λx = 0,

λ ∈ C. Here Jγ+ d
2−1 is the Bessel function of first kind,

Jγ+ d
2−1(t) =

( t2 )γ+ d
2−1

√
π Γ(γ + d

2 −
1
2 )

∫ π

0
cos(t cos θ)(sin θ)2γ+d−2 dθ

= Cγt
γ+ d

2−1
∫ π

2

0
cos(t cos θ)(sin θ)2γ+d−2 dθ,

(8)

where Cγ = 1
√
π 2γ+ d

2−2Γ(γ+ d
2−

1
2 )
.
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3. Weighted Dunkl transform inequalities

In this section, we denote by p′ and q′ respectively the conjugates of p and q
for 1 < p ≤ q < +∞. The proof requires a useful well-known facts which we shall
now state in the following.

Proposition 3.1 (see [16])
Let 1 < p < +∞ and v be a non-negative function on (0,+∞). The following are
equivalent:

i) v ∈ Bp,

ii) there is a positive constant c such that for all s > 0,(∫ s

0
v(t) dt

) 1
p
(∫ s

0

(1
t

∫ t

0
v(l) dl

)1−p′
dt
) 1
p′ ≤ cs. (9)

Remark 3.2
1/ (see [[5]) (Hardy’s Lemma) Let f and g be non-negative Lebesgue measurable

functions on (0,+∞), and assume∫ t

0
f(s) ds ≤

∫ t

0
g(s) ds

for all t ≥ 0. If ϕ is a non-negative and decreasing function on (0,+∞), then∫ +∞

0
f(s)ϕ(s) ds ≤

∫ +∞

0
g(s)ϕ(s) ds. (10)

2/ Let f be a measurable function on Rd. The distribution function Df of f is
defined for all s ≥ 0 by

Df (s) = νk({x ∈ Rd : |f(x)| > s}).

The decreasing rearrangement of f is the function f∗ given for all t ≥ 0 by

f∗(t) = inf{s ≥ 0 : Df (s) ≤ t}.

We have the following results:

i) Let f ∈ Lpk(Rd), 1 ≤ p < +∞, then∫
Rd
|f(x)|p dνk(x) = p

∫ +∞

0
sp−1Df (s) ds =

∫ +∞

0
(f∗(t))p dt. (11)

ii) (see [12, Theorems 4.6 and 4.7]) Let q ≥ 2, then there exists a constant
c > 0 such that, for all f ∈ L1

k(Rd) + L2
k(Rd) and s ≥ 0,∫ s

0
(Fk(f)∗(t))q dt ≤ c

∫ s

0

(∫ 1
t

0
f∗(y) dy

)q
dt. (12)
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iii) (see [5, 10, 11]) (Hardy-Littlewood rearrangement inequality)
Let f and ϑ be non-negative measurable functions on Rd, then∫

Rd
f(x)ϑ(x) dνk(x) ≤

∫ +∞

0
f∗(t)ϑ∗(t) dt (13)

and ∫ +∞

0
f∗(t)

[( 1
ϑ

)∗
(t)
]−1

dt ≤
∫
Rd
f(x)ϑ(x) dνk(x). (14)

Now, we begin with the proof of the following proposition which gives a necessary
condition.

Proposition 3.3
Let u, v be non-negative νk-locally integrable functions on Rd and 1 < p ≤ 2 ≤
q < +∞. If there exists a constant c > 0 such that for all f ∈ Lpk(Rd),(∫ +∞

0

(
(Fk(f))∗(t)

)q
u∗(t) dt

) 1
q ≤ c

(∫ +∞

0

(
f∗(t)

)p[(1
v

)∗
(t)
]−1

dt
) 1
p

, (15)

then it is necessary that

sup
s>0

s
(∫ 1

s

0
u∗(t) dt

) 1
q
(∫ s

0

[(1
v

)∗
(t)
]−1

dt
)−1

p

< +∞. (16)

Proof. Put for any fixed r > 0,

R =
(
r

νk(B(0, 1))
1 + (νk(B(0, 1)))2

) 1
2γ+d

,

and take f = χ(0,R) in (15), where χ(0,R) is the characteristic function of the
interval (0, R). For s ≥ 0 and by (5) and (6), the distribution function of f is

Df (s) = νk({x ∈ Rd : χ(0,R)(‖x‖) > s})

= dk
2γ + d

R2γ+dχ(0,1)(s)

= νk(B(0, 1))R2γ+dχ(0,1)(s)
= r′χ(0,1)(s),

where
r′ = νk(B(0, 1))R2γ+d = r

(νk(B(0, 1)))2

1 + (νk(B(0, 1)))2 . (17)

This yields for t ≥ 0,

f∗(t) = inf{s ≥ 0 : Df (s) ≤ t} = χ(0,r′)(t).

Observe that r′ < r, hence we have(∫ +∞

0

(
(Fk(f))∗(t)

)q
u∗(t) dt

) 1
q ≤ c

(∫ r′

0

[(1
v

)∗
(t)
]−1

dt
) 1
p

≤ c
(∫ r

0

[(1
v

)∗
(t)
]−1

dt
) 1
p

.

(18)
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According to (7), for x ∈ Rd, we can assert that

Fk(f)(x) = c−1
k

∫ R

0
jγ+ d

2−1(‖x‖t) t2γ+d−1

2γ+ d
2−1Γ(γ + d

2 )
dt

= c−1
k ‖x‖

2−2γ−d
2

∫ R

0
Jγ+ d

2−1(‖x‖t)t
2γ+d

2 dt.

(19)

Since cos(t‖x‖ cos θ) ≥ cos 1 > 1
2 , for t ∈ (0, R), ‖x‖ ∈ (0, 1

R ) and θ ∈ (0, π2 ), then
we obtain from (8), the estimate

Jγ+ d
2−1(‖x‖t) > 1

2Cγ(‖x‖t)γ+ d
2−1

∫ π
2

0
(sin θ)2γ+d−2 dθ

= 1
2Cγ(‖x‖t)γ+ d

2−1
√
π Γ(γ + d

2 −
1
2 )

2Γ(γ + d
2 )

= (‖x‖t)
2γ+d−2

2

2 2γ+d
2 Γ( 2γ+d

2 )
,

which gives by (5), (6), (17), (19) and for ‖x‖ ∈ (0, 1
R )

Fk(f)(x) > c−1
k ‖x‖

2−2γ−d
2

∫ R

0

(‖x‖t)
2γ+d−2

2

2 2γ+d
2 Γ( 2γ+d

2 )
t

2γ+d
2 dt

=
c−1
k

2 2γ+d
2 Γ( 2γ+d

2 )

∫ R

0
t2γ+d−1 dt

= r′

2 .

(20)

By the fact that{
t ∈
(

0, 1
r

)
: (Fk(f))∗(t) > s

}
=
{
t ∈ (0, 1

r
) : DFk(f)(s) > t

}
,

we have from (11)(∫ +∞

0

(
(Fk(f))∗(t)

)q
u∗(t) dt

) 1
q

≥
(∫ 1

r

0

(
(Fk(f))∗(t)

)q
u∗(t) dt

) 1
q

=
(
q

∫ +∞

0
sq−1

(∫
{t∈(0, 1

r ),(Fk(f))∗(t)>s}
u∗(t) dt

)
ds
) 1
q

=
(
q

∫ +∞

0
sq−1

(∫ min(DFk(f)(s), 1
r )

0
u∗(t) dt

)
ds
) 1
q

.

If s < r′

2 , then by (20)

B
(

0, 1
R

)
⊆
{
x ∈ Rd : |Fk(f)(x)| > r′

2

}
⊆ {x ∈ Rd : |Fk(f)(x)| > s},
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thus using (5) and (6), we have

DFk(f)(s) =
∫
{x∈Rd: |Fk(f)(x)|>s}

wk(x) dx

≥ dk
∫ 1

R

0
ρ2γ+d−1 dρ = 1

r

(
1 + (νk(B(0, 1)))2)

>
1
r
,

wich gives that

(∫ +∞

0

(
(Fk(f))∗(t)

)q
u∗(t) dt

) 1
q ≥

(
q

∫ r′
2

0
sq−1

(∫ 1
r

0
u∗(t) dt

)
ds
) 1
q

=
(
q

∫ r′
2

0
sq−1 ds

) 1
q
(∫ 1

r

0
u∗(t) dt

) 1
q

= r′

2

(∫ 1
r

0
u∗(t) dt

) 1
q

.

According to (17) and (18), we deduce that

r
(∫ 1

r

0
u∗(t) dt

) 1
q
(∫ r

0

[(1
v

)∗
(t)
]−1

dt
)− 1

p

≤ c
(∫ +∞

0

(
(Fk(f))∗(t)

)q
u∗(t) dt

) 1
q
(∫ r

0

[(1
v

)∗
(t)
]−1

dt
)− 1

p

≤ c,

which gives (16). This completes the proof.

Theorem 3.4
Let u, v be non-negative νk-locally integrable functions on Rd and 1 < p ≤ 2 ≤
q < +∞. Assume 1

( 1
v )∗ ∈ Bp and

sup
s>0

s
(∫ 1

s

0
u∗(t) dt

) 1
q
(∫ s

0

[(1
v

)∗
(t)
]−1

dt
)−1

p

< +∞, (21)

then there exists a constant c > 0 such that for all f ∈ Lpk(Rd), we have(∫
Rd
|Fk(f)(x)|qu(x) dνk(x)

) 1
q ≤ c

(∫
Rd
|f(x)|pv(x) dνk(x)

) 1
p

. (22)

Proof. In order to establish this result, we need to show that(∫ +∞

0

(
(Fk(f))∗(t)

)q
u∗(t) dt

) 1
q ≤ c

(∫ +∞

0

(
f∗(t)

)p[(1
v

)∗
(t)
]−1

dt
) 1
p

. (23)
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Take f ∈ Lpk(Rd), then using (10) and (12), we obtain

(∫ +∞

0

(
(Fk(f))∗(t)

)q
u∗(t) dt

) 1
q ≤ c

(∫ +∞

0

(∫ 1
t

0
f∗(s) ds

)q
u∗(t) dt

) 1
q

.

If we make the change of variable t = 1
s on the right side, we get

(∫ +∞

0

(
(Fk(f))∗(t)

)q
u∗(t) dt

) 1
q ≤ c

(∫ +∞

0

(1
s

∫ s

0
f∗(t) dt

)q u∗( 1
s )

s2−q ds
) 1
q

,

which gives from (2), (3) and (4), that the inequality (23) is satisfied if and only if

sup
s>0

(∫ s

0

u∗( 1
t )

t2−q
dt
) 1
q
(∫ s

0

[(1
v

)∗
(t)
]−1

dt
)− 1

p

< +∞

and

sup
s>0

(∫ +∞

0

u∗( 1
t )

t2
dt
) 1
q
(∫ s

0

(1
t

∫ t

0

[(1
v

)∗
(l)
]−1

dl
)−p′[(1

v

)∗
(t)
]−1

dt
) 1
p′
< +∞.

In order to complete the proof, we must verify that (21) implies these two condi-
tions between the weights u∗ and 1

( 1
v )∗ . This follows closely the argumentations

of [4]. More precisely, since u∗ is non-increasing, then u∗ ∈ Bq and by (1), it yields∫ s

0
u∗
(1
t

)
tq−2 dt =

∫ +∞

1
s

u∗(t)
tq

dt ≤ bqsq
∫ 1

s

0
u∗(t) dt.

Hence by (21), we get(∫ s

0
u∗
(1
t

)
tq−2 dt

) 1
q
(∫ s

0

[(1
v

)∗
(t)
]−1

dt
)− 1

p

≤ b
1
q
q s
(∫ 1

s

0
u∗(t) dt

) 1
q
(∫ s

0

[(1
v

)∗
(t)
]−1

dt
)− 1

p

< +∞,

and so we obtain the first condition.
To show that the second condition is satisfied, observe that by means of

a change of variable, we have

(∫ +∞

s

u∗( 1
t )

t2
dt
) 1
q =

(∫ 1
s

0
u∗(t) dt

) 1
q

. (24)

Now, define the function G by

G(s) =
(∫ s

0

(1
t

∫ t

0

[(1
v

)∗
(l)
]−1

dl
)−p′[(1

v

)∗
(t)
]−1

dt
) 1
p′
,
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then by integration by parts, we get

G(s) =
[
p′G(s)p

′
+ sp

′
(∫ s

0

[(1
v

)∗
(t)
]−1

dt
)1−p′

− p′
∫ s

0

(1
t

∫ t

0

[(1
v

)∗
(l)
]−1

dl
)1−p′

dt
] 1
p′
,

which implies

(p′ − 1)G(s)p
′
≤ p′

∫ s

0

(1
t

∫ t

0

[(1
v

)∗
(l)
]−1

dl
)1−p′

dt,

and so
G(s) ≤

( p′

p′ − 1

∫ s

0

(1
t

∫ t

0

[(1
v

)∗
(l)
]−1

dl
)1−p′

dt
) 1
p′
.

Since 1
( 1
v )∗ ∈ Bp, we can invoke (9) and we obtain

(∫ s

0

(1
t

∫ t

0

[(1
v

)∗
(l)
]−1

dl
)−p′[(1

v

)∗
(t)
]−1

dt
) 1
p′ ≤ cs

(∫ s

0

[(1
v

)∗
(t)
]−1

dt
)−1

p

.

Combining this inequality and (24), we deduce (23).
Note that (|f |p)∗ = (f∗)p and (|Fk(f)|q)∗ = ((Fk(f))∗)q, then applying (13)

and (14) for the inequality (23), we obtain (22). This completes the proof.

Application 3.5 (Pitt’s inequality)
Let u(x) = ‖x‖α, v(x) = ‖x‖β , x ∈ Rd with α < 0 and β > 0. Using (5) and (6),
we have for s ≥ 0

Du(s) = νk({x ∈ Rd : ‖x‖α > s}) = νk(B(0, s 1
α )) = dk

2γ + d
s

2γ+d
α ,

which gives for t ≥ 0

u∗(t) = inf{s ≥ 0 : Du(s) ≤ t} =
(2γ + d

dk

) α
2γ+d

t
α

2γ+d .

On the other hand, using (5) and (6) again, we have for s ≥ 0,

D 1
ϑ

(s) = νk({x ∈ Rd : ‖x‖−β > s}) = νk(B(0, s−
1
β )) = dk

2γ + d
s−

2γ+d
β ,

which gives for t ≥ 0,( 1
ϑ

)∗
(t) = inf{s ≥ 0 : D 1

ϑ
(s) ≤ t} =

(2γ + d

dk

)− β
2γ+d

t−
β

2γ+d .

For these weights and 1 < p ≤ 2 ≤ q < +∞, the hypothesis of Theorem 3.4, gives
respectively that the integrals in the Bp-inequality (1) for 1

( 1
v )∗ are finite and the

boundedness condition (21) is valid if and only if

0 < β < (2γ + d)(p− 1) and
{
−(2γ + d) < α < 0,

1
2γ+d (αq + β

p ) = 1− 1
p −

1
q .
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Under these conditions and index constraints, we obtain from Theorem 3.4 and
for f ∈ Lpk,v(Rd), the Pitt’s inequality(∫

Rd
‖x‖α|Fk(f)(x)|q dνk(x)

) 1
q ≤ c

(∫
Rd
‖x‖β |f(x)|p dνk(x)

) 1
p

.

In particular for p = q = 2 and 0 < β < 2γ + d, we get(∫
Rd
‖x‖−β |Fk(f)(x)|2 dνk(x)

) 1
2 ≤ c

(∫
Rd
‖x‖β |f(x)|2 dνk(x)

) 1
2
.

In the classical Fourier analysis, this inequality plays an important role for which
some uncertainty principles hold. One of them is the Beckner’s logarithmic uncer-
tainty principle (see [3]).

Remark 3.6
The limiting case β = 0, α = (2γ + d)(p − 2) and 1 < p = q ≤ 2 was obtained in
([1, Section 4, Lemma 1]) and gives the Hardy-Littlewood-Paley inequality(∫

Rd
‖x‖(2γ+d)(p−2)|Fk(f)(x)|p dνk(x)

) 1
p ≤ c

(∫
Rd
|f(x)|p dνk(x)

) 1
p

.
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