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Abstract. In this paper a new class of multi-valued mappings (multi-mor-
phisms) is defined as a version of a strongly admissible mapping, and its
properties and applications are presented.

1. Introduction

In 1976, L. Górniewicz (see [3]) introduced the notion of strongly admissible
multi-valued mappings and proved that the composition of strongly admissible
mappings is also a strongly admissible mapping. In 1981 it was L. Górniewicz (see
[3, 4, 5, 6]) as well that introduced the notion of a morphism, i.e. some other version
of strongly admissible mappings. Morphisms, as opposed to strongly-admissible
mappings, together with metric spaces create a category on which a functor of C̆ech
homology is extended. In 1994, W. Kryszewski (see [8]) introduced the notion of
a morphism essentially different from the morphism in the sense of Górniewicz in
regard to some important applications of their properties. In this paper a new type
of morphisms (multi-morphisms) is defined and its properties and applications are
presented.

2. Preliminaries

Throughout this paper all topological spaces are assumed to be metrizable.
Let X and Y be two spaces and assume that for every x ∈ X a non-empty and
compact subset ϕ(x) of Y is given. In such a case we say that ϕ : X ( Y is
a multi-valued mapping. For a multi-valued mapping ϕ : X ( Y and a subset
A ⊂ Y , we let

ϕ−1(A) = {x ∈ X : ϕ(x) ⊂ A}.
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If for every open U ⊂ Y the set ϕ−1(U) is open, then ϕ is called an upper
semi-continuous mapping; we shall write that ϕ is u.s.c. Let H∗ be the C̆ech
homology functor with compact carriers and coefficients in the field of rational
numbers Q from the category of Hausdorff topological spaces and continuous maps
to the category of graded vector spaces and linear maps of degree zero. Thus
H∗(X) = {Hq(X)} is a graded vector space, Hq(X) being the q-dimensional C̆ech
homology group with compact carriers of X. For a continuous map f : X → Y ,
H∗(f) is the induced linear map f∗ = {fq}, where fq : Hq(X) → Hq(Y ) ([3]).
A space X is acyclic if

(i) X is non-empty,

(ii) Hq(X) = 0 for every q ≥ 1 and

(iii) H0(X) ≈ Q.

Let X and Y be Hausdorff topological spaces. A continuous and closed mapping
f : X → Y is called proper if for every compact set K ⊂ Y the set f−1(K) is
nonempty and compact. A proper map p : X → Y is called Vietoris provided for
every y ∈ Y the set p−1(y) is acyclic.

Let u : E → E be an endomorphism of an arbitrary vector space. Let us put
N(u) = {x ∈ E : un(x) = 0 for some n}, where un is the n-th iterate of u
and Ẽ = E/N(u). Since u(N(u)) ⊂ N(u), we have the induced endomorphism
ũ : Ẽ → Ẽ defined by ũ([x]) = [u(x)]. We call u admissible provided dim Ẽ <∞.

Let u = {uq} : E → E be an endomorphism of degree zero of graded vector
spaces E = {Eq}. We call u a Leray endomorphism if

(i) all uq are admissible,

(ii) almost all Ẽq are trivial. For such u, we define the (generalized) Lefschetz
number Λ(u) of u by putting

Λ(u) =
∑
q

(−1)qtr(ũq),

where tr(ũq) is the ordinary trace of ũq (comp. [3]).

The symbol D(X,Y ) will denote the set of all diagrams of the form

X
p←−−−− Z

q−−−−→ Y,

where p : Z → X denotes a Vietoris map and q : Z → Y denotes a continuous
map. Each such diagram will be denoted by (p, q).

Definition 2.1 (see [3])
Let (p1, q1) ∈ D(X,Y ) and (p2, q2) ∈ D(Y, T ). The composition of the diagrams

X
p1←−−−− Z1

q1−−−−→ Y
p2←−−−− Z2

q2−−−−→ T ,

is called a diagram (p, q) ∈ D(X,T )

X
p←−−−− Z1 4q1p2 Z2

q−−−−→ T,
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where
Z1 4q1p2 Z2 = {(z1, z2) ∈ Z1 × Z2 : q1(z1) = p2(z2)},

p = p1 ◦ f1, q = q2 ◦ f2,

Z1
f1←−−−− Z1 4q1p2 Z2

f2−−−−→ Z2,

f1(z1, z2) = z1 (Vietoris map), f2(z1, z2) = z2 for each (z1, z2) ∈ Z14q1p2Z2.

It shall be written
(p, q) = (p2, q2) ◦ (p1, q1).

From the Theorems (40.5), (40.6) in [3, p. 201, 202] it also results that in
Definition 2.1 the composition of the diagrams satisfies the condition

for each x ∈ X q(p−1(x)) = q2(p−1
2 (q1(p−1

1 (x)))). (1)

Recall that if p : X → Y is a Vietoris map then p∗ : H∗(X)→ H∗(Y ) is an isomor-
phism. Let (p, q) ∈ D(X,Y ). We have the following diagram

H∗(X) p∗←−−−− H∗(Z) q∗−−−−→ H∗(Y ). (2)

Definition 2.2
Let (p1, q1), (p2, q2) ∈ D(X,Y ). The equivalency relation in the set D(X,Y ) is
called a constructor of abstract morphisms (it is denoted as ∼a), if the following
conditions are satisfied:

(2.2.1) ((p1, q1) ∼a (p2, q2)) =⇒ (for each x ∈ X q1(p−1
1 (x)) = q2(p−1

2 (x))),

(2.2.2) ((p1, q1) ∼a (p2, q2)) =⇒ (q1∗ ◦ p−1
1∗ = q2∗ ◦ p−1

2∗ ),

(2.2.3) Let (p3, q3), (p4, q4) ∈ D(Y, T ). Then

(p1, q1) ∼a (p2, q2)
(p3, q3) ∼a (p4, q4)

}
=⇒ (((p3, q3) ◦ (p1, q1)) ∼a ((p4, q4) ◦ (p2, q2))).

The condition (2.2.1) will be called an axiom of topological equality, the condi-
tion (2.2.2) – an axiom of homological equality, and the condition (2.2.3) – an
axiom of composition.

The set Ma(X,Y ) = D(X,Y )/∼a
will be called abstract morphisms (a-mor-

phisms). Definition 2.2 (condition (2.2.1) leads to the following:

Definition 2.3
Let (p, q) ∈ D(X,Y ). For any ϕa ∈ Ma(X,Y ) the set ϕ(x) = q(p−1(x)), where
ϕa = [(p, q)]a is called an image of the point x in the a-morphism ϕa.

We denote by
ϕ : X →a Y (3)

a multi-valued map determined by an a-morphism ϕa = [(p, q)]a ∈Ma(X,Y ) and
it will be called an abstract multi-valued map.
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Let TOP denote categories in which Hausdorff topological spaces are objects
and continuous mappings are category mappings. Let TOPa denote categories
in which Hausdorff topological spaces are objects and abstract multi-valued maps
(see (3)) are category mappings. According to Definition 2.2 (2.2.3) the category
of TOPa is well defined and TOP ⊂ TOPa. Let VECTG denote categories in
which linear graded vector spaces are objects and linear mappings of degree zero
are category mappings.

Theorem 2.4 (see [9])
The mapping H̃∗ : TOPa → VECTG given by the formula

H̃∗(ϕ) = q∗ ◦ p−1
∗ ,

where ϕ is an abstract multi-valued map determined by ϕa = [(p, q)]a is a functor
and the extension of the functor of the C̆ech homology H∗ : TOP→ VECTG.

Definition 2.5
Let X be an ANR and let X0 ⊂ X be a closed subset. We say that X0 is
movable in X provided every neighborhood U of X0 admits a neighborhood U ′ of
X0, U ′ ⊂ U , such that for every neighborhood U ′′ of X0, U ′′ ⊂ U , there exists
a homotopy H : U ′ × [0, 1] → U with H(x, 0) = x and H(x, 1) ∈ U ′′, for any
x ∈ U ′.

Definition 2.6
Let X be a compact metric space. We say that X is movable provided there exists
Z ∈ ANR and an embedding e : X → Z such that e(X) is movable in Z.

A map ϕ : X ( Y is compact, if ϕ(X) ⊂ Y is a compact set. Let (p, q) ∈
D(X,X), where p, q : Z → X. We say that p and q have a coincidence point if
there exists a point z ∈ Z such that p(z) = q(z).

Theorem 2.7 ([3])
Consider a diagram

X
p←−−−− Z

q−−−−→ X,

in which X ∈ ANR, p is Vietoris and q is compact. Then q∗ ◦ p−1
∗ is a Leray

endomorphism and Λ(q∗ ◦ p−1
∗ ) 6= 0 implies that p and q have a coincidence point.

3. Multi-morphisms

We recall that the composition of two Vietoris mappings is a Vietoris mapping.
Let Id be an identical map. In the set of all diagrams D(X,Y ), the following
relation is introduced:

Definition 3.1
Let (p1, q1), (p2, q2) ∈ D(X,Y ).

(p1, q1) ∼m (p2, q2)

if and only if there exist spaces Z, Z1 and Z2, Vietoris maps p3 : Z → Z1,
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p4 : Z → Z2 such that the following diagram is commutative

X
p1←−−−− Z1

q1−−−−→ YxId xp3

xId
X

p←−−−− Z
q−−−−→ YyId yp4

yId
X

p2←−−−− Z2
q2−−−−→ Y,

that is
p = p1 ◦ p3 = p2 ◦ p4, q = q1 ◦ p3 = q2 ◦ p4.

Proposition 3.2
The relation in the set D(X,Y ) introduced in Definition 3.1 is an equivalence
relation.

Proof. In the proof of reflexivity of the relation, it is enough to assume that
Z = Z1 = Z2 and p3 = p4 = Id. It is obvious that the relation is symmetrical.
It shall be now proven that the relation is transitive. Suppose that (p1, q1) ∼m
(p2, q2) and (p2, q2) ∼m (p3, q3). Then from the assumption we have the following
commutative diagram

X
p1←−−−− Z1

q1−−−−→ YxId xp3

xId
X

p←−−−− Z
q−−−−→ YyId yp4

yId
X

p2←−−−− Z2
q2−−−−→ YxId xp5

xId
X

p′←−−−− Z ′
q′−−−−→ YyId yp6

yId
X

p3←−−−− Z3
q3−−−−→ Y,

that is
p = p1 ◦ p3 = p2 ◦ p4, q = q1 ◦ p3 = q2 ◦ p4

and
p′ = p2 ◦ p5 = p3 ◦ p6, q′ = q2 ◦ p5 = q3 ◦ p6.

Let f : Z 4p4p5 Z
′ → Z, f ′ : Z 4p4p5 Z

′ → Z ′, f(z, z′) = z, f ′(z, z′) = z′ for each
(z, z′) ∈ Z 4p4p5 Z

′ (see Definition 2.1). We observe that f and f ′ are Vietoris
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maps and p4 ◦ f = p5 ◦ f ′. We have the following diagram

X
p1←−−−− Z1

q1−−−−→ YxId xp7

xId
X

r←−−−− Z 4p4p5 Z
′ s−−−−→ YyId yp8

yId
X

p3←−−−− Z3
q3−−−−→ Y,

where p7 = p3 ◦ f , p8 = p6 ◦ f ′. The above diagram is commutative. Indeed

r = p1 ◦ p7 = p1 ◦ (p3 ◦ f) = (p1 ◦ p3) ◦ f = (p2 ◦ p4) ◦ f = p2 ◦ (p4 ◦ f)
= p2 ◦ (p5 ◦ f ′) = (p2 ◦ p5) ◦ f ′ = (p3 ◦ p6) ◦ f ′ = p3 ◦ (p6 ◦ f ′)
= p3 ◦ p8

and similarly

s = q1 ◦ p7 = q1 ◦ (p3 ◦ f) = (q1 ◦ p3) ◦ f = (q2 ◦ p4) ◦ f = q2 ◦ (p4 ◦ f)
= q2 ◦ (p5 ◦ f ′) = (q2 ◦ p5) ◦ f ′ = (q3 ◦ p6) ◦ f ′ = q3 ◦ (p6 ◦ f ′)
= q3 ◦ p8.

and the proof is complete.

Proposition 3.3
The equivalence relation ∼m is a constructor of morphisms (see Definition 2.2) in
the set D(X,Y ).

Proof. First, the axiom of topological equality shall be proven. Assume that
(p1, q1) ∼m (p2, q2), where (p1, q1), (p2, q2) ∈ D(X,Y ). From Definition 3.1 we get
the following commutative diagram

X
p1←−−−− Z1

q1−−−−→ YxId xp3

xId
X

p←−−−− Z
q−−−−→ YyId yp4

yId
X

p2←−−−− Z2
q2−−−−→ Y

that is
p = p1 ◦ p3 = p2 ◦ p4, q = q1 ◦ p3 = q2 ◦ p4.

Let x ∈ X. We have

q(p−1(x)) = (q1 ◦ p3)((p1 ◦ p3)−1(x)) = q1(p3(p−1
3 (p−1

1 (x)))) = q1(p−1
1 (x))
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and similarly

q(p−1(x)) = (q2 ◦ p4)((p2 ◦ p4)−1(x)) = q2(p4(p−1
4 (p−1

2 (x)))) = q2(p−1
2 (x)).

Hence
q1(p−1

1 (x)) = q2(p−1
2 (x)).

Now the axiom of homological equality will be proven. From the properties of
homologies we get:

p∗ = p1∗ ◦ p3∗ = p2∗ ◦ p4∗, q∗ = q1∗ ◦ p3∗ = q2∗ ◦ p4∗.

We have

q∗ ◦ p−1
∗ = (q1 ◦ p3)∗ ◦ (p1 ◦ p3)−1

∗ = (q1∗ ◦ p3∗) ◦ (p1∗ ◦ p3∗)−1

= (q1∗ ◦ p3∗) ◦ (p−1
3∗ ◦ p

−1
1∗ )

= q1∗ ◦ p−1
1∗

and similarly

q∗ ◦ p−1
∗ = (q2 ◦ p4)∗ ◦ (p2 ◦ p4)−1

∗ = (q2∗ ◦ p4∗) ◦ (p2∗ ◦ p4∗)−1

= (q2∗ ◦ p4∗) ◦ (p−1
4∗ ◦ p

−1
2∗ )

= q2∗ ◦ p−1
2∗ .

Hence
q1∗ ◦ p−1

1∗ = q2∗ ◦ p−1
2∗ .

Now it will be shown that the relation ∼m satisfies the axiom of composition.
Let (p1, q1), (p2, q2) ∈ D(X,Y ), (p3, q3), (p4, q4) ∈ D(Y, T ) and let the diagrams
(p, q), (p′, q′) ∈ D(X,T ) be the compositions of the diagrams (p1, q1), (p3, q3) and
(p2, q2), (p4, q4), respectively (see Definition 2.1). It must be proven that

(((p1, q1) ∼m (p2, q2))) and ((p3, q3) ∼m (p4, q4)) =⇒ ((p, q) ∼m (p′, q′)).

We have the following commutative diagram

X
p1←−−−− Z1

q1−−−−→ Y
p3←−−−− Z3

q3−−−−→ TxId xp5

xId xp7

xId
X

u1←−−−− Z
v1−−−−→ Y

u2←−−−− Z ′
v2−−−−→ TyId yp6

yId yp8

yId
X

p2←−−−− Z2
q2−−−−→ Y

p4←−−−− Z4
q4−−−−→ T

that is
u1 = p1 ◦ p5 = p2 ◦ p6, v1 = q1 ◦ p5 = q2 ◦ p6

and
u2 = p3 ◦ p7 = p4 ◦ p8, v2 = q3 ◦ p7 = q4 ◦ p8.
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We make the following diagram (see Definition 2.1)

X
p←−−−− Z1 4q1p3 Z3

q−−−−→ TxId xr1

xId
X

r←−−−− Z 4v1u2 Z
′ s−−−−→ TyId yr2

yId
X

p′←−−−− Z2 4q2p4 Z4
q′−−−−→ T,

where (r, s) = (u2, v2) ◦ (u1, v1), r1 = p5 × p7 and r2 = p6 × p8. First we need to
prove that the mappings r1, r2 are well defined. For this we need to show that for
each (z, z′) ∈ Z 4v1u2 Z

′

q1(p5(z)) = p3(p7(z′)) and q2(p6(z)) = p4(p8(z′)).

The first of the above equations will be proven as the second is proven in a similar
way. Let (z, z′) ∈ Z 4v1u2 Z

′. We have

q1(p5(z)) = v1(z) = u2(z′) = p3(p7(z′)).

It is clear that r1 and r2 are Vietoris mappings. We shall now show that the
above diagram is commutative. Let f1 : Z14q1p3 Z3 → Z1, f3 : Z14q1p3 Z3 → Z3,
f2 : Z24q2p4Z4 → Z2, f4 : Z24q2p4Z4 → Z4, f : Z4v1u2Z

′ → Z, f ′ : Z4v1u2Z
′ →

Z ′ are projections (see Definition 2.1). Note that f1, f2, f are Vietoris mappings.
We recall that by Definition 2.1 we have: p = p1 ◦ f1, q = q3 ◦ f3, p′ = p2 ◦ f2,
q′ = q4 ◦ f4, r = u1 ◦ f , s = v2 ◦ f ′. Let (z, z′) ∈ Z 4v1u2 Z

′. Thus

p(r1(z, z′)) = p1(f1((p5(z), p7(z′)))) = p1(p5(z)) = u1(z) = u1(f(z, z′)) = r(z, z′),
p′(r2(z, z′)) = p2(f2((p6(z), p8(z′)))) = p2(p6(z)) = u1(z) = u1(f(z, z′)) = r(z, z′)

and similarly

q(r1(z, z′)) = q3(f3((p5(z), p7(z′)))) = q3(p7(z′)) = v2(z′) = v2(f ′(z, z′))
= s(z, z′),

q′(r2(z, z′)) = q4(f4((p6(z), p8(z′)))) = q4(p8(z′)) = v2(z′) = v2(f ′(z, z′))
= s(z, z′)

and the proof is complete.

The set of the class of the abstraction of the above relation will be denoted by
the symbol

Mm(X,Y ) = D(X,Y )/∼m
.

The elements of the set Mm(X,Y ) will be called multi-morphisms and denoted
by: ϕm, ψm, . . . . The following denotation is assumed

ϕm = [(p, q)]m (we write (p, q) ∈ ϕm),
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where the diagram (p, q) is representative of the class of the abstraction [(p, q)]m
in the relation ∼m.

It shall be noticed that if the two diagrams (p1, q1), (p2, q2) ∈ D(X,Y ) are in
a relation in the sense of Kryszewski (see [8]), then

(p1, q1) ∼m (p2, q2).

An example that the inverse conclusion is not true will be provided now. Let R
be a real number set and let [0, 1] ⊂ R be an interval.

Example 3.4
Let ψ : [0, 1] ( [0, 1] be a map given by

ψ(x) =


0 for x < 1

2 ,

[0, 1] for x = 1
2 ,

1 for x > 1
2 .

The mapping ψ is u.s.c. and of compact and convex images. It shall be noticed that
ψ does not have a continuous selector, that is, there does not exist a continuous
mapping f : [0, 1] → [0, 1] such that for every x ∈ [0, 1] f(x) ∈ ψ(x). Let Γψ =
{(x, y) ∈ [0, 1]× [0, 1]; y ∈ ψ(x)}. Then the set Γψ is homeomorphic with the set
[0, 1]. It results in the following commutative diagram

[0, 1] p←−−−− Γψ
p−−−−→ [0, 1]xId xId xId

[0, 1] p←−−−− Γψ
p−−−−→ [0, 1]yId yp yId

[0, 1] Id←−−−− [0, 1] Id−−−−→ [0, 1],

where p(x, y) = x (Vietoris map) for every (x, y) ∈ Γψ. It should be noticed that

(p, p) ∼m (Id, Id),

but the diagrams (p, p), (Id, Id) ∈ D([0, 1], [0, 1]) are not in a relation either in the
sense of Kryszewski or in the sense of Górniewicz (see [4]). Let’s assume that there
exists a continuous mapping (not necessarily a homeomorphism) h : [0, 1] → Γψ
such that p◦h = Id. Then for every x ∈ [0, 1] h(x) ∈ p−1(x). Let q : Γψ → [0, 1] be
given by formula q(x, y) = y for every (x, y) ∈ Γψ. Then the mapping f : [0, 1]→
[0, 1] given by formula f = q ◦ h would be a continuous selector of the mapping ψ
but it is impossible.

The above example shows that the relation ∼m is essentially different from
the relations ∼k and ∼g. For single-valued mappings, there is the following fact:
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Proposition 3.5
Let f : X → Y be a continuous mapping and let (p, q) ∈ D(X,Y ), where

X
p←−−−− Z

q−−−−→ Y.

Then the following conditions are equivalent:
(3.5.1) q = f ◦ p,

(3.5.2) (p, q) ∼m (Id, f),

(3.5.3) q(p−1(x)) = f(x) for each x ∈ X.

Proof. (3.5.1)⇒ (3.5.2)
There is the following commutative diagram:

X
p←−−−− Z

q−−−−→ YxId xId xId
X

p←−−−− Z
q−−−−→ YyId yp yId

X
Id←−−−− X

f−−−−→ Y.

Hence (p, q) ∼m (Id, f).
(3.5.2)⇒ (3.5.3)
This implication is the result of the axiom of topological equality (see Proposi-
tion 3.3).
(3.5.3)⇒ (3.5.1)
Let (p, q) ∈ D(X,Y ) such that for each x ∈ X q(p−1(x)) = f(x) and let z ∈ Z.
Then there exists a point x1 ∈ X such that z ∈ p−1(x1). Hence we get

q(z) = f(x1) = f(p(z)),

and the proof is complete.

From the last fact it results that the relation ∼m orders single-valued multi-
morphisms and separates them from multi-valued multi-morphisms.

4. The homotopy of multi-morphisms

First, we define the homotopy diagrams in the set D(X,Y ) and prove that
there is an equivalence relation. At the beginning we prove the following fact:

Proposition 4.1
Let (p1, q1), (p2, q2) ∈ D(X,Y ), where

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y.

Then there exists (p, q), (p, q′) ∈ D(X,Y ) such that

(p1, q1) ∼m (p, q) and (p2, q2) ∼m (p, q′).
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Proof. Let Z = Z1 4p1p2 Z2 (see Definition 2.1) and let

f1 : Z → Z1, f1(z1, z2) = z1, f2 : Z → Z2, f2(z1, z2) = z2

for each (z1, z2) ∈ Z. We observe that f1 and f2 are Vietoris maps and p1 ◦ f1 =
p2 ◦ f2. Let

p = p1 ◦ f1 = p2 ◦ f2, q = q1 ◦ f1, q′ = q2 ◦ f2. (4)

We have the following commutative diagrams:

X
p1←−−−− Z1

q1−−−−→ Y X
p2←−−−− Z2

q2−−−−→ YxId xf1

xId xId xf2

xId
X

p←−−−− Z
q−−−−→ Y X

p←−−−− Z
q′−−−−→ YyId yId yId yId yId yId

X
p←−−−− Z

q−−−−→ Y, X
p←−−−− Z

q′−−−−→ Y.

Hence we get
(p1, q1) ∼m (p, q) and (p2, q2) ∼m (p, q′)

and the proof is complete.

From the last fact it results that every two different multi-morphisms have
a common Vietoris mapping. It means that only continuous mappings q1, q2
decide about the differential of multi-morphisms (p1, q1) ∈ ϕm and (p2, q2) ∈ ψm.
With the recent Proposition we can introduce the following definition of homotopy
diagrams.

Definition 4.2
Let (p1, q1), (p2, q2) ∈ D(X,Y ), where

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y.

We say that the diagrams (p1, q1) and (p2, q2) are homotopic which is denoted by

(p1, q1) ∼HD (p2, q2)

if there exists a space Z and Vietoris maps p3 : Z → Z1 and p4 : Z → Z2 such that
the following conditions are satisfied:

(4.2.1) p1 ◦ p3 = p2 ◦ p4,

(4.2.2) q1 ◦ p3 ∼h q2 ◦ p4 that is, the mappings q1 ◦ p3, q2 ◦ p4 : Z → Y are
homotopic.

Proposition 4.3
The homotopy relation introduced in the Definition 4.2 is an equivalence relation
in the set of all diagrams D(X,Y ).
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Proof. Let (p, q) ∈ D(X,Y ), where

X
p←−−−− Z

q−−−−→ Y.

It is clear that the relation is reflexive that is, (p, q) ∼HD (p, q). Indeed, it
is sufficient to adopt p3 = p4 = Id : Z → Z. It is also evident that the re-
lation is symmetric. We shall now show that the relation is transitive. Let
(p1, q1), (p2, q2), (p3, q3) ∈ D(X,Y ), where

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y, X
p3←−−−− Z3

q3−−−−→ Y.

Assume that

(p1, q1) ∼HD (p2, q2) and (p2, q2) ∼HD (p3, q3).

We have the following diagram

X
p1←−−−− Z1

q1−−−−→ YxId xp3

X
r←−−−− ZyId yp4

X
p2←−−−− Z2

q2−−−−→ YxId xp5

X
r′←−−−− Z ′yId yp6

X
p3←−−−− Z3

q3−−−−→ Y,

where
r = p1 ◦ p3 = p2 ◦ p4, r′ = p2 ◦ p5 = p3 ◦ p6,

q1 ◦ p3 ∼h q2 ◦ p4, q2 ◦ p5 ∼h q3 ◦ p6.

Let

f : Z 4p4p5 Z
′ → Z, f(z, z′) = z, f ′ : Z 4p4p5 Z

′ → Z ′, f ′(z, z′) = z′

for each (z, z′) ∈ Z4p4p5 Z
′. We observe that f and f ′ are Vietoris mappings and

p4 ◦ f = p5 ◦ f ′. We get the following diagram
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X
p1←−−−− Z1

q1−−−−→ YxId xp3

X ZxId xf
X

s←−−−− Z 4p4p5 Z
′yId yf ′

X Z ′yId yp6

X
p3←−−−− Z3

q3−−−−→ Y,

where

s = (p1◦p3)◦f = (p2◦p4)◦f = p2◦(p4◦f) = p2◦(p5◦f ′) = (p2◦p5)◦f ′ = (p3◦p6)◦f ′.

Let p7 = p3 ◦ f , p8 = p6 ◦ f ′, then p1 ◦ p7 = p3 ◦ p8. We define a homotopy
h : Z 4p4p5 Z

′ × [0, 1]→ Y given by the formula

h(z, z′, t) =
{
h1(f(z, z′), 2t) for t ∈ [0, 1

2 ],
h2(f ′(z, z′), 2t− 1) for t ∈ [ 1

2 , 1],

where h1 : Z × [0, 1]→ Y is a homotopy between the mappings q1 ◦ p3 and q2 ◦ p4
and h2 : Z ′ × [0, 1]→ Y is a homotopy between the mappings q2 ◦ p5 and q3 ◦ p6.
Let (z, z′) ∈ Z 4p4p5 Z

′. We observe that for t = 1
2

h1(f(z, z′), 1) = q2(p4(f(z, z′))) = q2(p5(f ′(z, z′))) = h2(f ′(z, z′), 0).

Hence the map h is well defined. Furthermore, we have

h(z, z′, 0) = h1(f(z, z′), 0) = q1(p3(f(z, z′))) = q1(p7(z, z′))
and

h(z, z′, 1) = h2(f ′(z, z′), 1) = q3(p6(f ′(z, z′))) = q3(p8(z, z′))
and the proof is complete.

Another simple fact does not require proof.

Proposition 4.4
Let (p1, q1), (p2, q2) ∈ D(X,Y ) and let (p1, q1) ∼m (p2, q2), then (p1, q1) ∼HD
(p2, q2).

Proposition 4.5
Let (p1, q1), (p2, q2) ∈ D(X,Y ), where

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y.
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If (p1, q1) ∼HD (p2, q2), then q1∗ ◦ p−1
1∗ = q2∗ ◦ p−1

2∗ , where

H∗(X) p1∗←−−−− H∗(Z1) q1∗−−−−→ H∗(Y ), H∗(X) p2∗←−−−− H∗(Z2) q2∗−−−−→ H∗(Y ).

Proof. From the assumption there exist Vietoris maps p3 : Z → Z1 and
p4 : Z → Z2 such that p1 ◦ p3 = p2 ◦ p4 and q1 ◦ p3 ∼h q2 ◦ p4. With property
homology we get

p1∗ ◦ p3∗ = p2∗ ◦ p4∗ and q1∗ ◦ p3∗ = q2∗ ◦ p4∗.

We have
p1∗ = p2∗ ◦ p4∗ ◦ p−1

3∗ and q1∗ = q2∗ ◦ p4∗ ◦ p−1
3∗ .

Finally, we get

q1∗ ◦ p−1
1∗ = (q2∗ ◦ p4∗ ◦ p−1

3∗ ) ◦ (p2∗ ◦ p4∗ ◦ p−1
3∗ )−1

= (q2∗ ◦ p4∗ ◦ p−1
3∗ ) ◦ (p3∗ ◦ p−1

4∗ ◦ p
−1
2∗ )

= q2∗ ◦ p−1
2∗

and the proof is complete.

Now, using the Propositions 4.3 and 4.4, we can define homotopy multi-
morphisms.

Definition 4.6
Let ϕm, ψm ∈ Mm(X,Y ) be multi-morphisms. We say that the multi-morphisms
ϕm and ψm are homotopic (we write ϕm ∼HM ψm) if there exist diagrams
(p1, q1) ∈ ϕm and (p2, q2) ∈ ψm such that (p1, q1) ∼HD (p2, q2).

Proposition 4.7
The homotopy relation introduced in the Definition 4.6 is an equivalence relation
in the set of all multi-morphisms Mm(X,Y ).

Proof. It is obvious that the relation is reflexive and symmetric. Transitivity
of the relation follows from Proposition 4.3 and 4.4.

Using the Proposition 4.3 and 4.4, note that, in fact, if ϕm ∼HM ψm, where
ϕm, ψm ∈ Mm(X,Y ) are multi-morphisms, then for each (p1, q1) ∈ ϕm and
(p2, q2) ∈ ψm

(p1, q1) ∼HD (p2, q2). (5)

Let f : X → Y be a single-valued continuous map. The symbol fm ∈ Mm(X,Y )
we denote a multi-morphism such that for all (p, q) ∈ fm and for each x ∈ X

q(p−1(x)) = f(x).

Proposition 4.8
Let f, g : X → Y be continuous maps. If f ∼h g, then

fm ∼HM gm.
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Proof. It is clear that (Id, f) ∼HD (Id, g) because for p3 = p4 = Id (see
Definition 4.2) we have Id ◦ p3 = Id ◦ p4 and f ◦ p3 ∼h g ◦ p4. Hence from
Definition 4.6 fm ∼HM gm and the proof is complete.

Proposition 4.9
Let f, g : X → Y be continuous maps. fm ∼HM gm if and only if there exists
a space Z and a Vietoris mapping p : Z → X such that

f ◦ p ∼h g ◦ p.

Proof. Let fm ∼HM gm. Then from Proposition 3.5 and (5) we have the
following diagram

X
Id←−−−− X

f−−−−→ YxId xp3

X
p←−−−− ZyId yp4

X
Id←−−−− X

g−−−−→ Y,

where p = Id ◦ p3 = Id ◦ p4 and f ◦ p = f ◦ p3 ∼h g ◦ p4 = g ◦ p and the same
proof one way has been completed. Assume now that there exists a space Z and
a Vietoris mapping p : Z → X such that f ◦ p ∼h g ◦ p. Then we get the diagram

X
Id←−−−− X

f−−−−→ YxId xp
X

p←−−−− ZyId yp
X

Id←−−−− X
g−−−−→ Y.

Hence fm ∼HM gm and the proof is complete.

5. The applications

From the axiom of topological equality the correctness of the following defini-
tion results:

Definition 5.1
For any ϕm ∈Mm(X,Y ), the set ϕ(x) = q(p−1(x)) where ϕm = [(p, q)]m is called
an image of point x in a multi-morphism ϕm.

The concept of multi-contractibility of space in the context of multi-morphisms
will be now introduced.
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Definition 5.2
Let X be a metrizable space and let x0 ∈ X. Let Cx0 : X → X be a constant map
such that Cx0(x) = x0 for each x ∈ X. We say that a space X is multi-contractible
to a point x0 in the context of multi-morphisms (we write X ∈MCNm) if

[(Id, Id)]m = Idm ∼HM Cx0
m = [(Id, Cx0)]m.

From Proposition 4.9 we get the following fact:

Proposition 5.3
A space X ∈MCNm if and only if there exists a metrizable space Z and a Vietoris
map p : Z → X such that p ∼h Cx0

1 , where Cx0
1 : Z → X is a constant map, that

is for each z ∈ Z Cx0
1 (z) = x0.

We recall that the space X is contractible to the point x0 ∈ X (we write
X ∈ CN) if Id ∼h Cx0 . It is obvious that if X ∈ CN then X ∈MCNm. We will
give an example that the inverse theorem is not true. We know that if X ∈ CN
then the space X is movable (see Definition 2.5). Q shall denote the Hilbert cube.

Example 5.4
Let X ⊂ Q be a non-movable compact metric space and such that there exists
a Vietoris mapping p : Q→ X (see [7]). Then X ∈MCNm. We define a homotopy
h : Q × [0, 1] → X between the p and Cx0

1 (see Proposition 5.3), where x0 ∈ X
given by formula

h(z, t) = p((1− t)z + tz0) for each (z, t) ∈ Q× [0, 1],

where z0 ∈ Q and p(z0) = x0. We observe that X /∈ CN since X is non-movable.

Another important fact is the following:

Proposition 5.5
If X ∈MCNm then X is path connected.

Proof. From Proposition 5.3 there exists a space Z and a Vietoris map p : Z →
X such that p ∼h Cx0

1 . Let x1 ∈ X and let p(z1) = x1 for some point z1 ∈ Z. We
define a path d : [0, 1]→ X between the point x0 ∈ X and the point x1 ∈ X given
by formula

d(t) = h(z1, t) for each t ∈ [0, 1],
where h : Z × [0, 1]→ X is a homotopy between p and Cx0

1 .

Homotopy multi-morphisms can be defined according to the mathematical
literature of homotopy morphisms in the sense of Kryszewski (see [8]). Let ij : X×
{j} → X × [0, 1], j = 0, 1 be an inclusion given by formula ij(x, j) = (x, j) for
each (x, j) ∈ X × {j}.

Definition 5.6
We say that the multi-morphisms ϕm, ψm ∈Mm(X,Y ) are weakly homotopic (we
write ϕm ∼HMW ψm) if there exists a multi-morphism Hm ∈ Mm(X × [0, 1], Y )
such that

Hm ◦ i0m = ϕm, Hm ◦ i1m = ψm.
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We observe that:

Proposition 5.7
Let ϕm, ψm ∈ Mm(X,Y ) be multi-morphisms. If ϕm ∼HM ψm then ϕm ∼HMW

ψm.

Proof. From Definition 4.6 there exist diagrams (p1, q1) ∈ ϕm and (p2, q2) ∈
ψm such that (p1, q1) ∼HD (p2, q2), where

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y.

From Definition 4.2 there exists a space Z and Vietoris mappings p3 : Z → Z1 and
p4 : Z → Z2 such that

p1 ◦ p3 = p2 ◦ p4 and q1 ◦ p3 ∼h q2 ◦ p4.

Let p = p1 ◦ p3 = p2 ◦ p4 and let r : Z × [0, 1] → X × [0, 1] be a Vietoris map
given by formula r(z, t) = (p(z), t) for each (z, t) ∈ Z × [0, 1]. We define a weakly
homotopy Hm ∈Mm(X × [0, 1], Y ) given by formula

Hm = hm ◦ ηm,

where ηm = [(r, Id)]m and hm = [(Id, h)]m, h : Z × [0, 1] → Y is a homotopy
between the mappings q1 ◦ p3 and q2 ◦ p4. We have the following diagram

X × [0, 1] r←−−−− Z × [0, 1] Id−−−−→ Z × [0, 1] Id←−−−− Z × [0, 1] h−−−−→ Y.

It is clear that
Hm ◦ i0m = ϕm, Hm ◦ i1m = ψm

and the proof is complete.

We can adopt, of course, the following definition.

Definition 5.8
We say that a space X is a weakly multi-contractible to the point x0 ∈ X in the
context of the multi-morphisms (we write X ∈MCNmw) if there exists a weakly
homotopy Hm ∈Mm(X × [0, 1], X) such that

Idm ∼HMW Cx0
m .

We will give an example that the inverse theorem to the Proposition 5.7 is not
true. We recall that a multi-valued u.s.c. map ϕ : X ( Y is acyclic if for each
x ∈ X the set ϕ(x) is compact and acyclic. The acyclic map ϕ is determined by
a multi-morphism ϕm = [(pϕ, qϕ)]m ∈Mm(X,Y ), where

X
pϕ←−−−− Γϕ

qϕ−−−−→ Y, (6)

Γϕ = {(x, y) ∈ X × Y ; y ∈ ϕ(x)}, pϕ(x, y) = x (Vietoris map) qϕ(x, y) = y for
each (x, y) ∈ Γϕ such that for each x ∈ X

qϕ(p−1
ϕ (x)) = ϕ(x).

In the mathematical literature it is known that if X is compact and of trivial shape
in the sense of Borsuk (see [1]) then it is acyclic.
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Example 5.9
We define a set X ⊂ R2 given by formula

X = {(x, y) ∈ R2; y = sin(1/x), x ∈ (0, 1]} ∪ ({0} × [−1, 1]).

We know (see [2, 3]) that X is compact and of trivial shape. We also know that
X is not path connected, so X /∈MCNm (see Proposition 5.5). Hence we have

Idm �HM Cx0
m .

We define a multi-valued map H : X × [0, 1] ( X given by formula:

H(x, t) =


x for t ∈ [0, 1

2 ),
X for t = 1

2 ,

x0 for t ∈ ( 1
2 , 1].

The map H is acyclic, so the multi-morphism Hm = [(pH , qH)]m ∈ Mm(X ×
[0, 1], X) (see (6)) is a weakly homotopy joining Idm and Cx0

m . Hence X ∈
MCNmw.

Note that there are three types of contractibility to the point of a metric space.
The first type of contractibility is CN , the second type is MCNm, while the third
is MCNmw. On the basis of the above considerations, we can see that

CN ⊂MCNm ⊂MCNmw

and any of these inclusions can not be reversed. Note that if the space X is
compact and acyclic then X ∈ MCNmw. In this case, homotopy can be written
as in the Example 5.9. Contractibility of MCNm type is more general than the
one of CN (see Example 5.4) type but it remains in the class of path connected
(see Proposition 5.5).

In the second part we will present the application to the theory of coincidence.
We introduce the following definitions:

Definition 5.10
Let (p1, q1), (p2, q2) ∈ D(X,Y ), where

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y.

We say that the diagrams (p1, q1) and (p2, q2) have a coincidence point

(we write (p1, q1) ∼z0 (p2, q2))

if there exists a metrizable space Z, Vietoris maps p3 : Z → Z1, p4 : Z → Z2 and
a point z0 ∈ Z such that p1 ◦ p3 = p2 ◦ p4 and

q1(p3(z0)) = q2(p4(z0)).

We recommend the articles [5, 6] on the theory of coincidence.
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Definition 5.11
Let ϕm, ψm ∈ Mm(X,Y ). We say that the multi-morphisms ϕm and ψm have
a coincidence point if there exist diagrams (p1, q1) ∈ ϕm and (p2, q2) ∈ ψm such
that (p1, q1) ∼z0 (p2, q2).

At the beginning we prove the following fact:

Proposition 5.12
Let ϕm, ψm ∈ Mm(X,Y ). The multi-morphisms ϕm and ψm have a coincidence
point if and only if there exist a point x0 ∈ X such that

ϕ(x0) ∩ ψ(x0) 6= ∅.

Proof. Assume that the multi-morphisms ϕm and ψm have a coincidence
point. From the Definition 5.11 we get (p1, q1) ∈ ϕm and (p2, q2) ∈ ψm such
that (p1, q1) and (p2, q2) have a coincidence point, where

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y.

In turn, by Definition 5.10 there exists a metrizable space Z, Vietoris maps
p3 : Z → Z1, p4 : Z → Z2 and a point z0 ∈ Z such that p1 ◦ p3 = p2 ◦ p4
and q1(p3(z0)) = q2(p4(z0)). Let z1 = p3(z0) ∈ Z1, z2 = p4(z0) ∈ Z2 and let
x0 = p1(z1) = p2(z2) ∈ X. Then q1(z1) = q2(z2) and hence

q1(p−1
1 (x0)) ∩ q2(p−1

2 (x0)) 6= ∅,

so from the axiom of topological equation (see Definition 2.2) ϕ(x0)∩ψ(x0) 6= ∅ and
proof one way has been completed. Assume now that there exists a point x0 ∈ X
such that ϕ(x0) ∩ ψ(x0) 6= ∅. Then there exists (p1, q1) ∈ ϕm and (p2, q2) ∈ ψm
such that q1(p−1

1 (x0)) ∩ q2(p−1
2 (x0)) 6= ∅, where

X
p1←−−−− Z1

q1−−−−→ Y, X
p2←−−−− Z2

q2−−−−→ Y.

There exist points z0
1 ∈ Z1, z0

2 ∈ Z2 such that

p1(z0
1) = p2(z0

2) = x0 and q1(z0
1) = q2(z0

2).

Let Z = Z14p1p2 Z2, f1 : Z → Z1, f2 : Z → Z2 be projections (see Definition 2.1).
It is obvious that f1 and f2 are Vietoris maps and p1◦f1 = p2◦f2. Let z0 = (z0

1 , z
0
2).

Then z0 ∈ Z and

q1(f1(z0)) = q1(f1((z0
1 , z

0
2)) = q1(z0

1) = q2(z0
2) = q2(f2(z0

1 , z
0
2)) = q2(f2(z0))

and the proof is complete.

Note that the Definition 5.11, Proposition 5.12 and the axiom of topological
equality (see Definition 2.2) show that if the multi-morphisms ϕm and ψm have
a point of coincidence, then for each diagram (p1, q1) ∈ ϕm and (p2, q2) ∈ ψm

(p1, q1) ∼z0 (p2, q2) (see Definition 5.10).

We say that a multi-morphism ψm = [(p, q)]m ∈ Mm(X,Y ) is compact if q is
a compact mapping.
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Theorem 5.13
Let ∆m ∈Mm(X,Y ) be a multi-morphism such that ∆m = [(p1, p2)]m, where

X
p1←−−−− Z1

p2−−−−→ Y

and p1, p2 are Vietoris maps and let
←−
∆m = [(p2, p1)]m ∈Mm(Y,X). Let Y ∈ ANR

and let ψm ∈Mm(X,Y ) be a compact multi-morphism. Then

(ψm ◦
←−
∆m)∗ : H∗(Y )→ H∗(Y )

(see Theorem 2.4) is a Leray endomorphism and if Λ((ψm ◦
←−
∆m)∗) 6= 0 then ψm

and ∆m have a point of coincidence.

Proof. From the axiom of composition (see Definition 2.2) and from the as-
sumption (ψm ◦

←−
∆m) ∈ Mm(Y, Y ) is a compact multi-morphism and Y ∈ ANR,

so (ψm ◦
←−
∆m)∗ is a Leray endomorphism. Assume that Λ((ψm ◦

←−
∆m)∗) 6= 0. Let

(p1, p2) ∈ ∆m, (p3, q3) ∈ ψm, where

X
p1←−−−− Z1

p2−−−−→ Y, X
p3←−−−− Z2

q3−−−−→ Y.

From Proposition 4.1 we get a metrizable space Z, Vietoris maps p4 : Z → Z1,
p5 : Z → Z2 such that p = p1 ◦ p4 = p3 ◦ p5 and

(p, p2 ◦ p4) ∈ ∆m, (p, q3 ◦ p5) ∈ ψm.

It is clear that (p2 ◦ p4, p) ∈
←−
∆m.

We have
Λ((ψm ◦

←−
∆m)∗) = Λ((ψm)∗ ◦ (

←−
∆m)∗)

(see Theorem 2.4)= Λ(((q3 ◦ p5)∗ ◦ p−1
∗ ) ◦ (p∗ ◦ (p2 ◦ p4)−1

∗ )
= Λ(((q3 ◦ p5)∗ ◦ (p2 ◦ p4)−1

∗ ) 6= 0.

Hence and from Theorem 2.7 the maps q3◦p5 and p2◦p4 have a point of coincidence
and from Definition 5.11 and Proposition 5.12 there exists a point x0 ∈ X such
that

∆(x0) ∩ ψ(x0) 6= ∅

and the proof is complete.

This paper presents only a few applications but there can be many more. In the
opinion the author, the theory of multi-morphisms is a tool to study the properties
of sets, spaces and multi-valued mappings. It is suggested that the multi-valued
mapping ϕ : X ( Y determined by the multi-morphisms ϕm ∈ Mm(X,Y ) be
denoted with

ϕ : X →m Y

and called a multi-functions. The notion of a multi-function is already present in
the mathematical literature and usually denotes any multi-valued mapping. Be-
cause of the single-valued character of multi-morphisms, the use of the name of
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a multi-function is completely justified. In the opinion of the author the multi-
functions in regard to their numerous applications construct a different class of
mappings than Kryszewski’s morphisms. It shall be noticed that every strongly ad-
missible mapping in the sense of Górniewicz is determined by some multi-morphism
and so it is a multi-function. In the class of multi-functions the notion of homo-
topy that is an equivalence relation is introduced and its definition bases on the
homotopy of single-valued mappings. Multi-functions resulted in some kind of
multi-contractibility to a point that is essentially more general than the regular
contractibility (it can also pertain to spaces that are not movable), but it remains
in the class of path connected spaces. It is also worth noting that every single-
valued multi-function is a function, as well as the other way around, every function
is a multi-function.
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