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Abstract. We study locally conformal symplectic structures and their ge-
neralizations from the point of view of transitive Lie algebroids. To
consider l.c.s. structures and their generalizations we use Lie algebroids
with trivial adjoint Lie algebra bundle M x R and M X g. We observe
that important l.c.s’s notions can be translated on the Lie algebroid’s
language. We generalize l.c.s. structures to g-l.c.s. structures in which
we can consider an arbitrary finite dimensional Lie algebra g instead of
the commutative Lie algebra R.

1. Lcs. structures from the point of view of Lie algebroids

We study locally conformal symplectic structures and their generalizations
from the point of view of transitive Lie algebroids. We recall that an l.c.s.
structure on a manifold M is a pair (w, ) of differentiable forms on M such
that

(1) w is a real closed 1-form on M,
(2) Q is a real non-degenerated 2-form fulfilling the property
dQd = —w A Q.

From the non-degeneracy of €2 it follows that M has even dimension.
By a transitive Lie algebroid on a manifold M ([16]) we mean a system
(A, [, -], #4) consisting of a vector bundle A over M and mappings

[,]: Sec A x Sec A — Sec A, #a: A— TM,

such that
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(a) (Sec A, [-,-]) is a real Lie algebra,
(b) #a, called an anchor, is an epimorphism of vector bundles,

(c) Sec#a: Sec A — X(M), £ — #4 o0&, is a homomorphism of Lie
algebras,

(d) [[€7fn]]:f[[£an]]+(#z40€)(f)777 f7n€SeCA’fEQO(M):COO(M)

The axiom (c) follows from the remaining ones, see [9], [1].

It follows that g := ker # 4 is a LAB (Lie algebra bundle), called the adjoint
of A. The Lie algebra g, is called the structure Lie algebra at x. The exact
sequence

0—g—AFATM —0
is called the Atiyah sequence of A, while any splitting \: TM — A,

#a40X=1idry, is a connection in A. The following geometric objects give rise
to transitive Lie algebroids:

— Lie groupoids,

— principal fibre bundles,

— vector bundles,

— transversely complete foliations,
— nonclosed Lie subgroups.

Let us remark that differential groupoids (non-transitive, in general), Pois-
son and Jacobi manifolds as well as any infinitesimal action of a Lie algebra on
a manifold produce nontransitive Lie algebroids. The image of the anchor is
always an integrable singular (or regular) foliation ([17], [6]) and the restriction
of the Lie algebroid to any leaf of this foliation is a transitive Lie algebroid.

To consider l.c.s. structures and their generalizations we use Lie algebroids
with trivial adjoint Lie algebra bundle g = M X g.

From the general theorem concerning the form of any transitive Lie alge-
broids (Mackenzie [15], Kubarski [11]) we have:

Each transitive Lie algebroid on M with a trivial adjoint bundle
g = M xR is isomorphic to

A=TM xR

with #4 = pry: TM xR — TM as the anchor and the bracket [-, -]
in Sec A is defined via some flat covariant derivative V in M x R
and a 2-form Q € Q?(M) fulfilling the Bianchi identity VQ = 0 in
the following way

[(X, 1), (V,9)] = (X, Y], Vxg — Vy f = Q(X,Y)).
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We recall that a covariant derivative V in a vector bundle £ determines a
standard operator dy: Q*(M; &) — Q*(M;¢) and dy6 is sometimes denoted
by V6. If V is flat then (dy)? = 0 and it determines the cohomology space
Hy (M;¢) in the obvious way.

Each flat covariant derivative in g = M x R is of the form

Vxf=0xf+wX) f

where w is a closed differentiable 1-form on M. Then the differential operator
dv is denoted rather by d,, ([7], [8]). We have

do(0) = db +w A0

and write H, (M) := Hy_ (M).

The condition V{2 = 0 is then equivalent to dQ2 = —w A Q.

Hence any transitive Lie algebroid with the trivial adjoint bundle g = M xR
is determined by the following data:

a closed 1-form w and a 2-form (2 such that d{2 = —w A Q. (%)
The Lie algebroid obtained in this way will be denoted by
(TM x R,w, Q).

LEMMA 1.1

A connection A\: TM — TM X R in the Lie algebroid A = (TM x R,w, Q) is
of the form M\(X) = (X,n(X)) for a 1-form n € Q*(M). The curvature form
OMX,Y) = [AX,\Y] — \[X,Y] of the connection X is equal to

QN =d,(n) - Q=dn+win—Q (1.1)

According to (x), the pair (w, 2) determining the above Lie algebroid is pre-
cisely a locally conformal symplectic structure (l.c.s. structure, for short) on the
manifold M provided that the 2-form €2 is non-degenerate. Therefore our tran-
sitive Lie algebroids TM x R determined by (w,2) are natural generalizations
of the locally conformal symplectic structures. For an l.c.s. structure (w, ),
following (), the form € represents the cohomology class [2] € H2(M) which
is called the Lichnerowicz class of the l.c.s. structure (w, ) ([3]). If the 1-form
w is exact the l.c.s. structure is called globally conformal symplectic structure.
The property that an l.c.s. structure is global can be equivalently expressed
in the language of Lie algebroids ([10], [14]). For this purpose we recall that
a transitive Lie algebroid (A, [-, ], #.4) is called invariantly oriented ([13]) if
there is specified a non-singular cross-section ¢ of the bundle A" g, g := ker # 4
and n = rankg, which is invariant with respect to the adjoint representation
of Ain A" g, equivalently, if g is orientable and the modular class of the Lie
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algebroid is zero ([5], [14]). Let us remark that for a transitive Lie algebroid
the modular class is equal to the characteristic class of the top-power of the
adjoint representation ads. The structure Lie algebras g, of the invariantly
oriented Lie algebroid are unimodular.

A cross-section ¢ of the bundle A\" g is invariant if and only if, in any open
subset U C M on which ¢ is of the form gy = (h1 A ... A hy)jy, hi € Secg, we
have, for all £ € Sec A,

n

S (A ATERT A Ay = 0.

i=1

In the case A = (TM x R,w,f) we have n = 1 and g =M x R and a
positive function e € C*°(M) = Sec(M x R) is invariant if and only if ¢ is
V-constant, Ve = 0 ([13, Lemma 6.2.1]). The condition Ve = 0 is equivalent
to w = d(—1In(e)).

THEOREM 1.1
Let (w, ) be an lc.s. structure on an arbitrary m-dimensional connected ma-
nifold (oriented or not). The following conditions are equivalent:

(a) the l.c.s. structure (w, ) is globally conformal symplectic structure (i.e.,
[w]=0),

(b) the associated Lie algebroid A = (TM x R,w, Q) is invariantly oriented,
(©) HEHL(A;0r(M)) 0,
(d) Hg%ﬂ:i(A; or(M)) =R, and the pairing

H(A) x Hyt 7 (Ajor(M)) — Hpet L (Asor(M)) = R

*

is non-degenerate, i.e., H(A) = (ng,fi_] (A;or(M)))".

Proof. (a) <= (b) see [10], (b) <= (¢) <= (d) see [14].

REMARK 1.1
(1) For an orientable manifold M the conditions (c¢) and (d) are equal to:

(c) HIHA) #0,
(d) H™H1(A) = R, and the pairing

HI(A) x H"M17I(A) — H™TH(A) =R

is non-degenerate, i.e., H/(A) = (H"177(A)).



Lc.s. structures, generalizations and Lie algebroids 91

(2) 09 is the canonical representation of A in the orientation bundle or(M),
(09)4(0) = (O )ga(y)(0), v € A, 0 € T'(or(M)). 0°" is the canonical
flat structure of the orientation bundle or(M) ([4]).

(3) Each representation V of a Lie algebroid A in a vector bundle £ (i.e.,
a homomorphism of a Lie algebroid A in the Lie algebroid A() of the
vector bundle £ ([12], [15])) determines a standard differential operator
dv: QA4;8) — Q(A4;¢) and Hy (4;€) is the space of cohomology of the
complex (2(4;€),dv). Local trivializations of A(f) are constucted in the
following way: Let ¢: U XV — p~L[U] = fluv be a local trivialization of
a vector bundle f; V' is the typical fibre. Consider the trivial Lie algebroid
TU x End(V). For a cross-section o € Secf, denote by oy the V-valued
function U 3 z +—— ¢ *(o(z)) € V. The mapping

$: TU x End(V) — A(f)ju
b(v,a)(0) = Yo (v(oy) + aloy(x))),

(v eTU,z €U, ac End(V), 0 € Secf) is an isomorphism of Lie
algebroids ([12]).

(4) The associated Lie algebra bundle of the considered Lie algebroid A =
(TM x R,w, Q) is the trivial line bundle g =M x R. Therefore, the top
group of cohomology Hg;,f’(lz(A;or(M )) can be written (analogously to

real coefficients, see [10]) as follows
i (Asor(M)) = HY . (M;or(M))

= H{gory-w(M;0r(M)).
Then the equivalence (a) <= (c) follows trivially, since
Hgory-o(Mjor(M)) #0 <= [-w] =0,

see [14].

Two l.c.s. structures (w, ) and (w’, ') on a manifold M are called confor-
mally equivalent if
, 1 , da
Q' =-Q, w=w+ —,
a a
for a nowhere vanishing function @ on M (non-singular for short).
If two l.c.s. structures (w’, ) and (w, 2) on a manifold M are conformally
equivalent then the associated Lie algebroids A’ = (TM xR,w’, ') and (T M x
R,w, §2) are isomorphic via the mapping

H: (TM xR, Q) — (TM x R,w, )
H(va):(X7a"f)
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where a € C*™(M) is a non-singular smooth function. The isomorphism
H: A — A of the above form will be called a conformal isomorphism.

We must add that the general form of a homomorphism H: TM x R —
TM x R of vector bundles commuting with anchors # 4 = pry is as follows

H(va):H'f],a(Xaf) = (X,’I](X)—‘réhf), (**)
for n € QY(M) and a € C°(M).

ProprosITION 1.1
(A) The following conditions are equivalent:
(1) Hyq is a homomorphism of Lie algebroids,
(2) (8 Vp=Q-a &,
(b) Vx(a-f)=a-Vif,
3) (&) do(n) =dn+wrn=Q—a- -,
(b) a- (v —w)=da.

The homomorphism H, , is an isomorphism of Lie algebroids if and only
if a is non-singular. Conditions (1), (2), (3) are then equivalent to

4) (a) =3 (Q—dun),
(b) W' =w+d(Inlal).

(B) For an arbitrary Lie algebroid A" = (TM x R,w’,Q") and data (n,a)
where n € QY (M) and a is a non-singular function, the differential forms
w=w —d(lnlal), @ =a-Q +dy,(n) fulfil the condition d = —w A Q,
i.e., the data (w,QY) determines a Lie algebroid A= (TM x R,w,Q) and
H,q.: A" — A given by (xx) is an isomorphism of Lie algebroids.

Proof. Easy calculation.
Clearly Hy o © Hyo = Hy yarmar-as (Hya)™' = H_ a2 1. In particular,
Hn,a = Hn,l o HO,aa

see the diagram

HTI»‘I

A= (TM x R,w', Q) (TM xR,w,Q) = A

Ho,a Hya

(TM xR,w,a- )
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It means that if A’ is isomorphic to A then there exists a Lie algebroid A” =
(TM x Ryw,Q"), Q" = a- €, conformally isomorphic to A’, i.e., such that
[A], [A"] € Opext(TM,V,M x R) — the set of isomorphic classes of Lie alge-
broids having the same representation V (a flat covariant derivative V).

Let (w, Q) and (w, ) be L.c.s. structures. We observe that the isomorphism
H,,: A\ — A given by (%x) is equivalent to conformal equivalence of the
associated l.c.s. structures if and only if n = 0.

How can we formulate the problem of existence of l.c.s. structures? We have
the simple

ProposITION 1.2

Any Lie algebroid A’ = (TM x R,w’, Q) is isomorphic to A = (TM xR, w,Q)
with Q non-degenerate (i.e. (w,§) is an l.c.s. structure) if and only if there
exists in A’ a connection for which the curvature tensor is non-degenerate.

Proof. Let Hy,,: A’ — A be an isomorphism of Lie algebroids

0 — MxR —— (TM xR0, Q) —— TM — 0

N

HY Hya

n,a

0 — MxR

(TM xR,w,Q) —— TM — 0
X (1.2)
H;fa(f) = a-f. For arbitrary connections A’ and A in A" and A, respectively,
such that H, , o A’ = X\ we have the following equality for curvature tensors

O =H, o0V,

Therefore, if Q is nondegenerate and )\’ is a connection such that H, ,0\ = A
where A(v) = (v,0), then Q* = —Q (see Lemma 1.1) and, clearly, Q" is non-
degenerate.

Conversely, if N (X) = (X,n(X)) is any connection in A’ such that Q
is non-degenerate, then H_, ; is an isomorphism of A’ on A := (TM X R,

W', fQ)‘/) (see (1.1)) and (w’, fQ)‘/) is an l.c.s. structure.

So, the problem of existing of l.c.s. structures can be precisely formulated
as follows:

ProBLEM 1.1
We introduce into the class of pairs (w, Q) fulfilling (%), i.e., dQ) = —w A Q, the
equivalence relation

r) (W,Q) = (w,Q) = the Lie algebroids A’ = (TM x R,w’, ) and A
(TM x R,w,Q) are isomorphic, i.e., there exists n € Q'(M) and a
C>®(M), a(z) # 0 for all z € M, such that (4a), (4b) hold: (4a) €’
LQ—dnp—wnn), (4b) ' =w+ 42,

Im
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Let dim M be even. We can ask: Does there in every (in given) equivalence
class [(w’, Q)] exist (w,2) being an l.c.s. structure; equivalently, does there in
the Lie algebroid A’ = (TM xR, w’, Q') exist a connection with non-degenerate
curvature tensor, i.e., equivalently, does there exist a 1-form n € Q(M) such
that dn + w A n — € is non-degenerate.

This problem has a local solution, see Proposition 2.5 below for more general
situations.

We must add that for a fixed closed form w, i.e., a flat covariant derivative
Vxf=0xf+w(X)- fin the trivial bundle M x R, the classification of Lie
algebroids of the form (T'M x R,w, ) up to isomorphism is as follows: for the
class of isomorphic Lie algebroids Opext(TM,V, M x R) we have ([15])

Opext(TM,V,M x R) = HS(M;R),  [(TM x R,w,Q)] — [Q].

A. Banyaga ([3]) gives examples of l.c.s. structures (w,2) such that the Lich-
nerowicz class [©] is not trivial, [2] # 0. For deformations and equivalence of
l.c.s. structures see [2].

To sum up we see that important l.c.s’s notions can be translated into the
Lie algebroid’s language. We have the following table:

l.c.s. Lie algebroid

(M,w,Q) = A=TM xR

w is closed, with anchor

dQ=—-wAQ. H#a=pri: TM xR —TM,

with bracket

[(X, f), Y, 9)] = ([X,Y],Vxg — Vy [ — Q(X,Y))
where Vxg=0xg+w(X) g

V is flat and VQ = 0.

Globally c.s. = A is invariantly oriented.

w is exact.

Two l.c.s. structures The corresponding Lie algebroids are isomorphic
(W, ) and (w,Q) on  via

M are conformally Hoo: TM xR —TMxR, HX, f)=(X,a- f),
equivalent = a € C®(M), a(x) # 0 for all .

I _ da ;1
W=w+ Q=20

2. Generalizations: g-l.c.s. structures and Lie algebroids

We generalize 1.c.s. structures to g-1.c.s. structures in which we can consider
an arbitrary finite dimensional Lie algebra g instead of the commutative Lie
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algebra R. From the general theorem on the form of Lie algebroids, mentioned
above, we have ([15], [11]):

THEOREM 2.1

Each transitive Lie algebroid with a trivial adjoint bundle of Lie algebras M X g
is isomorphic to TM X g with #4 =pry: TM x g — T M as the anchor and
the bracket

[(X,0), (V,n)] = (X, Y], Vxn = Vyo + [0, 1] — Q(X,Y))

in Sec A is defined via the following data (V,Q): a covariant derivative V in the
trivial vector bundle M x g and a 2-form 2 € Q2(M; g) fulfilling the conditions:

(1) RY yo = —[QX,Y),0], RV being the curvature tensor of V,
(2) Vxlo,n] = [Vxo,n] + [0, Vxn], o, € C=(M;g),
(3) V@ =o0.

The Lie algebroid obtained in the above way via the data (V,Q) fulfilling
(1)-(3) above will be denoted here by

(TM x g,V,Q). (2.3)

The form —Q is the curvature form of the connection A\: TM — TM X g,
A(v) = (v,0), in this Lie algebroid (TM x g, V, Q).

0*>MXQ—>TMXQ:>TM—>O.
x
More generally, the curvature form of an arbitrary connection A\(X)=(X, n(X)),
n € QY(M;g), is given by
OMNX,Y) = (V) (X, Y) + X, nY] — QX,Y). (2.4)
We write the covariant derivative V in the trivial bundle M X g in the form
Vxo=0xo0+w(X)(o)

for a 1-form w € Q' (M;End g). Then VO = dv6 = dyrf+wA6. The curvature
tensor RY of V is equal to

RY yo = dw(X,Y)(0) + [w(X),0(Y)](o).

Theorem 3.31, Chapter IV from [15] classifies all transitive Lie algebroids hav-
ing a given coupling Z. For the Lie algebroid (2.3) we have,

E: TM — OutDo[(M x g)] = TM x Der(g)/ad(g),
E(U) = (v7 [av])v
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where a,(0) =V,6 —v(5),6: M — g,6(x) =0 € g,
Opext(TM,E,M x g) & H/?E (M, Zg) (2.5)

where Zg is the center of g and p=: TM — TM x End(Zg) is the central
representation p=(v) = (v,a,) for Z.

ProprosITION 2.1
The conditions (1)-(3) characterizing the data (V,QY) determining the Lie al-
gebroid (TM x g,V,Q) can be expressed as follows

— the condition (1) is equivalent to

dw(X,Y)(0) + [w(X),w(Y)](0) = —[UX,Y), 0],

— the condition (2) is equivalent to w, € Der(g), i.e., wy is a differentiation
of the Lie algebra g,

— the condition (3) is equivalent to
A= -wAQ

(the values of forms w and Q are multiplied with respect to the 2-linear
homomorphism Endg x g — g, (a,0) — a(0).

DEFINITION 2.1

The pair (V,§2) determining the above Lie algebroid (TM x g,V,Q) will be
called g-locally conformal symplectic structure (g-l.c.s. structure, for short) on
the manifold provided that the 2-form € is non-degenerate in the following
sense: for each point z € M the mapping

T.M — L(T,M,g), v — (v, ), (2.6)
is a monomorphism.

It is easy to see that if the mapping (2.6) is a monomorphism at a point
then it is a monomorphism at every point near z.

We notice that if dimg > 2 there is no dimensional obstructions to the
existence of an non-degenerate tensors:

LeEmMmA 2.1
For arbitrary vector spaces V. and g such that dim g > 2 there exists a 2-linear
skew-symmetric non-degenerate tensor 2 € Q?(V;g).
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Proof. Let (e1,...,ep) be a basis of g. If dimV is even, then there exists
a real 2-linear skew-symmetric non-degenerate tensor, say 2g. The form ) :=
Qo -e1 € Q%(V;g) is non-degenerate. If dimV = 2k + 1 and (vy,...,vop41) is
a basis of V and u?, ..., u?**! is a dual basis, then put

Qo = ul Au? 4+ a2 A2k,

Qy = uF A 2Rt
The form 2 := Qg - e1 + 1 - e5 is non-degenerate.

DEFINITION 2.2
A g-l.c.s. structure is called globally conformal symplectic structure if the as-
sociated Lie algebroid (TM x g, V, ) is invariantly oriented.

THEOREM 2.2

Let (V,Q) be a g-l.c.s. structure on an arbitrary m-dimensional connected
manifold (oriented or not), dimg = n. Write Vxo = dxo + w(X)(o) for
w € QY(M;Endg). The following conditions are equivalent:

(a) The Lie algebroid (TM x g,V,Q) is invariantly oriented (i.e., (V,Q) is
a globally conformal symplectic structure),

(b) g is unimodular and tr w is an exact form. [Let ey, ..., e, be a basis of g.
For a non-singular function f € C°(M) the elemente = f-e1 A...Ney
is an invariant cross-section if and only if trw = d(—1n|f])/,

(c) the modular class of A= (TM x g,V,Q) is zero, ma =0,
(@) HEn(A50r(M)) £0,
(e) Hg%ﬂ:Z(A; or(M)) =R, and the pairing
HI(A) x Hyi V™ (Asor(M) — HEt(Asor(M)) = R

is non-degenerate, i.e., H(A) = (ng,fz_] (Asor(M)))".

Proof. (a) <= (b) The very easy proof will be omitted. (a) <= (¢) <
(d) < (e) see [14].

THEOREM 2.3
If the Lie algebra g is semisimple, then each g-l.c.s. structure is globally c.s.
structure.
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Proof. According to Theorem 7.2.3 from [11] (see independently (2.5)) for
the trivial LAB g = M X g there exists exactly one, up to isomorphism, a
transitive Lie algebroid A with the adjoint LAB g = M x g. Therefore, A must
be isomorphic to the trivial Lie algebroid A = TM X g with the data (9, 0).
This Lie algebroid is invariantly oriented: e(z) = ¢, € A" g is an invariant
cros-section.

Let (e1,...,e,) be a basis of g with the structure constants cfj . The co-

variant derivative V determines a matrix of 1-forms wf € QY (M) by
Vxe; = wa (X
J
Analogously we have a collection of 2-forms Q7 by
QX,Y = Z Qg(yyej.
J
J

We interpret the data (1)-(3) concerning (V, <) in the terms of the matrix w]
and the collection 7 and the structure constants cfj

PropPOSITION 2.2
(A) The conditions (1)-(3) characterizing the data (V, ) determining the Lie
algebroid (TM x g,V,Q) can be expressed as follows.

— The condition (1) is equivalent to
=D Wy i = dwf(X,Y) = 3 (@] (X)wj(V) = w] (V) (X)),
J J

— the condition (2) is equivalent to

Yol wi(X) =) (Wi (X ey — wi(X)e)
k

k

— the condition (3) is equivalent to dQ = — 3, QA w].

(B) For an abelian Lie algebra g = R™ (i.e., ¢f; = 0) the conditions above are
equivalent to

— dw(X)Y)=-w(X)owl)+w (Y) ow '
(equivalently dwi (X,Y) = 3=, (W (X)W (Y) — w! (V)w} (X)) ),

— Y ==Y, A
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Two g-l.c.s. structures (V',Q’), (V,£) on a manifold M will be called g-
conformally equivalent if the associated Lie algebroids are isomorphic via an
isomorphism of the special form (called g-conformal) H(X,0) = (X,a(0)) for
some mapping a: M — Aut(g). Then the equivalent relations between the
data (V,Q) and (V’, ') are as follows:

— Q=a"toQ,
— aoV' (o) =Vx(aoo).

We use the notation a oo for the cross-section defined by (a0 ), = az(0y).
Writing V/ and V with using 1-forms w’,w € Q*(M;End g) (as above) the
last condition can be equivalently written in the form

w(X)oa=—-dxa+aow (X).

In the terms of the matrices ng and wf this condition is equivalent to
1j k ik k
sz‘](X) Ty — Zaf -wj (X) = dx(ay).
J J

The general form of a homomorphism H: TM x g — T'M X g commuting
with anchors pr; is as follows

H(X,0) =H,.X,0)=(X,n(X)+aoo) (2.7)
for n € QY(M;g), a € C>°(M,Endg). Consider two Lie algebroids
A =(TMxgV,Q) and A= (TMxgV,Q)

ProposITION 2.3
The following conditions are equivalent.

(1) H is a homomorphism of Lie algebroids H: A’ — A,
(2) (a) ay is a homomorphism of Lie algebras,
(b) (V)(X,Y) + [n(X),n(Y)] = (@ — aQ)(X,Y),
©) aoVio = Vx(aoa) + [(X),a00),
(3) For the basis e1, ..., e, and the matriz al defined by a(e;) = > al(ej)

(a) ay is a homomorphism of Lie algebras,

(b) dn*(X,Y) — (3,0 Awf) (X, Y) + 35, ;0" (X) -0/ (V) - e
= (Qk - Zz Q- af) (Xa Y)7

(c) ij;J(X)-a;? = Zj af -w;?(X)—i—@Xaf—l—zj’snj(X)-af-C?s.
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The homomorphism H, . is an isomorphism of Lie algebroids if and only if
ag s an isomorphism of Lie algebras.

Proof. Straightforward calculations.

If (V',Q) and (V,Q) are g-l.c.s. structures and A’ and A are correspon-
ding Lie algebroids, then the isomorphism H, , given by (2.7) is equivalent to
conformal equivalence of the associated g-l.c.s. structures (V/, Q') and (V, Q)
if and only if n = 0.

Analogously, we can put the problem of existence of l.c.s. structures. We
have firstly the simple

PropoOSITION 2.4

Any Lie algebroid A" = (TM x g,V', ) is isomorphic to A= (TM x g,V,)
with Q non-degenerate (i.e., (V,Q) is a g-l.c.s. structure) if and only if there
exists in A’ a connection for which the curvature tensor is non-degenerate.

PROBLEM 2.1
We introduce into the class of pairs (V, Q) fulfilling (1)-(3) from Theorem 2.1,
the equivalence relation

rg) (V', ) = (V,Q) = the Lie algebroids A’ = (TM x g, V', Q) and
A= (TM x g,V,Q) are isomorphic,
i.e., there exist n € Q'(M;g), a € C°°(M, Aut g) such that (2b) and (2c),
from Proposition 2.3 holds: (Vn)(X,Y)+[n(X),n(Y)] = (2—aQ)(X,Y)
and aoVyo =Vx(aoo)+ [n(X),aoa].

We can ask: does there in every (in given) equivalence class [(V’, Q)] exist
(V,Q) being a g-l.c.s. structure; equivalently, does there in the Lie algebroid
A= (TM xg,V' Q) exist a connection with non-degenerate curvature tensor,
i.e., equivalently, does there exists a 1-form n € Q' (M;g) such that the 2-form
(V)(X,Y) + nX,nY] — Q(X,Y) is a non-degenerate.

For g = R we obtain Problem 1.1 and we need to assume that dim M is
even.

ProposiTION 2.5
The above problem has a local solution.

Proof. Let a: TyoM x Ty, M — g be an arbitrary non-degenerate 2-linear
skew-symmetric tensor (for dim g > 2 see Lemma 2.1). We can locally extend
Qz, + a to a closed 2-form ® and find by the Poincaré lemma a 1-form 7
such that dn = ®; therefore that (dn),, = Qu, + a. Slightly modifying 7
we can assume that 7y, = 0, indeed, locally there is a closed 1-form 6 such
that 0y, = 7y, S0 n — 0 is zero at z¢ and d(n — 0)z, = (dn)g,. Clearly
(V) (X,Y) + Mz XM Y] — Qg0 (X,Y) = a(X,Y) so the curvature tensor
O of the connection A\(X) = (X, n(X)), see (2.4), is a non-degenerate near z.
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PROBLEM 2.2

It would be interesting to investigate the group of all compactly supported
diffeomorphisms of M that preserve the g-l.c.s. structure up to g-conformal
equivalence (analogously as it was given for usual l.c.s. structures by Haller
and Rybicki in [8]).

Let us remark that two extreme cases: (1) g commutative (for example
g = R) and (2) g semisimple, are quite different. In the second case all Lie
algebroids of the form (TM x g,V,Q) (i.e., with the trivial adjoint Lie algebra
M x g) are isomorphic, clearly to the trivial one T M x g with the structure given
by the data (9,0). Let us remark that not each isomorphism is g-conformal.
This Lie algebroid is invariantly oriented.
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