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Abstract. 'We prove the necessary and sufficient conditions for a warped
product manifold to be conformally symmetric. Basing on these results
we give two examples of such warped products.

1. Introduction

Let (M,g) and (M’,g’) be two Riemannian manifolds whose metrics need
not be positive definite and let f > 0 be a smooth function on M. The warped
product ([1], [11]) M = M x ¢ M’ is the product manifold M x M’ furnished
with the metric

g=m"g+ (foma*y,

where 7 and o are the projections of M x M’ onto M and M’, respectively. M
is called the base of M = M x ; M', M’ the fiber, and f the warping function.
An n-dimensional (n > 3) Riemannian manifold is said to be conformally
symmetric ([2]) if its Weyl conformal curvature tensor

1

Chiji = Rhijr — P (9i5Shk — 9ikShj + gnkSij — gnjSik)
+ . ( )
(n _ 1)(n _ 2) ghkgl_] gh_]g’tk

is parallel, i.e. VC' = 0. Such a manifold is said to be essentially conformally
symmetric (shortly, e.c.s.) if it is neither conformally flat (C' = 0) nor locally
symmetric (VR = 0). Properties and examples of e.c.s. manifolds can be
found in [3]-[6] and [12].

In this paper we are concerned with e.c.s. warped products. Some necessary
conditions for a warped product to be conformally symmetric can be found in
[7] and [10].
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In Section 3 we prove many necessary conditions for a warped product to
be an e.c.s. manifold. In Section 4 we state conditions which are also sufficient.
Basing on these results we give two examples of e.c.s. warped products.

Throughout this paper, by a manifold we mean a connected paracompact
manifold of class C*° or analytic. By abuse of notation concerning Riemannian
manifolds we often write M instead of (M, g).

2. Preliminaries

Let (M, g) be an n-dimensional (n > 3) warped product M x f M’ (dim M =
¢, 1< qg<n, dimM’ =n—q=s). In asuitable product chart x!,... 2" for
M we have

Gijdae'de? = gapda®da® + f - g;ﬁdxo‘dxﬁ,
wherei,j=1,...,n,a,b=1,...,q, 0,8 =q+1,...,n, gup and f are functions
of (#%) only, and g, 5 are functions of (z*) only.

We denote by I'f.,Rabed, Sap and x, the components of the Levi-Civita
connection V, the Riemann-Christoffel curvature tensor R, the Ricci tensor S
and the scalar curvature of (M, g), respectively. Moreover, when Q is a quantity
formed with respect to g, we denote by ' the similar quantity formed with
respect to g'.

It is easy to show that the following relations hold (cf. [10])

o

_ _ 1 _
FZb:Fva l?'y = ﬁagfb; ng :FﬁV’
_ 1 _ _
ng = *ggadfdgéy ’ gv =Ty =0,

where fb = abf, ab = % .
In the sequel we will use the following notations

Gabcd = GadYbc — GacGbd »
Tab = =27 (Vofa = 55 fafo),  tr(T) = g"*Tup,
W Q=f((s—DP—tr(T)),  P=1hgfufs.

By an elementary calculation we can show that the only non-zero compo-
nents of R, S and C are those related to:

Rabcd = Rabcda Raﬁc& = fTacg/ﬁ(S ) Raﬁw& = fR/aﬁwi + fQPG/aﬁws )

(2) a) Sap = Sap — 5Tap,
b) Saﬁ = Slaﬁ + leaﬁ )
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(3) a) Cabed

1
= Rabcd - m(gadsbc + gchad - gachd - gdeac)

S
+ —(gadTbc + gvcTad — GacTva — gdeac)

n—2
+ WM Gabed 5
b) Cagys
= <Rlaﬁ“/5 - ﬁ(g'ags'm +9' 5,5 a5 — 9'arS 85 — glﬁéslav))
(P - jfg T {)2& —gy Goms
¢) Capes
= i 3 (fglﬁci(sac +(q = 2)Tac) + gacS' g5
+ <Q - %) gacg/g(;) .
Moreover,
(4) =kt ’% +5((s — 1)P — 2tr(T)).

Similarly, by an elementary but lenghty calculation we can easily show that the
only non-zero components of VR and VS are those related to:

(5) a) veRabcd = VeRaped 5

b) VeRagys = ViR,

¢) VeRagys = —feRigys + [1(0P)Glpys

D) FeRapra = LR+ 0P

e) VeRapes = [VeTucy ps

f) VeRapes = %géa(faTbc = foTac) + %deabcdg:j& ;
(6) a) VeSapy =VeSap — sVeTap,

b) v’Y aﬁ:ny ;ﬁa

— 1 1 , .
A4 *ﬁsg,yfb + §g;7(fcscb - SfCch - %fb)a
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d) vcs'ozﬁ = (8CQ)g;ﬁ - ;(S;ﬁ + Qg;ﬁ)'
From the above formulas we immediately obtain

LEMMA 2.1
Let M be a warped product M x y M' with vanishing scalar curvature k. Then
M is conformally symmetric if and only if

(7) a) VeRabea = ﬁ(gadvesﬁm + GbeV eSad — GacV eSbd — GbdVeSac),
b) VeRuopys = ﬁ(gaévfsgﬁ'y + 33y VeSas — JaryVeSas — G55 VeSar),
c) veéaﬁ'yé = 5@@6?65’&7 + gﬁ’yvegaé - ga’yvegﬁé - gﬁévega'y)v
d) VeRopya = 5@67?65@1 — GarVeSaa),
e) VeRuges = - i 5 (=GacVeSss — GasVeSac),

— 1 — —
f) vsRabcz§ = m(gbcvesaé - gacvssb5)7
g) vggg(s =0.
In the sequel we shall need the following properties of e.c.s. manifolds:

Lemma 2.2 ([5], [6])
Every e.c.s. manifold (M, g) satisfies the relations:

(8) k=0,
(9) VkS‘” = ngik R
(10) SitChmjk + SijChmit + Site Crmij = 0.

LEmMA 2.3 ([6]) o B
Let (M, g) be an e.c.s. manifold. Then M admits a unique function F such
that

(11) FChiji = SnSij — ShjSin-
F is said to be the fundamental function of M. It is clear that F(z) = 0 if

and only if rank S(z) < 1.
Moreover we shall use the following fact
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LEMMA 2.4 ([9], Theorem 1)

Let M be an n-dimensional Riemannian manifold. If B is a generalized cur-
vature tensor satisfying Vi, Vi Brijk = ViV Bpiji and P is a vector field such
that w" Ryijr = Prgij — Pjgir for some vector field w, then

k(B

)
Py <Blz’jk - m(gijglk — gikg15) | =0,

where k(B) = Byijsg™g".

3. Necessary conditions

LEMMA 3.1
If M =M xy M is an e.c.s. manifold then dim M = ¢ > 1.

Proof. We shall use the following fact due to Kruckovic

THEOREM 3.1 ([11], p. 116)
A Riemannian space V" admits a solution k = constant of the equation

(12) V;Vik = ¢gi;

such that grad k is non-null vector field if and only if V" isa warped product
with one-dimensional base.

Thus supposing that ¢ = 1, we have (12). Differentiating (12) covariantly
and alternating the resulting equation, by Ricci identity, we easily obtain

ky Ry, = Vdgix — Viogij -

Now, using Lemma 2.4 for M = M, B = C and P = grad ¢, we have V;¢ = 0.
Thus vﬁik = c- §i;, ¢ = constant. We assert that ¢ = 0. Suppose that ¢ # 0.
Then the manifold M admits a vector field v such that vjvi = g;;. This
equation immediately implies v, 72” =0 and UTS”]’” = 0 and next vﬁlﬁz};ij =
fR””-j, vﬁlS*g = —Sp. Using now the second Bianchi identity, we have
vrvrﬁijhl = 72Rijhl and v"V,.S;; = —285;,. Transvection of (9) with v/ leads
to S = 0, a contradiction. Thus the gradient of k is non-null parallel vector
field. But in any e.c.s. manifold every parallel vector field must be isotropic
([5], Theorem 11 and [12]). This completes the proof.

PROPOSITION 3.1
Let M = M x5 M’ be an e.c.s. manifold. Then M’ is of constant curvature.
Moreover, if dim M' = s > 1 then

(13) s(s —1)((n —2)f20.P — f0.Q + f.Q) = folq — s)K'.
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Proof. We can assume that s > 1. Using (7)c), (5)c) and (6)d), we have
fe((n =2)R 5.5 — (90655, + 95+ Sas — 9avS5s — 9555ay))
= ((n = 2)f?0.P — fO.Q + [eQ)Gl5,5 -
Contracting (14) with ¢’37, we obtain
(15)  fe(aShs — K'g0s) = (= 2)f20eP — f0.Q + feQ)s(s — 1).
Further contraction with ¢’ leads to (13). Substituting (13) into (15), we

get Sls = ’%g;& which together with (13) turns (14) into R’ = s(:—_ll)G’. This

(14)

completes the proof.

LEMMA 3.2 B
Let M = M x; M’ be an e.c.s. manifold. Then Cypcq # 0 at every point x of
M.

Proof. Suppose that there exists point 2 € M at which Cypeq = 0. Using
(3)a), we have (¢ > 1 in virtue of Lemma 3.1)

(n—2)Raped = 9ad(Sve—5Toe) +Gbe(Sad—5Twd) —Gac(Sva—5Tva) — gbd(Sac—5Tac)-
Contracting this equation with ¢g¢, we get

(16) $(Sad+ (¢ —2)Tha) = —s-tr(T)

and, after contraction with gad7

(17) (g — s)k =2s(q — 1)tr(T).

Now substituting S’ﬁ 5 = ’%’ g’ﬁ(;, which is an obvious consequence of Proposi-
tion 3.1, and (16) into (3)c) and using (17), we have Cyp05 = 0. Finally, in the
same way, using (3)a) and

(18) Kf + 8 +sf((s — 1)P — 2tr(T)) = 0

which follows from (4) and (8), we easily obtain Chgys = 0. Thus C =0 at z,
a contradiction. This completes the proof.

LEMMA 3.3
Let M = M x M’ be an e.c.s. manifold. Thenk =0, ' =0,tr(T) =0, Q=0
and if s > 1 also P = 0.

Proof.  Using (10), (2) and (3), we have
Saﬁéabcd = O; S’abéaﬁwé =0.
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Thus, in virtue of Lemma 3.2, we get

(19) éagw; =0,

(20) Sag =0
which, in view of (2)b) and Proposition 3.1, is equivalent to

Iil

(21) ;JFQ:O.

If s =1, then " = 0 and @Q = 0. Using now (1), we get tr(T) = 0. Applying
now (18), we have x = 0.

Consider now the case s > 1. Substituting (21) into (18), we obtain
(22) k=s-tr(T).

Using (19), (21) and Proposition 3.1, we have

(23) +fP=0

s(s—1)
which implies fP = constant and further fP, = —f.P. Substituting the last
equality and (21) into (13) we get (s —1)x’ = 0. Thus &’ =0, P =0 (by (23)),
Q =0 (by (21)), tr(T) = 0 (by (1)) and x = 0 (by (22)). This completes the
proof.

PROPOSITION 3.2
In every e.c.s. warped product M X y M’ the tensor S+ (¢ —2)T is parallel and
the tensor T is a Codazzi tensor.

Proof. The first assertion is an immediate consequence of (7)e), (5)e),
(6)a), (6)d) and
(24) ?65}35 =0
which simply follows from @ = 0 and " = 0. Using (9) and (24), we have
V:Sas = 0. Thus (7)f), in view of (5)f) takes the form
(25) deabcd = beac - faTbc .

But this equation, via Ricci identity, is equivalent to V. T,y = VpTy.. This
completes the proof.

LEMMA 3.4
Let M =M x5 M’ be an e.c.s. manifold. Then ¢ = dim M > 2.
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Proof. Suppose that ¢ = 2. From x = 0 and Proposition 3.2 we obtain
S = 0, which yields, in view of Lemma 3.3 and Proposition 3.1, Cyges = 0.
Now the formula (3)a) reduces to

Ci212 = —g11Te2 — go2T11 -

But tr(T) = 0, so Cy212 = 0. Taking (19) into account we see that C' = 0, a
contradiction.

LEMMA 3.5
Let M = M x; M’ be an e.c.s. manifold. If S + (¢ — 2)T = 0 then g > 3.

Proof. In virtue of (19), (3)c) and Lemma 3.3, we have Coprs = 0= Capes
and it sufficies to show that if ¢ = 3 then Cgbcd = 0. But substituting assumed
equation into (3)a), in view of (8), we get Coped = Capea = 0 (¢ = 3).

PROPOSITION 3.3 (cf. [7])
If M =M xy M is an e.c.s. manifold then M is conformally symmetric.

Proof. Using Proposition 3.2 and (6)a), we have V.Sq, = ZT*QQVCSM, which
together with (5)a) turns (7)a) into

1
Ve-Rabcd = q_—Q(gadveSbc + gbcveSad - gacvesbd - gbdvesac)~

But this equation, in virtue of k = 0, is equivalent to our assertion.

4. Main results

We are now in a position to prove main results of this paper.

ProrosiTION 4.1
Let M = M x¢ M’ be an e.c.s. manifold. If S+ (¢ —2)T # 0 then M is

Ricci-recurrent conformally symmetric manifold and M is not Ricci-recurrent.

Proof.  Using (11), in virtue of (20), we have
(26) F - Capes =0
which in view of our assumption gives F' = 0, i.e., rank S < 1. On the other
hand, (10) implies

Sabécﬁdti = Sacébﬁdé
which can be written in the form
(Sab - STab)(Scd + (q - 2>Tc ) = (Sac - STac)(de + (q - 2)de)-

This means that rank of tensors S — sT and S + (¢ — 2)T is equal to 1 and
since S + (¢ — 2)T is parallel so
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S+(@-2T=e-v®u, le] =1
for some parallel vector field v. Consequently S = ¢v ® v, ¢ being a function
and M is Ricci-recurrent.

The second part of our assertion follows, in a purely algebraic manner from
(2), (6) and the above equalities.

THEEREM 4.1
Let M be a warped product M x y M'. Then the following conditions are equi-
valent:

(i) M is Ricci-recurrent e.c.s. manifold,

(il) M’ is flat, M is Ricci-recurrent e.c.s. manifold, S + (¢ — 2)T = 0 and
grad f 4s null when dim M’ > 1.

Proof. If M is Ricci-recurrent e.c.s. manifold then Proposition 4.1 leads
to S+ (¢ —2)T = 0. Thus Su = %Sab and because S,3 = 0 so S and S
are simultaneously recurrent and non-parallel. M cannot be conformally flat
since Cuped = Cuabed # 0. Therefore M is Ricci-recurrent e.c.s. manifold and
Proposition 3.1 and Lemma 3.3 imply R' =0 and P =0 if s > 1.

Now assume (ii). Since T = —qi—QS, so k = 0 implies tr(T) = 0 and
Q = 0. S as well as T are Codazzi tensors. Thus we have (25) which implies
f€Sep = fTep and f€Sep—sfT,, = 0. Therefore the only non-zero components
of VS and VR are those related to VeSap , VeRabed , %RQM and V:Rgpes -
Using above facts we can easily see that all conditions (7) are satisfied. Thus M
is conformally symmetric. As in the first part of this proof, we obtain Cypeq # 0
and V.S, # 0 which imply that M is e.c.s. manifold. This completes the proof.

THEOREM 4.2

Let M be a warped product M x ¢ M'. Then M is an e.c.s. manifold with F # 0
if and only if M’ is flat, M is e.c.s. manifold with F # 0, S+ (¢ —2)T =0
and grad f is null when dim M’ > 1.

Proof. If M is e.c.s. manifold with F' # 0 then (26) implies éagc(g =0
which leads to S+ (¢ — 2)T = 0. To prove remaining parts of this theorem, we
use the same procedure as in the proof of Theorem 4.1.

Now we give two examples of e.c.s. warped products. The first warped
product is Ricci-recurrent, the second one is not Ricci-recurrent. We shall use
the following

THEOREM 4.3 ([12])
Let M denote the Euclidean g-space (q = 4) endowed with the metric g given

by
(27) Japdz®da® = ®(dz)? + ky,dxdz? 4 2dx' dx?,
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¢ = (Akx, + a,\,t)a:)‘x“,

where a,b=1,...,q and \,;u =2,...,q— 1 and A is a non-constant function
of x' only, [kxu] and [ax,] are non-zero symmetric matrices such that [ky,] is
non-singular and k™May, = 0, [k*] being the reciprocal of [kx,]. Then M is
an e.c.s. Ricci-recurrent Riemannian manifold.

ExaMPLE 4.1
Let M be the Euclidean g-space endowed with the metric g given by (27) with
A= 2.

z1)2

The only Christoffel symbols not identically zero are

1 1 1
[ = —gk*0,®,  TY, =509, T =70,
S11 = (¢ — 2)A and all other components of S are identically zero. Taking
f = f(a!) we can easily show that the equation S + (¢ — 2)T = 0 is equivalent

to [ — ();,]22 = 2Af, where f' = 91 f. One can easily verify that the function
f(z1) = (x1)* satisfies this equation and grad f is null (¢! = 0). Thus taking
above described M and f, and a flat manifold M’, via Theorem 4.1, we obtain

Ricci-recurrent e.c.s. manifold M = M x F M.

REMARK 4.1

The example satisfying assumptions of Theorem 4.1 can be found in [8]. How-
ever the authors of that paper were interested in conformally recurrent or bire-
current manifolds, but k = 3 in (4.4) of [8] leads to a conformally symmetric
warped product.

EXAMPLE 4.2
Let M be as above with A = ﬁ — ¢, ¢ = constant. In this metric the null

parallel vector field is of the form v; = §}. Taking f(z!) = (21)*, we get
S+(q—2)T=c(qg—2)v@v.

By an elementary calculation we can show that if M is flat then M = M x M
is e.c.s. manifold which is not Ricci-recurrent.
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