
OPEN
Ann. Univ. Paedagog. Crac. Stud. Math. 13 (2014), 19-43

DOI: 10.2478/aupcsm-2014-0003

FOLIA 149

Annales Universitatis Paedagogicae Cracoviensis
Studia Mathematica XIII (2014)

Maria Robaszewska
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Abstract. For every two-dimensional manifold M with locally symmetric
linear connection ∇, endowed also with ∇-parallel volume element, we con-
struct a flat connection on some principal fibre bundle P (M, G). Associated
with – satisfying some particular conditions – local basis of T M local con-
nection form of such a connection is an R(G)-valued 1-form Ω build from the
dual basis ω1, ω2 and from the local connection form ω of ∇. The structural
equations of (M,∇) are equivalent to the condition dΩ− Ω ∧ Ω = 0.

This work was intended as an attempt to describe in a unified way the
construction of similar 1-forms known for constant Gauss curvature surfaces,
in particular of that given by R. Sasaki for pseudospherical surfaces.

1. Introduction

In the paper [7] R. Sasaki considered the soliton equations which can be solved
by the 2 × 2 inverse scattering method – for example the sine-Gordon equation
uxt = sin u, the Korteweg de Vries equation ut + 6uux + uxxx = 0 or the modified
Korteweg de Vries equation ut + 6u2ux + uxxx = 0. To the known remarkable
properties of those equations - such as possessing infinite number of conservation
laws and possessing the Bäcklund transformation - he added the property that
they describe pseudospherical surfaces.

One of the facts on which the inverse scattering method is based is that each
of those nonlinear equations may be written as the integrability condition of some
linear system dv = Ωv, v =

(
v1
v2

)
. Sasaki has explained how to build an sl(2,R)-

valued 1-form Ω satisfying the condition dΩ − Ω ∧ Ω = 0, using the 1-forms ω1,
ω2, which are the basis dual to the g-orthonormal local basis of TM , and the local
connection form ω:

Ω =
(

− 1
2ω

2 1
2 (ω + ω1)

1
2 (−ω + ω1) 1

2ω
2

)
.
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Conversely, if an sl(2,R)-valued 1-form Ω =
(

Ω11 Ω12
Ω21 −Ω11

)
satisfies the conditions

dΩ−Ω∧Ω = 0 and (Ω12 + Ω21)∧Ω11 6= 0, then the metric g = ω1⊗ω1 +ω2⊗ω2

with ω1 = Ω12 + Ω21, ω2 = −2Ω11 has constant negative Gaussian curvature,
whereas ω := Ω12−Ω21 is the local connection form of the Levi-Civita connection
of g.

Sasaki also mentioned that in the case of surfaces of constant positive curvature
it is also possible to construct from 1-forms ω1, ω2 and ω a 1-form Ω in such a way
that the structural equations of the surface are written as dΩ−Ω∧Ω = 0, trΩ = 0.
The corresponding Lie algebraic structure is that of SO(3), being the isometry
group of the sphere S2.

A g-valued 1-form Ω can be interpreted itself as a local connection form of some
connection on a principal G-bundle, where G is a Lie group with Lie algebra g.
The condition dΩ − Ω ∧ Ω = 0 means that the curvature form of this connection
vanishes. Therefore such a 1-form Ω is called a zero-curvature representation of
the given differential equation.

In order that dΩ−Ω∧Ω = 0 is a differential equation, the entries of Ω or equiv-
alently the forms ω1, ω2 and ω must depend on some function and its derivatives.
Such dependence arises in a natural way when we consider for example surfaces
immersed in R3 and the induced connection. Furthermore, if the differential equa-
tion describes a surface M immersed in R3, then it is possible to associate with
the immersion some mapping from M into GL(3,R) and then the pull-back of the
Maurer-Cartan form is also a zero-curvature representation of this equation. In
this case the flat connection concerned is the standard connection in R3.

Not every equation which possesses a zero-curvature representation is a soli-
ton equation. An important thing in soliton theory is the dependence of Ω
on some spectral parameter λ, so in fact we have a family of flat connection
forms Ωλ. Moreover, parameters introduced through the gauge transformation
Ωλ = SΩS−1 + dSS−1 play no role in soliton theory [3]. The issue of the spectral
parameter will not be considered in the present paper.

Apart from constant Gauss curvature surfaces there are other kinds of sub-
manifolds described by soliton equations, there exist also higher dimension gener-
alisations (see [8] and the references given there). Affine spheres with indefinite
Blaschke metric are examples of soliton surfaces in affine geometry [9].

It is possible that one differential equation has zero-curvature representa-
tions within different, non-isomorphic Lie algebras. For example, for describing
pseudospherical surfaces sin-Gordon equation uxy = sin u we have the following
parametrized by λ sl(2,R)-valued Sasaki form [7]

Ωλ =
(

λ − 1
2ux

1
2ux −λ

)
dx+ 1

4λ

(
cosu sin u
sin u − cosu

)
dy,

whereas from the Maurer-Cartan form on SO(3,R) one can obtain one-parameter
family of so(3)-valued 1-forms (cf [8])

Ωλ =

 0 ux 0
−ux 0 2λ

0 −2λ 0

 dx+ 1
2λ

 0 0 − sin u
0 0 − cosu

sin u cosu 0

 dy.
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The aim of this paper is to construct similar 1-form Ω satisfying the condition
dΩ−Ω∧Ω = 0 for surfaces with non-metrizable locally symmetric connection. We
use an elementary method, which is applicable to all locally symmetric surfaces.
We show that the Sasaki 1-form may be also obtained in this way.

In section 2 we recall some results concerning locally symmetric connections on
surfaces. In section 3 we choose some special local bases of TM which will be used
in the construction of Ω, for example the orthogonal bases in the metrizable case.
Those bases are local sections of a subbundle Q̃(M,H) of LM(M,GL(2,R)), where
H is one-dimensional Lie subgroup of GL(2,R). The considered locally symmetric
connection is reducible to Q̃.

In section 4 for any given homomorphism ι : H → G of Lie groups we con-
struct some principal fibre bundle P (M,G) and a homomorphism of fibre bundles
Q(M,H) → P (M,G). To every local section σ of Q we want to assign an R(G)-
valued 1-form Ωσ. We explain how Ωσ should vary with σ, if the family {Ωσ}
has to define a connection on P . In section 5 we add to this the condition –
which is satisfied in particular by the 1-form of Sasaki – that the entries of Ωσ
are linear combinations with constant coefficients of the 1-forms ω1, ω2 and ω
corresponding to the section σ. Those two conditions together with the condition
of flatness allow us in each case to find all classes of possible 1-forms Ωσ with
respect to the equivalence relation Ωσ ∼ S−1ΩσS, where S ∈ GL(N,R). In the
case of surfaces of constant negative curvature we also use the homomorphism
ι : SO(2) 3 a 7→

√
a ∈ SL(2,R)/{I,−I} in order to look directly for an sl(2,R)

valued Ωσ.

2. Locally symmetric connections on two-dimensional manifolds

Let M be a connected, two-dimensional real manifold and let ∇ be a torsion-
free, non-flat, locally symmetric linear connection on M . From the equality
dim imRp + dim ker Ricp = 2 [5], where R is the curvature tensor of ∇, Ric its
Ricci tensor, imRp = span{R(X,Y )Z : X,Y, Z ∈ TpM} and ker Ricp = {X ∈
TpM : ∀Y ∈ TpM, Ric(X,Y ) = 0}, it follows that either dim imR = 1 or Ric is
non-degenerate. The number dim imR is called the rank of the connection ∇.

In the case of dim imR = 1 we shall use

Proposition 2.1 ([5])
Let ∇ be a locally symmetric connection of rank 1 on a 2-dimensional manifold M .
For every p ∈M there is a coordinate system (u, v) around p such that

∇∂u∂u = ∇∂u∂v = 0 and ∇∂v∂v = εu∂u, (1)

where ε = sign Ric.

The Ricci tensor of such connection ∇ is symmetric [5].
In the case of dim imR = 2 we use

Proposition 2.2 ([6])
If M is a 2-dimensional manifold with a locally symmetric connection ∇ of rank 2,
then the Ricci tensor of ∇ is symmetric.
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In this case ∇ is the Levi-Civita connection of Ric [6]. If Ric is definite,
then Ric or −Ric is a metric, if Ric is indefinite, then it is a pseudometric. The
curvature κ of this metric or pseudometric is constant.

It follows that we only have to consider the following cases:

I+: dim imR = 1 and ε = 1,

I−: dim imR = 1 and ε = −1,

IId+: ∇ is metrizable of constant positive curvature,

IId−: ∇ is metrizable of constant negative curvature,

IIi: ∇ is pseudometrizable of constant curvature.

If ∇ is metrizable and M is orientable, then there exists globally defined
∇-parallel volume element vol. If M is not orientable, then we can define vol
on some open subset V of M . The last is true also in cases I+ and I−, because
an affine connection ∇ with zero torsion has a symmetric Ricci tensor if and only
if there is a parallel volume element around each point [4]. In the canonical coor-
dinates (u, v) from Proposition 2.1, vol = c du ∧ dv with any c ∈ R \ {0}.

From now on we assume that M is connected and that there exists on M
a ∇-parallel volume element vol.

3. Reduction of LM to one-dimensional subgroupH ofGL(2,R)

In this section we will consider a reduction of LM(M,GL(2,R)) to some one-
dimensional subgroup H of GL(2,R).

Cases I+ and I−.
Let

Q̃ := {(v1, v2) ∈ LM : v1 ∈ ker Ric, vol(v1, v2) = 1 and Ric(v2, v2) = ε}

and let
H :=

{(
1 t

0 1

)
: t ∈ R

}
∪
{(
−1 t

0 −1

)
: t ∈ R

}
.

The subset Q̃ of LM(M,GL(2,R)) satisfies the assumptions of the following
lemma.

Lemma 3.1 ([2])
Let Q̃ be a subset of P (M,G) and H a Lie subgroup of G. Assume:

(1) the projection π : P →M maps Q̃ onto M ;

(2) Q̃ is stable by H;

(3) if p, q ∈ Q̃ and π(p) = π(q), then there is an element a ∈ H such that q = pa;

(4) every point of M has a neighbourhood U and a cross section σ : U → P such
that σ(U) ⊂ Q̃.
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Then Q̃(M,H) is a reduced subbundle of P (M,G).

Indeed, if (u, v) are canonical coordinates on U , then vol = c du∧ dv for some
c ∈ R \ {0} and the cross section σ := ( 1

c∂u, ∂v) satisfies (4). The condition (1)
follows from (4).

Assume that π((v1, v2)) = π((w1, w2)). Then (w1, w2) = (v1, v2) · a with some

a =
(
a1

1 a1
2

a2
1 a2

2

)
∈ GL(2,R). To check the condition (3) we have to show that if

(v1, v2) ∈ Q̃ and (w1, w2) ∈ Q̃, then a ∈ H. We have

w1 = a1
1v1 + a2

1v2, w2 = a1
2v1 + a2

2v2.

Since v1, w1 ∈ ker Ric and dim ker Ric = 1, we have a2
1 = 0. From vol(v1, v2) =

vol(w1, w2) it follows that det(aij) = 1. Consequently a1
1a

2
2 = 1. Comparing

Ric(v2, v2) and Ric(w2, w2) we obtain (a2
2)2 = 1.

It is easily seen that if (v1, v2) ∈ Q̃ and a ∈ H, then (v1, v2) · a ∈ Q̃, hence Q̃
satisfies (2).

Cases IId+ and IId−.
We take as Q̃ the bundle of orthonormal frames satisfying the condition

vol(v1, v2) > 0. The structure group is H = SO(2,R).

Case IIi.
Let g be a pseudometric such that ∇ is the Levi-Civita connection of g. Let

Q̃ := {(v1, v2) ∈ LM : g(v1, v1) = −g(v2, v2) = 1, g(v1, v2) = 0, vol(v1, v2) > 0}.

The structure group of the reduced bundle Q̃ is

SO(1, 1) =
{
A ∈ GL(2,R) : AT

(
1 0
0 −1

)
A =

(
1 0
0 −1

)
and detA = 1

}
.

In the following we will use a principal fibre bundle Q(M,H) with H acting on
Q on the left. As a set Q is equal to Q̃, and the left action of H is La((v1, v2)) :=
(v1, v2) · a−1 for a ∈ H.

4. Extension P (M,G) of Q(M,H) and a connection on P

Unless otherwise stated we will consider principal fibre bundles with the struc-
tural groups acting on the left. By R(G) we denote the Lie algebra of right-
invariant vector fields on the Lie group G and ϑG stands for the R(G)-valued
Maurer-Cartan form on G.

Proposition 4.1
Let ι : H → G be a continuous homomorphism of Lie groups H and G. Let
Q(M,H) be a principal fibre bundle. Then there exist a principal fibre bundle
P (M,G) and a mapping f : Q → P such that (f, idM , ι) is a homomorphism of
principal fibre bundles.

If ι is an imbedding, then the same holds for f .
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Proof. The proposition is a slight modification of Theorem 26.12, page 224
in [1]. We only replace the inclusion H ⊂ G by a homomorphism ι : H → G and
the right action of G by the left action. The main idea of the proof is similar.
Some parts of it we describe here with more details.

We define the left action L of H and the left action L̃ of G on G×Q:

La(b, q) := (bι(a−1), aq), L̃c(b, q) := (cb, q) for a ∈ H, b, c ∈ G.

Then we define an equivalence relation on G×Q:

(b1, q1) ∼ (b2, q2) ⇐⇒ ∃ a ∈ H : (b2, q2) = La(b1, q1).

Let P := (G×Q)/ ∼.

1. P with the quotient topology is a Hausdorff space.
The canonical projection ρ : G×Q 3 (b, q) 7→ [(b, q)] ∈ P is an open mapping,

because
ρ−1(ρ(U)) =

⋃
a∈H

La(U)

is open for an open subset U ⊂ G×Q. Let

R0 = {(b, q, c, r) ∈ G×Q×G×Q : (b, q) ∼ (c, r)}.

It suffices to check that R0 is closed. Let (b, q, c, r) ∈ (G×Q×G×Q) \ R0. Let
π : Q→M denote the projection in Q(M,H).

If π(q) 6= π(r), then there exist disjoint neighbourhoods U1 and U2 of π(q) and
π(r), respectively. Then G× π−1(U1)×G× π−1(U2) is an open neighbourhood of
(b, q, c, r) in G×Q×G×Q and

(G× π−1(U1)×G× π−1(U2)) ∩R0 = ∅,

because if (b1, q1, c1, r1) ∈ R0, then (c1, r1) = (b1ι(a−1), aq1) for some a ∈ H,
hence π(r1) = π(q1).

Assume now that π(q) = π(r), so r = aq with some a ∈ H. From (b, q, c, aq) /∈
R0 it follows that b−1cι(a) 6= eG. Let U1 ⊂ G be an open neighbourhood of
b−1cι(a) such that eG /∈ U1.

The continuity of the mapping G×G×H 3 (ξ, η, ζ) 7→ ξ−1ηι(ζ) ∈ G implies
that there exist open neighbourhoods U2, U3 ⊂ G, U4 ⊂ H of b, c, a, respectively,
such that (ξ, η, ζ) ∈ U2×U3×U4 implies ξ−1ηι(ζ) ∈ U1. Next we use the continuity
of H ×H 3 (α, β) 7→ αaβ−1 ∈ H and find the neighbourhoods U5, U6 of eH such
that αaβ−1 ∈ U4 if (α, β) ∈ U5 × U6.

Let ϕ = (ψ, π) : π−1(U) → H × U with U 3 π(q) be a local trivialisation of
Q(M,H). Then Ũ5 := ϕ−1((U5aψ(q))× U) ⊂ Q is an open neighbourhood of aq,
and Ũ6 := ϕ−1((U6ψ(q))× U) ⊂ Q is an open neighbourhood of q.

We check that (U2 × Ũ6 × U3 × Ũ5) ∩R0 = ∅.
Let (b′, q′, c′, r′) ∈ U2× Ũ6×U3× Ũ5. If π(q′) 6= π(r′), then (b′, q′, c′, r′) /∈ R0.

If π(q′) = π(r′), then r′ = a′q′ with some a′ ∈ H.
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From q′ ∈ Ũ6 = ϕ−1((U6ψ(q)) × U) it follows that ψ(q′) ∈ U6ψ(q), hence
ψ(q′) = βψ(q) with some β ∈ U6. Similarly, from r′ ∈ Ũ5 = ϕ−1((U5aψ(q))×U) it
follows that ψ(r′) = αaψ(q) with some α ∈ U5. But r′ = a′q′, so ψ(r′) = a′ψ(q′),
hence a′βψ(q) = αaψ(q) and consequently a′ = αaβ−1, which implies a′ ∈ U4 and
b′
−1
c′ι(a′) ∈ U1. Therefore b′−1

c′ι(a′) 6= eG and (b′, q′, c′, r′) = (b′, q′, c′, a′q′) /∈
R0.

2. G acts freely on P on the left.
From

(L̃c ◦ La)(b, q) = L̃c(bι(a−1), aq) = (cbι(a−1), aq) = La(cb, q) = (La ◦ L̃c)(b, q)

it follows that ρ(b1, q1) = ρ(b2, q2) implies ρ(L̃c(b1, q1)) = ρ(L̃c(b2, q2)), and the
left action of G on P

c[(b, q)] := [L̃c(b, q)] = [(cb, q)]
is well defined. If c[(b, q)] = [(b, q)], then for some a ∈ H we have (cb, q) =
(bι(a−1), aq). From aq = q it follows that a = eH , because H acts freely on Q.
Now from cb = b we conclude that c = eG.

3. The projection π̃ : P →M .
The projection π̃ : P → M , π̃([(b, q)]) := π(q), is defined in such a way that

the diagram
G×Q p2−→ Q
ρ ↓ ↓ π

(G×Q)/ ∼ = P
π̃−→ M

is commutative. The mapping π̃ is continuous, because so is π ◦ p2.
Let π̃([(b1, q1)]) = π̃([(b2, q2)]). Then π(q1) = π(q2) which means q2 = aq1

with some a ∈ H. It follows that

[(b2, q2)] = [(b2, aq1)] = [(b2ι(a)ι(a−1), aq1)] = [(b2ι(a), q1)] = b2ι(a)b−1
1 [(b1, q1)].

Conversely, for any c ∈ G, π̃(c[(b, q)]) = π̃([(cb, q)]) = π(q) = π̃([(b, q)]).

4. Local trivialisations.
Let ϕ : π−1(U)→ H ×U , ϕ = (ψ, π), be a local trivialisation of Q(M,H). We

define a homeomorphism ϕ̃ : π̃−1(U) → G× U . Let ϕ̃([(b, q)]) := (bι(ψ(q)), π(q)).
The mapping ϕ̃ is well defined, because if (b2, q2) = (b1ι(a−1), aq1) with some
a ∈ H, then

(b2ι(ψ(q2)), π(q2)) = (b1ι(a−1)ι(ψ(aq1)), π(aq1))
= (b1ι(a−1)ι(aψ(q1)), π(q1)) = (b1ι(a−1aψ(q1)), π(q1))
= (b1ι(ψ(q1)), π(q1)).

The continuity of ϕ̃ follows from that of ϕ̃ ◦ ρ.
To define the inverse mapping of ϕ̃, we use the local section σ : U → Q,

σ(x) := ϕ−1(eH , x). Let Φ(b, x) := [(b, σ(x))] for b ∈ G, x ∈ U . Then

(ϕ̃ ◦ Φ)(b, x) = ϕ̃([(b, σ(x))]) = (bι(ψ(σ(x))), π(σ(x))) = (bι(eH), x) = (beG, x)
= (b, x)
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and

(Φ ◦ ϕ̃)([(b, q)]) = Φ((bι(ψ(q)), π(q))) = [(bι(ψ(q)), σ(π(q)))]
= [(bι(ψ(q)), (ψ(q))−1ψ(q)σ(π(q)))] = [(b, ψ(q)σ(π(q)))]
= [(b, q)].

The last equality follows from

ϕ(ψ(q)σ(π(q))) = (ψ(ψ(q)σ(π(q))), π(ψ(q)σ(π(q))))
= (ψ(q)ψ(σ(π(q))), π(σ(π(q))))
= (ψ(q)eH , π(q)) = (ψ(q), π(q))
= ϕ(q).

Since Φ = ρ ◦ (idG, σ), it is continuous.
We see that ϕ̃ = (ψ̃, π̃), where ψ̃([(b, q)]) := bι(ψ(q)). The mapping ψ̃ satisfies

the condition ψ̃(c[(b, q)]) = cψ̃([(b, q)]).

5. Differentiable structure in P .
Let ϕα : π−1(Uα)→ H×Uα, ϕβ : π−1(Uβ)→ H×Uβ be two local trivialisations

of Q with Uα∩Uβ 6= ∅, σα, σβ the corresponding local sections of Q and ϕ̃α, ϕ̃β the
corresponding local trivialisations of P . Let hβα : Uα ∩ Uβ → H be the transition
function, hβα(π(q)) = (ψβ(q))−1ψα(q). Then σβ(x) = hβα(x)σα(x) and

ϕ̃β ◦ ϕ̃−1
α (b, x) = ϕ̃β ◦ Φα(b, x) = ϕ̃β([(b, σα(x))])

= (bι(ψβ(σα(x))), π(σα(x)))
= (bι((hβα(x))−1), x).

It follows that we have an open covering {π̃−1(Uα)}α of P and a family of
homeomorphisms {ϕ̃α} such that ϕ̃β ◦ ϕ̃−1

α is smooth for any α and β. If this is
so, then there exists exactly one differentiable structure in P such that all ϕ̃α are
diffeomorphisms.

We see now that π̃ : P → M is differentiable, because π̃|π̃−1(Uα) = p2 ◦ ϕ̃α is
differentiable and {π̃−1(Uα)}α is an open covering of P .

6. Homomorphism f : Q→ P of principal fibre bundles.
Let f(q) := [(eG, q)]. Let ϕ : π−1(U) → H × U be a local trivialisation of Q.

Since we have the following commutative diagram

π−1(U) f−→ π̃−1(U)
ϕ ↓ ↓ ϕ̃

H × U ι×id−→ G× U,

f is differentiable. Moreover, from π̃(f(q)) = π(q) and

f(aq) = [(eG, aq)] = [(eGι(a)ι(a−1), aq)] = [(ι(a), q)] = ι(a)[(eG, q)]

it follows that (f, idM , ι) is a homomorphism of principal fibre bundles.
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Assume now that ι is an imbedding. From f |π−1(U) = ϕ̃−1 ◦ (ι × idM ) ◦ ϕ
it follows that f is an immersion. Let f(q1) = f(q2). Then π(q1) = π̃(f(q1)) =
π̃(f(q2)) = π(q2), hence q2 = aq1 for some a ∈ H, [(eG, aq1)] = [(eG, q1)] and
consequently (eG, aq1) = (eGι(b−1), bq1) with some b ∈ H, which implies b = a
and ι(a) = eG. Since ι is injective, we have a = eH and q1 = q2.

In the next proposition we state some condition on σ → Ωσ under which the
family of 1-forms Ωσ may define a connection on P .

Proposition 4.2
Let (f, idM , ι) be a homomorphism of principal fibre bundles Q(M,H) and
P (M,G). Assume that with every local section σ of Q we associate some R(G)-
valued 1-form Ωσ. Moreover, assume that if Ωα and Ωβ are the 1-forms associated
with σα : Uα → Q, σβ : Uβ → Q, respectively, and on Uα∩Uβ we have σβ = hβασα
with hβα : Uα ∩ Uβ → H, then

Ωβ = Adι◦hβα · Ωα + (ι ◦ hβα)∗ϑG. (2)

Under the conditions stated above, there exists a unique connection Γ in P such
that for every local section σ of Q the 1-form Ωσ is the local connection form
corresponding to the local section f ◦ σ of P .

Proof. We will define the connection form Ω̃ of Γ.
Let σ : U → Q be a local section of Q. Let ϕ̃ : π−1

P (U) → G × U be the local
trivialisation associated with the local section f ◦ σ of P : ϕ̃(bf ◦ σ(x)) = (b, x).
Then d(b,x)(ϕ̃−1) maps TbG⊕ TxM isomorphically onto Tbf◦σ(x)P . Consequently,
for every W ∈ Tbf◦σ(x)P there exist A ∈ R(G) and Xx ∈ TxM , such that W =
d(b,x)(ϕ̃−1)(Ab ⊕Xx). Let

Ω̃bf◦σ(x)(d(b,x)(ϕ̃−1)(Ab ⊕Xx)) := A+ Adb(Ωσ(Xx)). (3)

We first check that in this way we may obtain a 1-form Ω̃ on the whole M . Let
σ̂ : Û → Q be another local section of Q and we define ϕ̂ by ϕ̂−1(c, y) := cf ◦ σ̂(y)
for c ∈ G, y ∈ Û . Assume that U ∩ Û 6= ∅, then σ̂ = hσ and f ◦ σ̂ = (ι ◦ h)(f ◦ σ)
on U ∩ Û .

Let p ∈ P and x := πP (p) ∈ U ∩ Û . Let ϕ̃(p) = (b, x) and ϕ̂(p) = (c, x). Then
p = bf ◦ σ(x) = cf ◦ σ̂(x) and consequently b = cι ◦ h(x).

Now we take Zp ∈ TpP . Let

Zp = d(b,x)(ϕ̃−1)(Ab ⊕Xx) = d(c,x)(ϕ̂−1)(Bc ⊕ Yx). (4)

We have to check that A+ Adb(Ωσ(Xx)) = B + Adc(Ωσ̂(Yx)).
Since p2 ◦ ϕ̃ = πP = p2 ◦ ϕ̂, we have

Xx = d(b,x)p2(Ab ⊕Xx) = d(b,x)p2 ◦ dpϕ̃(d(b,x)(ϕ̃−1)(Ab ⊕Xx))
= d(b,x)p2 ◦ dpϕ̃(Zp)
= dpπP (Zp)

and similarly Yx = dpπP (Zp), which yields Xx = Yx.
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If B ∈ R(G) and Be = [t 7→ bt], then Bg = [t 7→ btg]. Let Xx = [t 7→ γ(t)].
We conclude from ϕ̃ ◦ ϕ̂−1(g, y) = (gι ◦ h(y), y) and from ι ◦ h(x) = c−1b that

d(c,x)(ϕ̃ ◦ ϕ̂−1)(Bc ⊕ 0) = [t 7→ (btcι ◦ h(x), x)] = [t 7→ (btcc−1b, x)] = Bb ⊕ 0

and

d(c,x)(ϕ̃ ◦ ϕ̂−1)(0⊕Xx) = [t 7→ (cι ◦ h(γ(t)), γ(t))] = [t 7→ cι ◦ h(γ(t))]⊕Xx.

Let ((ι ◦ h)∗ϑG)x(Xx) = C ∈ R(G), which means that dx(ι ◦ h)(Xx) = Cι◦h(x) =
Cc−1b, hence

[t 7→ cι ◦ h(γ(t))] = dc−1blc(Cc−1b) = (Adc(C))b,

where lc is the left translation on G. Consequently we have

d(c,x)(ϕ̃ ◦ ϕ̂−1)(Bc ⊕Xx) = (Bb + (Adc(C))b)⊕Xx,

which implies

d(c,x)(ϕ̂−1)(Bc ⊕Xx) = d(b,x)(ϕ̃−1)((Bb + (Adc(C))b)⊕Xx).

But the left-hand side is equal to d(b,x)(ϕ̃−1)(Ab⊕Xx), therefore A = B+Adc(C).
From (2) it follows that

Ωσ̂|x = Adι◦h(x) ◦ Ωσ|x + ((ι ◦ h)∗ϑG)|x.

Now we obtain the desired equality

B + Adc(Ωσ̂(Xx)) = B + Adc(Adι◦h(x)(Ωσ(Xx)) + ((ι ◦ h)∗ϑG)(Xx))
= B + (Adc ◦Adc−1b)(Ωσ(Xx)) + Adc(C)
= B + Adb(Ωσ(Xx)) +A−B
= A+ Adb(Ωσ(Xx)).

We next prove that Ω̃ is a connection form. We have to check the following
two conditions:

(i) Ω̃(A∗) = A for every fundamental vertical vector field A∗ on P ,

(ii) (Lc)∗Ω̃ = Adc · Ω̃ for every c ∈ G.

Let p ∈ P , x := πP (p) ∈ U and let σ : U → Q be a local section of Q. Similarly
as before we define ϕ̃ by ϕ̃(gf ◦ σ(y)) = (g, y). Let ϕ̃(p) = (b, x).

Condition (i). Let A ∈ R(G). Since

A∗p = [t 7→ atp] = [t 7→ atbf ◦ σ(x)] = [t 7→ ϕ̃−1((atb, x))]
= d(b,x)(ϕ̃−1)(Ab ⊕ 0),

we obtain from (3) that Ω̃p(A∗p) = A.
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Condition (ii). Since Lc ◦ ϕ̃−1 = ϕ̃−1 ◦ (lc × idU ) we have

((Lc)∗Ω̃)p(d(b,x)ϕ̃
−1(Ab ⊕Xx)) = Ω̃cp((dpLc ◦ d(b,x)ϕ̃

−1)(Ab ⊕Xx))

= Ω̃cp(d(b,x)(Lc ◦ ϕ̃−1)(Ab ⊕Xx))

= Ω̃cp(d(b,x)(ϕ̃−1 ◦ (lc × idU ))(Ab ⊕Xx))

= Ω̃cp(d(cb,x)ϕ̃
−1(d(b,x)(lc × idU )(Ab ⊕Xx))).

But

d(b,x)(lc × idU )(Ab ⊕Xx) = d(b,x)(lc × idU )([t 7→ (atb, γ(t))])
= [t 7→ (lc × idU )(atb, γ(t))] = [t 7→ (catb, γ(t))]
= [t 7→ (catc−1cb, γ(t))]
= (Adc(A))cb ⊕Xx,

which yields

((Lc)∗Ω̃)p(d(b,x)ϕ̃
−1(Ab ⊕Xx)) = Ω̃cp(d(cb,x)ϕ̃

−1((Adc(A))cb ⊕Xx))
= Adc(A) + Adcb(Ωσ(Xx))
= Adc(A+ Adb(Ωσ(Xx)))
= Adc(Ω̃p(d(b,x)ϕ̃

−1(Ab ⊕Xx))).

Now we will look for the local connection form corresponding to the local
section f ◦ σ:

((f ◦ σ)∗Ω̃)x(Xx) = Ω̃f◦σ(x)(dx(f ◦ σ)(Xx))

= Ω̃f◦σ(x)([t 7→ f ◦ σ ◦ γ(t)]) = Ω̃f◦σ(x)([t 7→ ϕ̃−1(eG, γ(t))])

= Ω̃f◦σ(x)(d(eG,x)ϕ̃
−1(0⊕Xx)) = 0 + AdeG(Ωσ(Xx))

= Ωσ(Xx).

Uniqueness of Ω̃. Let ˜̃Ω be a connection form on P such that (f ◦ σ)∗ ˜̃Ω = Ωσ
for any local section σ of Q. We will show that ˜̃Ω = Ω̃.

We have ˜̃Ωbf◦σ(x)(d(b,x)ϕ̃
−1(Ab ⊕ 0)) = ˜̃Ωbf◦σ(x)(A∗bf◦σ(x)) = A,

because ˜̃Ω satisfies the condition (i), and

˜̃Ωbf◦σ(x)(d(b,x)ϕ̃
−1(0⊕Xx))

= ˜̃Ωbf◦σ(x)((df◦σ(x)Lb ◦ dbf◦σ(x)Lb−1 ◦ d(b,x)ϕ̃
−1)(0⊕Xx))

= (L∗b
˜̃Ω)f◦σ(x)((d(b,x)(Lb−1 ◦ ϕ̃−1)(0⊕Xx))

= (L∗b
˜̃Ω)f◦σ(x)((d(b,x)(ϕ̃−1 ◦ (lb−1 × idU ))(0⊕Xx))
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= (L∗b
˜̃Ω)f◦σ(x)((d(eG,x)ϕ̃

−1 ◦ d(b,x)(lb−1 × idU ))(0⊕Xx))

= (L∗b
˜̃Ω)f◦σ(x)(d(eG,x)ϕ̃

−1(0⊕Xx))

= (L∗b
˜̃Ω)f◦σ(x)([t 7→ ϕ̃−1(eG, γ(t))])

= (L∗b
˜̃Ω)f◦σ(x)([t 7→ f ◦ σ ◦ γ(t)]) = (L∗b

˜̃Ω)f◦σ(x)(dx(f ◦ σ)(Xx))

= Adb(
˜̃Ωf◦σ(x)(dx(f ◦ σ)(Xx))) = Adb(((f ◦ σ)∗ ˜̃Ω)x(Xx))

= Adb(Ωσ(Xx))

because of the condition (ii).
It follows that˜̃Ωbf◦σ(x)(d(b,x)ϕ̃

−1(Ab ⊕Xx))

= ˜̃Ωbf◦σ(x)(d(b,x)ϕ̃
−1(Ab ⊕ 0)) + ˜̃Ωbf◦σ(x)(d(b,x)ϕ̃

−1(0⊕Xx))
= A+ Adb(Ωσ(Xx))
= Ω̃bf◦σ(x)(d(b,x)ϕ̃

−1(Ab ⊕Xx)).

5. Construction of the 1-form Ωσ

We apply Proposition 4.1 to the bundle Q(M,H) constructed in section 3.
We assume that G is some matrix Lie group and identify R(G) with the related
subalgebra of gl(N,R).

Our goal is to find the formula for Ωσ. It turns out, that the three conditions:

(i) entries of Ωσ are linear combinations of the associated to the section σ one
forms ω1, ω2 and ω with constant coefficients, the coefficients do not depend
on σ;

(ii) condition (2) from Proposition 4.2;

(iii) flatness of the connection given by Ω̃

allow us to determine Ωσ.

Cases I+ and I−.
From (1) we easily obtain the local connection form for the local section X1 =

1
c∂u, X2 = ∂v of Q:

ω1
1 = ω2

1 = ω2
2 = 0, ω1

2 = εcuω2, ω1 = c du, ω2 = dv.

If we consider another local section

X̃1 = δX1, X̃2 = tX1 + δX2 (5)

of Q, δ ∈ {1,−1}, then the dual basis is

ω̃1 = δω1 − tω2, ω̃2 = δω2 (6)
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and the new local connection form is

ω̃1
1 = ω̃2

1 = ω̃2
2 = 0, ω̃1

2 = ω1
2 + δ dt. (7)

From now on, X1, X2 stands for an arbitrary local section of Q, its dual basis is
ω1, ω2 and the transformation to another basis is described by (5), (6) and (7).
For abbreviation, in cases I+ and I− we let ω stand for ω1

2.
We will use

ι(A) :=
(
A 0
0 IN−2

)
, (8)

where IN−2 is the (N − 2)× (N − 2) identity matrix.
According to the condition (i) we have

Ωσ = Aω1 +Bω2 + Cω (9)

and
Ωσ̃ = Aω̃1 +Bω̃2 + Cω̃ = A(δω1 − tω2) +Bδω2 + C(ω + δ dt), (10)

with A,B,C ∈ gl(N,R).

Since (X̃1, X̃2) = (X1, X2) · a−1 = La((X1, X2)) for a =
(
δ −t
0 δ

)
, we have

h(x) =
(
δ −t(x)
0 δ

)
and ι ◦ h(x) =


δ −t(x) 0 . . . 0
0 δ 0 . . . 0
0
...
0

0
...
0

IN−2

. We will write it simply

as ι ◦ h(x) =

 δ −t(x) 0
0 δ 0
0 0 IN−2

. For G ⊂ GL(N,R) we have (ϑG)b(Yb) = Ybb
−1,

hence

((ι ◦ h)∗ϑG)x(Xx) = (ϑG)ι◦h(x)(dx(ι ◦ h)(Xx)) = (dx(ι ◦ h)(Xx))(ι ◦ h(x))−1

=

0 −dxt(Xx) 0
0 0 0
0 0 0


 δ t(x) 0

0 δ 0
0 0 IN−2


=

0 −δ dxt(Xx) 0
0 0 0
0 0 0

 .

From (ii) we now obtain

Ωσ̃ =

 δ −t 0
0 δ 0
0 0 IN−2

Ωσ

 δ t 0
0 δ 0
0 0 IN−2

+

0 −δ dt 0
0 0 0
0 0 0

 .
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Let A =
(
A1 A2
A3 A4

)
, where A1 ∈ M(2, 2;R), A2 ∈ M(2, N − 2;R), A3 ∈

M(N − 2, 2;R), A4 ∈ M(N − 2, N − 2;R) and similarly B =
(
B1 B2
B3 B4

)
, C =(

C1 C2
C3 C4

)
, Ωσ =

(
Ω1 Ω2
Ω3 Ω4

)
, Ωσ̃ =

(
Ω̂1 Ω̂2
Ω̂3 Ω̂4

)
.

It is easy to check that

Ω̂1 =
(
δ −t
0 δ

)
Ω1

(
δ t

0 δ

)
+
(

0 −δ dt
0 0

)
,

Ω̂2 =
(
δ −t
0 δ

)
Ω2, Ω̂3 = Ω3

(
δ t

0 δ

)
, Ω̂4 = Ω4.

We consider now the first block. Using (9) and (10) we obtain

A1(δω1 − tω2) +B1δω
2 + C1(ω + δ dt)

=
(
δ −t
0 δ

)
(A1ω

1 +B1ω
2 + C1ω)

(
δ t

0 δ

)
+
(

0 −δ dt
0 0

)
(11)

for every function t and for every δ ∈ {1,−1}. For t ≡ 0, δ = −1 we obtain
−A1ω

1 − B1ω
2 + C1ω = A1ω

1 + B1ω
2 + C1ω which implies A1ω

1 + B1ω
2 = 0.

Computing the left-hand side on X1 and X2 succesively, we obtain A1 = 0 and
B1 = 0.

Let C1 =
(
c11 c12
c21 c22

)
. From (11) we obtain

(
−c21δt −c21t

2 + (c11 − c22)δt
0 c21δt

)
ω −

(
c11 c12 + 1
c21 c22

)
δ dt =

(
0 0
0 0

)
for every function t and for every δ ∈ {1,−1}. In particular, for every constant t
we obtain c21δt = 0 and c21t

2 + (c22 − c11)δt = 0 because ω 6= 0. It follows that

c21 = 0 and c22 = c11. Now we have
(
c11 c12 + 1
0 c11

)
δ dt =

(
0 0
0 0

)
for every t and

δ, which implies c11 = 0, c12 = −1 and finally C1 =
(

0 −1
0 0

)
.

A similar method applied to other blocks of Ωσ̃ gives

C2 = 0, A2 =
(
α1 α2 . . . αN−2

0 0 . . . 0

)
, B2 =

(
β1 β2 . . . βN−2

α1 α2 . . . αN−2

)
,

C3 = 0, A3 =


0 γ1

0 γ2
...

...
0 γN−2

 , B3 =


−γ1 δ1

−γ2 δ2
...

...
−γN−2 δN−2


and A4 = B4 = C4 = 0.
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We consider now condition (iii). A connection is flat if and only if the R(G)-
valued connection form Ω̃ satisfies the condition

dΩ̃(Z,W ) + [Ω̃(Z), Ω̃(W )]R(G) = 0

for all vector fields Z, W on P , which is equivalent to

dΩσ(X,Y ) + [Ωσ(X),Ωσ(Y )]R(G) = 0

for all σ and for all vector fields X, Y on M . If G is a matrix group, then for
A,B ∈ R(G), [A,B]R(G) = −AB + BA = −[A,B]. Using the matrix external
product we may also write the zero curvature condition as

dΩσ − Ωσ ∧ Ωσ = 0.

It is easy to obtain from (9)

dΩσ(X,Y )− [Ωσ(X),Ωσ(Y )]
= Adω1(X,Y ) +B dω2(X,Y ) + C dω(X,Y )
− [A,B]ω1∧ ω2(X,Y )− [A,C]ω1∧ ω(X,Y )− [B,C]ω2∧ ω(X,Y ).

From the structural equations

dω1 = −ω ∧ ω2, dω2 = 0, dω = εω1∧ ω2

it follows that

dΩσ − [Ωσ,Ωσ] = (εC − [A,B])ω1∧ ω2 − [A,C]ω1∧ ω + (A− [B,C])ω2∧ ω.

But [A,C] = 0 and [B,C] = A, therefore the connection is flat if and only if
[A,B] = εC. It follows that γiαj = 0 for all i, j ∈ {1, . . . , N − 2} and

∑
(αiδi −

βiγi) = −ε.
Let Ejk ∈ M(N,N ;R) denote the matrix, whose j-th row and k-th column

entry is 1 and whose all other entries are 0.

Proposition 5.1
There exists S ∈ GL(N ;R) such that

S−1AS = E13 and S−1BS = E23 − εE32 and S−1CS = C = −E12 (12)
or

S−1AS = E13 and S−1BS = E14 +E23− εE32 and S−1CS = C = −E12 (13)
or

S−1AS = E32 and S−1BS = εE13 − E31 and S−1CS = C = −E12 (14)
or

S−1AS = E32 and S−1BS = εE13−E31 +E42 and S−1CS = C = −E12. (15)
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Proof. In fact, if αj0 6= 0 for some j0, then γ1 = γ2 = . . . = γN−2 = 0
and

∑N−2
i=1 αiδi = −ε. Let α := (α1, . . . , αN−2) ∈ RN−2, β := (β1, . . . , βN−2),

γ := (γ1, . . . , γN−2) and ∆ := (δ1, . . . , δN−2). Let (·)⊥ denote the orthogonal
complement with respect to the standard scalar product 〈ξ, η〉 =

∑N−2
i=1 ξiηi in

RN−2. If α and β are linearly dependent in RN−2, then α⊥ ∩ β⊥ = α⊥ is an
N − 3 dimensional subspace of RN−2. Let v1, . . . , vN−3 be its basis. Let vk =:
(ξ1k, ξ2k, . . . , ξN−2 k), k = 1, . . . , N − 3. For

S =



1 −ε
∑
βiδi 0 0 . . . 0

0 1 0 0 . . . 0
0 0 −εδ1 ξ11 . . . ξ1 N−3
...

...
...

...
...

0 0 −εδN−2 ξN−2 1 . . . ξN−2 N−3


we easily obtain AS = SE13, BS = S(E23 − εE32) and CS = SC. Since ∆ /∈ α⊥,
S is invertible and conditions (12) are satisfied.

If α and β are linearly independent, then dim(α⊥ ∩ β⊥) = N − 4. Let v1 =:
(ξ11, . . . , ξN−2 1), . . . , vN−4 = (ξ1N−4, . . . , ξN−2N−4) be a basis of α⊥ ∩ β⊥. The
vector w := 〈α, β〉α−‖α‖2β belongs to α⊥ and does not belong to β⊥, because w ∈
β⊥ would imply 〈w,w〉 = 0 and w = 0, which contradicts the linear independence
of α and β. Let η = w

〈w,β〉 and

S =



1 −ε
∑
βiδi 0 0 0 . . . 0

0 1 0 0 0 . . . 0
0 0 −εδ1 η1 ξ11 . . . ξ1 N−4
...

...
...

...
...

...
0 0 −εδN−2 ηN−2 ξN−2 1 . . . ξN−2 N−4

 ,

then S is invertible and the conditions (13) hold.
Assume now that α1 = α2 = . . . = αN−2 = 0. Then β 6= 0 and γ 6= 0, because∑
βiγi = ε. If γ and ∆ are linearly dependent, then we take an arbitrary basis

v1 = (ξ11, . . . , ξN−2 1), . . . , vN−3 = (ξ1 N−3, . . . , ξN−2 N−3) of β⊥ and for

S =



1 ε
∑
βiδi 0 0 . . . 0

0 1 0 0 . . . 0
0 0 γ1 ξ11 . . . ξ1 N−3
...

...
...

...
...

0 0 γN−2 ξN−2 1 . . . ξN−2 N−3


we have (14). Note that ∆ = cγ and

∑
βiγi = ε imply δk = εγk

∑
βiδi for all

k ∈ {1, . . . , N − 2}.
If γ and ∆ are linearly independent, then let η = ∆− ε〈β,∆〉γ. Then η ∈ β⊥

and η 6= 0. Therefore we can find vectors v1, . . . , vN−4 such that η, v1, . . . , vN−4 is
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a basis of β⊥. We denote the coordinates of vk in the same manner as before. For

S =



1 ε
∑
βiδi 0 0 0 . . . 0

0 1 0 0 0 . . . 0
0 0 γ1 η1 ξ11 . . . ξ1 N−4
...

...
...

...
...

...
0 0 γN−2 ηN−2 ξN−2 1 . . . ξN−2 N−4


the conditions (15) hold.

From Proposition 5.1 it follows that in cases I+ and I− there are four 1-forms
associated to a locally symmetric connection:

1◦ N = 3, Ωσ =

 0 −ω ω1

0 0 ω2

0 −εω2 0

;

2◦ N = 4, Ωσ =


0 −ω ω1 ω2

0 0 ω2 0
0 −εω2 0 0
0 0 0 0

;

3◦ N = 3, Ωσ =

 0 −ω εω2

0 0 0
−ω2 ω1 0

;

4◦ N = 4, Ωσ =


0 −ω εω2 0
0 0 0 0
−ω2 ω1 0 0

0 ω2 0 0

.

Cases IId+ and IId−.
We consider two local sections σ = (X1, X2) and

σ̃ = (X̃1, X̃2) = (cosϕX1 + sinϕX2,− sinϕX1 + cosϕX2)

= (X1, X2) ·
(

cosϕ − sinϕ
sinϕ cosϕ

)
of the bundle of g-orthonormal frames. Since the left action of SO(2,R) on Q is

given by Lb(q) = qb−1, we have σ̃ = hσ with h =
(

cosϕ sinϕ
− sinϕ cosϕ

)
.

The new dual basis is

ω̃1 = cosϕω1 + sinϕω2,

ω̃2 = − sinϕω1 + cosϕω2
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and the new local connection form is

ω̃2
1 = ω2

1 + dϕ.

From now on we will write ω and ω̃ instead of ω2
1, ω̃2

1, respectively.
According to the condition (i) we have Ωσ = Aω1 +Bω2 + Cω and

Ωσ̃ = Aω̃1 +Bω̃2 + Cω̃

= A(cosϕω1 + sinϕω2) +B(− sinϕω1 + cosϕω2) + C(ω + dϕ),

with A,B,C ∈ sl(2,R).
We will firstly use the homomorphism ι : SO(2,R)→ SL(2,R)/{I,−I}, where

ι

((
cosϕ sinϕ
− sinϕ cosϕ

))
=
[(

cos
(
ϕ
2
)

sin
(
ϕ
2
)

− sin
(
ϕ
2
)

cos
(
ϕ
2
))]

and look directly for an sl(2,R)-valued 1-form Ωσ.
Let G denote the quotient group SL(2,R)/{I,−I}. The canonical projection

πG : SL(2,R) → G is a covering of multiplicity 2. Each point of G has a neigh-
bourhood U such that each of two components V1, V2 of π−1

G (U) is homeomorphic
to U under πG. The differentiable structure in G is introduced by requiring all
such πG|Vi : Vi → U to be diffeomorphisms. For every a ∈ SL(2,R) the differential
daπG : TaSL(2,R)→ T[a]G is an isomorphism.

If a ∈ SL(2,R) and V[a] ∈ T[a]G, then ϑG(V[a]) = Â[I], where Â ∈ R(G)
satisfies the condition V[a] = Â[a] = dIR[a](Â[I]). Assume that we have V[a] =
daπG(Wa) for Wa ∈ TaSL(2,R). Let A ∈ R(SL(2,R)) be such that Wa = Aa,
then

V[a] = daπG(dIRa(AI)) = dI(πG ◦Ra)(AI) = dI(R[a] ◦ πG)(AI)
= d[I]R[a](dIπG(AI)).

It follows that Â[I] = dIπG(AI), where AI = ϑSL(2,R)(Wa) = Waa
−1.

For x ∈M and Xx ∈ TxM we have locally

dx(ι ◦ h)(Xx) = dα(x)πG(dxα(Xx)),

where
α =

(
cos
(
ϕ
2
)

sin
(
ϕ
2
)

− sin
(
ϕ
2
)

cos
(
ϕ
2
)) .

It follows that

((ι ◦ h)∗ϑG)x(Xx) = (ϑG)(ι◦h)(x)(dx(ι ◦ h)(Xx))
= (ϑG)[α(x)](dα(x)πG(dxα(Xx)))
= dIπG(ϑSL(2,R)(dxα(Xx)))
= dIπG(dxα(Xx) (α(x))−1).

Let U ⊂ G be a neighbourhood of [I] such that π−1
G (U) = V1 ∪V2, with V1 and V2

diffeomorphic to U under πG. Let I ∈ V1. Since V1 ⊂ SL(2,R) ⊂ GL(2,R) ⊂ R4,
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we may replace every tangent vector [γ]∼ ∈ T[I]G by d
dt ((πG|V1)−1 ◦ γ)|t=0 and

[δ]∼ ∈ TISL(2,R) by d
dtδ|t=0. In this way we identify T[I]G and TISL(2,R) with

the subalgebra sl(2,R) of gl(2,R). After such identification dIπG = idsl(2,R) and
we have simply

((ι ◦ h)∗ϑG)x(Xx)
= dxα(Xx)(α(x))−1

= 1
2Xx(ϕ)

(
− sin(ϕ(x)

2 ) cos(ϕ(x)
2 )

− cos(ϕ(x)
2 ) − sin(ϕ(x)

2 )

)(
cos(ϕ(x)

2 ) − sin(ϕ(x)
2 )

sin(ϕ(x)
2 ) cos(ϕ(x)

2 )

)

= 1
2Xx(ϕ)

(
0 1
−1 0

)
.

Consequently

(ι ◦ h)∗ϑG = 1
2

(
0 dϕ

−dϕ 0

)
.

Similar considerations lead to

Ad[a](dIπG(BI)) = dIπG(Ada(BI))

and, after the identification of T[I]G and TISL(2,R) with sl(2,R), to

Ad(ι◦h)(x)(Ωσ(Xx))
= α(x)Ωσ(Xx)(α(x))−1

=
(

cos(ϕ(x)
2 ) sin(ϕ(x)

2 )
− sin(ϕ(x)

2 cos(ϕ(x)
2 )

)
Ωσ(Xx)

(
cos(ϕ(x)

2 ) − sin(ϕ(x)
2 )

sin(ϕ(x)
2 ) cos(ϕ(x)

2 )

)
.

According to the condition (ii), for any function ϕ we have

A(cosϕω1 + sinϕω2) +B(− sinϕω1 + cosϕω2) + C(ω + dϕ)

=
(

cos(ϕ2 ) sin(ϕ2 )
− sin(ϕ2 ) cos(ϕ2 )

)
(Aω1 +Bω2 + Cω)

(
cos(ϕ2 ) − sin(ϕ2 )
sin(ϕ2 ) cos(ϕ2 )

)
(16)

+ 1
2

(
0 dϕ

−dϕ 0

)
.

Taking ϕ ≡ π = 3, 14 . . . we obtain

−Aω1 −Bω2 + Cω =
(

0 1
−1 0

)
(Aω1 +Bω2 + Cω)

(
0 −1
1 0

)
.

Let A =
(
a11 a12
a21 −a11

)
, B =

(
b11 b12
b21 −b11

)
and C =

(
c11 c12
c21 −c11

)
. Then

(
0 1
−1 0

)
A

(
0 −1
1 0

)
=
(
−a11 −a21

−a12 a11

)
,
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similarly for B and C. We have(
−a11 −a12

−a21 a11

)
ω1 +

(
−b11 −b12

−b21 b11

)
ω2 +

(
c11 c12

c21 −c11

)
ω

=
(
−a11 −a21

−a12 a11

)
ω1 +

(
−b11 −b21

−b12 b11

)
ω2 +

(
−c11 −c21

−c12 c11

)
ω

which implies 2c11ω = 0,

(a21 − a12)ω1 + (b21 − b12)ω2 + (c12 + c21)ω = 0,
(a12 − a21)ω1 + (b12 − b21)ω2 + (c12 + c21)ω = 0.

Adding and subtracting the last two equations we obtain (c12 + c21)ω = 0 and
(a12 − a21)ω1 + (b12 − b21)ω2 = 0. It follows that

A =
(
a11 a12

a12 −a11

)
, B =

(
b11 b12

b12 −b11

)
, C =

(
0 c12

−c12 0

)
.

If we insert such A, B and C into (17), then we obtain for an arbitrary function ϕ

sinϕ(−(b11 + a12)ω1 + (a11 − b12)ω2) = 0
and

sinϕ((−b12 + a11)ω1 + (a12 + b11)ω2) +
(
c12 −

1
2

)
dϕ = 0.

From the first equation we obtain b11 = −a12 and b12 = a11, then from the second
equation it follows that c12 = 1

2 . We have now

Ωσ =
(
α β

β −α

)
ω1 +

(
−β α

α β

)
ω2 +

(
0 1

2
− 1

2 0

)
ω.

The zero-curvature condition dΩσ − Ωσ ∧ Ωσ = 0 and the structural equations

dω1 = ω ∧ ω2,

dω2 = −ω ∧ ω1,

dω = − ε

ρ2 ω
1∧ ω2

yield
α2 + β2 = − ε

4ρ2 .

Recall that κ = ε
ρ2 .

It follows that this method of finding an sl(2,R)-valued Ωσ is effective only in
the case of constant negative curvature, i.e. ε = −1.

Let ε = −1. We have α = sin ξ
2ρ and β = cos ξ

2ρ for some ξ ∈ R. Let S =(
cos ξ2 sin ξ

2
− sin ξ

2 cos ξ2

)
. Then S−1AS = 1

2ρ

(
0 1
1 0

)
, S−1BS = 1

2ρ

(
−1 0
0 1

)
, S−1CS =

1
2

(
0 1
−1 0

)
and

Ωσ =
(

− 1
2ρω

2 1
2ρω

1 + 1
2ω

2
1

1
2ρω

1 − 1
2ω

2
1

1
2ρω

2

)
.
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In case κ = −1 we have ρ = 1 and Ωσ is the well known form of Sasaki.
Now we consider the cases IId+ and IId− again, using the homomorphism (8).

We have now

ι ◦ h =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 IN−2


and

((ι ◦ h)∗ϑG)x(Xx) = (dx(ι ◦ h)(Xx))(ι ◦ h(x))−1

=

− sinϕ cosϕ 0
− cosϕ − sinϕ 0

0 0 0

 dxϕ(Xx)

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 IN−2


=

 0 1 0
−1 0 0
0 0 0

 dxϕ(Xx).

It follows from (ii) that

A(cosϕω1 + sinϕω2) +B(− sinϕω1 + cosϕω2) + C(ω + dϕ)

=

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 IN−2

 (Aω1 +Bω2 + Cω)

 cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 IN−2

(17)

+

 0 1 0
−1 0 0
0 0 0

 dϕ

for an arbitrary function ϕ. Similarly as in case I we divide A, B, C into four
blocks. If we write (18) with ϕ ≡ π, then we obtain easily A1 = 0, A4 = 0,
B1 = 0, B4 = 0, C2 = 0 and C3 = 0. Writing (18) for an arbitrary ϕ again and
comparing (·)11 + (·)22 of both sides gives c11 + c22 = 0, comparing (·)12 − (·)21
gives c12 − c21 = 2. Next we consider (·)12 + (·)21 with ϕ ≡ π

4 and with ϕ = π
2 ,

which gives c12 + c21−2c11 = 0 and c12 + c21 = 0. If we compute (·)ij with i, j > 2
on both sides of (18), then we obtain cij dϕ = 0 for an arbitrary ϕ, which implies
cij = 0. In a similar way we consider the upper right block and the lower left
block. We obtain b1j = −a2j , b2j = a1j , bj1 = −aj2 and bj2 = aj1 for j > 2. Now
it is easy to check that [B,C] = −A and [A,C] = B. The only possibly non-zero
term in dΩσ − Ωσ ∧ Ωσ, after we have used the structural equations, is equal to
(− ε

ρ2C − [A,B])ω1 ∧ ω2. Consequently, the connection associated with Ωσ is flat
if and only if [A,B] = − ε

ρ2C. If we write (·)12 of this equality, then we obtain

N∑
k=3

a1kak1 +
N∑
k=3

a2kak2 = − ε

ρ2 , (18)
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whereas (·)kl with k, l > 2 gives

ak2a1l − ak1a2l = 0 for all k, l > 2. (19)

We will show that either

a1i = ai1 = 0 for all i > 2 and
N∑
k=3

a2kak2 = − ε

ρ2 (20)

or there exists λ ∈ R such that

a2i = λa1i, ai2 = λai1 for all i > 2 and
N∑
k=3

a1kak1 = − ε

ρ2
1

1 + λ2 . (21)

Indeed, if a1i = 0 for all i > 2, then (18) implies that a2l0 6= 0 for some l0 and
we obtain from (19) ak1 = ak2a1l0

a2l0
= 0 for all k > 2. Similarly, if ai1 = 0 for all

i > 2, then a1i = 0 for all i > 2. Assume now that a1i0 6= 0, then ak01 6= 0 for
some k0. From (19) we obtain ak2 = λak1 for all k > 2 with λ = a2i0

a1i0
. Using (19)

again gives λak1a1l = ak1a2l for all k, l > 2, in particular for k = k0.
If a1i = ai1 = 0 for all i > 2, then we take the basis v4, . . . , vN of the

subspace in RN−2 orthogonal to the non-zero vector (a23, . . . , a2N ). Let vk =:
(s3k, s4k, . . . , sNk) for k = 4, . . . , N . Let sk3 = −ρεak2. From (18) it follows that
v3, v4, . . . , vN with v3 := (s33, s43, . . . , sN3) are also linearly independent. We take
s11 = s22 = 0, s12 = −s21 = 1 and s1k = s2k = sk1 = sk2 = 0 for k > 2.

If w := (a13, a14, . . . , a1N ) 6= 0 ∈ RN−2, then we take the basis v4, . . . , vN of
w⊥ in RN−2 and define (s3k, s4k, . . . , sNk) := vk for k ≥ 4. Let sk3 := ρ

ε (1+λ2)ak1
for k > 2. Then v3 := (s33, s43, . . . , sN3) is not in w⊥ and v3, v4, . . . , vN are linearly
independent. Let s11 = s22 = 1, s21 = −s12 = λ and s1k = s2k = sk1 = sk2 = 0
for k > 2.

In both cases S is invertible and it is easy to check that AS = SA0, BS = SB0
and CS = SC with

A0 = −1
ρ
E13 + ε

ρ
E31, B0 = −1

ρ
E23 + ε

ρ
E32.

It follows that it suffices to consider the case N = 3 and the 1-form

Ωσ =

 0 ω2
1 − 1

ρω
1

−ω2
1 0 − 1

ρω
2

ε
ρω

1 ε
ρω

2 0

 .

Case IIi.
We consider two local sections of Q, (X1, X2) and

(X̃1, X̃2) = (δ coshϕX1 + δ sinhϕX2, δ sinhϕX1 + δ coshϕX2),
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with δ ∈ {1,−1}. For a local basis satisfying the conditions g(X1, X1) = 1,
g(X1, X2) = 0 and g(X2, X2) = −1 the local connection form is (ωij) =(

0 ω2
1

ω2
1 0

)
. We denote ω2

1 by ω. The structural equations are

dω1 = −ω ∧ ω2, dω2 = −ω ∧ ω1, dω = −κω1∧ ω2.

The new dual basis and the new local connection form are

ω̃1 = δ coshϕω1 − δ sinhϕω2,

ω̃2 = −δ sinhϕω1 + δ coshϕω2,

ω̃ = ω + dϕ.

The transition function is

h =
(
δ coshϕ −δ sinhϕ
−δ sinhϕ δ coshϕ

)
and its composition with ι : SO(1, 1)→ GL(N,R) is

ι ◦ h =

 δ coshϕ −δ sinhϕ 0
−δ sinhϕ δ coshϕ 0

0 0 IN−2

 .

It follows that for x ∈M , Xx ∈ TxM

((ι ◦ h)∗ϑG)x(Xx)
= ϑGι◦h(x)(dx(ι ◦ h)(Xx)) = dx(ι ◦ h)(Xx)(ι ◦ h(x))−1

=

 δ sinhϕ −δ coshϕ 0
−δ coshϕ δ sinhϕ 0

0 0 0

 dϕ(Xx)

 δ coshϕ δ sinhϕ 0
δ sinhϕ δ coshϕ 0

0 0 IN−2


=

 0 −1 0
−1 0 0
0 0 0

 dϕ(Xx).

We now look for A, B, C such that for all δ ∈ {1,−1} and for every function ϕ

A(δ coshϕω1 − δ sinhϕω2) +B(−δ sinhϕω1 + δ coshϕω2) + C(ω + dϕ)

=

 δ coshϕ −δ sinhϕ 0
−δ sinhϕ δ coshϕ 0

0 0 IN−2

 (Aω1 +Bω2 + Cω)

×

 δ coshϕ δ sinhϕ 0
δ sinhϕ δ coshϕ 0

0 0 IN−2

+

 0 −1 0
−1 0 0
0 0 0

 dϕ.
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Analysis similar to that in the cases I and IId shows that aij = 0 and bij = 0
for (i, j) ∈ ({1, 2} × {1, 2}) ∪ ({3, . . . , N} × {3, . . . , N}), b1k = a2k, b2k = a1k,
bk1 = −ak2, bk2 = −ak1 for k > 2, and C = −E12 − E21. Since [A,C] = B and
[B,C] = A, we have

dΩσ − Ωσ ∧ Ωσ = (−κC − [A,B])ω1 ∧ ω2.

The connection is flat if and only if [A,B] = −κC. In particular ([A,B])12 = −κc12
and ([A,B])kl = −κckl for all k, l > 2, which implies

−
N∑
j=3

a1jaj1 −
N∑
j=3

a2jaj2 = κ

and
ak1a2l = −ak2a1l

for all k, l > 2. It follows that either a1i = ai1 = 0 for all i > 2, or for all
i > 2, ai2 = λai1 and a2i = −λa1i with some λ /∈ {1,−1}. In both cases it
is easy to find an automorphism S of RN such that S−1AS = − 1

ρE13 + ε
ρE31,

S−1BS = − 1
ρE23 − ε

ρE32 and S−1CS = C = −E12 − E21, where ε ∈ {1,−1} and
ρ > 0 are such that κ = ε

ρ2 . The corresponding sl(3,R) valued 1-form Ωσ is

Ωσ =

 0 −ω − 1
ρω

1

−ω 0 − 1
ρω

2

ε
ρω

1 − ε
ρω

2 0

 .

6. Summary

For any two-dimensional manifold M with locally symmetric linear connec-
tion ∇ and with ∇-parallel volume element vol one can construct a flat connection.
Its local connection forms Ωσ are build of the dual basis forms ω1, ω2 and a local
connection form of ∇. The structural equations of the surface are equivalent to
the zero-curvature condition dΩσ −Ωσ ∧Ωσ = 0. The corresponding Lie algebras
g may differ from case to case depending on algebraic properties of the curvature
tensor.

If a locally symmetric surface is associated to every solution of some differential
equation, then such 1-form Ωσ constitutes a g-valued zero-curvature representation
of this equation.

References
[1] J. Gancarzewicz, Zarys współczesnej geometrii różniczkowej, Script, Warszawa

2010. Cited on 24.
[2] S. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. I, Interscience

Publishers, a division of John Wiley & Sons, New York-London 1963. Cited on
22.



On some flat connection associated with locally symmetric surface [43]

[3] M. Marvan, On the spectral parameter problem, Acta Appl. Math. 109 (2010),
no. 1, 239–255. Cited on 20.

[4] K. Nomizu, T. Sasaki, Affine differential geometry. Geometry of affine immer-
sions. Cambridge Tracts in Mathematics 111, Cambridge University Press, Cam-
bridge, 1994. Cited on 22.

[5] B. Opozda, Locally symmetric connections on surfaces, Results Math. 20 (1991),
no. 3-4, 725–743. Cited on 21.

[6] B. Opozda, Some relations between Riemannian and affine geometry, Geom. Ded-
icata 47 (1993), no. 2, 225–236. Cited on 21 and 22.

[7] R. Sasaki, Soliton equations and pseudospherical surfaces, Nuclear Phys. B 154
(1979), no. 2, 343–357. Cited on 19 and 20.

[8] C.L. Terng, Geometric transformations and soliton equations, Handbook of ge-
ometric analysis, No. 2, 301–358, Adv. Lect. Math. (ALM), 13, Int. Press,
Somerville, MA, 2010. Cited on 20.

[9] E. Wang, Tzitzéica transformation is a dressing action, J. Math. Phys. 47 (2006),
no. 5, 053502, 13 pp. Cited on 20.

Institute of Mathematics
Pedagogical University
Podchora̧żych 2
30-084 Kraków
Poland
E-mail: robaszew@up.krakow.pl

Received: February 2, 2014; final version: May 4, 2014;
available online: June 30, 2014.


	Introduction
	Locally symmetric connections on two-dimensional manifolds
	Reduction of LM to one-dimensional subgroup H of GL(2,R )
	Extension P(M,G) of Q(M,H) and a connection on P
	Construction of the 1-form Omega_sigma
	Summary

