FOLIA 149

Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XIII (2014)

Kamila Kliś-Garlicka

Perturbation of Toeplitz operators and reflexivity

Abstract. It was shown that the space of Toeplitz operators perturbated by finite rank operators is 2-hyperreflexive.

1. Introduction

In [6] it was shown that the rank one perturbation preserves 2-hyperreflexivity of Toeplitz operators. In this paper we will generalise this result for a finite rank perturbation.

Let us start with basic notations and definitions. For a Hilbert space \mathcal{H} we will write $\mathcal{B}(\mathcal{H})$ for the algebra of all bounded linear operators on \mathcal{H} .

By τc denote the space of trace class operators (which is predual to $\mathcal{B}(\mathcal{H})$ with the dual action $\langle S, t \rangle = \operatorname{tr}(St)$ for $S \in \mathcal{B}(\mathcal{H})$ and $t \in \tau c$) equipped with the trace norm $\|\cdot\|_1$. Let $F_k = \{t \in \tau c : \operatorname{rank}(t) \leq k\}$. Each rank one operator can be written as $x \otimes y$, for $x, y \in \mathcal{H}$, and $(x \otimes y)z = \langle z, y \rangle x$ for $z \in \mathcal{H}$. Moreover, $\operatorname{tr}(S(x \otimes y)) = \langle Sx, y \rangle$.

Let us now recall the definition of reflexivity. The reflexive closure of a subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is given by the formula

ref
$$\mathcal{M} = \{ A \in \mathcal{B}(\mathcal{H}) : Ah \in [\mathcal{M}h] \text{ for all } h \in \mathcal{H} \},$$

here $[\cdot]$ denotes the norm-closure. If $\mathcal{M} = \operatorname{ref} \mathcal{M}$ then \mathcal{M} is said to be *reflexive*. It is known (see [10]) that if subspace \mathcal{M} is a weak* closed, then \mathcal{M} is reflexive if and only if operators of rank one are linearly dense in \mathcal{M}_{\perp} (i.e., $\mathcal{M}_{\perp} = [\mathcal{M}_{\perp} \cap F_1]$), where \mathcal{M}_{\perp} is the preannihilator of \mathcal{M} .

A subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is called k-reflexive if $\mathcal{M}^{(k)} = \{T^{(k)} : T \in \mathcal{M}\}$ is reflexive in $B(\mathcal{H}^{(k)})$, where $T^{(k)} = T \oplus \cdots \oplus T$ and $\mathcal{H}^{(k)} = \mathcal{H} \oplus \cdots \oplus \mathcal{H}$. Similarly as before, in case of weak* closed subspaces we have an equivalent condition to k-reflexivity proved by Kraus and Larson [9, Theorem 2.1]. Namely, a weak* closed subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is k-reflexive if and only if $\mathcal{M}_{\perp} = [\mathcal{M}_{\perp} \cap F_k]$.

[16] Kamila Kliś-Garlicka

For a closed subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ denote by $d(A, \mathcal{M})$ the usual distance from an operator A to a subspace \mathcal{M} , i.e., $d(A, \mathcal{M}) = \inf\{\|A - T\| : T \in \mathcal{M}\}$. When \mathcal{M} is weak* closed then $d(A, \mathcal{M}) = \sup\{|\operatorname{tr}(At)| : t \in \mathcal{M}_{\perp}, \|t\|_1 \leq 1\}$.

Hyperreflexivity was introduced by Arveson in [2] for operator algebras. In [8] his definition was generalized to the operator subspaces. Namely, a subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ is said to be *hyperreflexive* if there is a constant c such that

$$d(A, \mathcal{M}) \leq c \sup\{\|Q^{\perp}AP\|: P, Q \text{ are projections such that } Q^{\perp}\mathcal{M}P = 0\}$$

for all $A \in \mathcal{B}(\mathcal{H})$. In [9] it was shown that the supremum on the right hand side is equal to $\sup\{|\langle A, x \otimes y \rangle| : x \otimes y \in \mathcal{M}_{\perp}, \|x \otimes y\|_1 \leq 1\}$.

Let us recall the definition of k-hyperreflexivity from [7]. For a subspace $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$ and an operator $A \in \mathcal{B}(\mathcal{H})$ denote by

$$\alpha_k(A, \mathcal{M}) = \sup\{|\operatorname{tr}(At)|: t \in \mathcal{M}_{\perp} \cap F_k, ||t||_1 \le 1\}.$$

A subspace \mathcal{M} is k-hyperreflexive if there is a constant c > 0 such that

$$d(A, \mathcal{M}) \le c\alpha_k(A, \mathcal{M}) \tag{1}$$

for any $A \in \mathcal{B}(\mathcal{H})$. The constant of k-hyperreflexivity is the infimum of all constants c such that (1) holds and is denoted by $\kappa_k(\mathcal{M})$.

2. Finite rank perturbation of Toeplitz operators

Denote by H^2 the classical Hardy space on the unit circle \mathbb{T} and let $P_{H^2}: L^2 \to H^2$ be the orthogonal projection. The *Toeplitz operator* with the symbol $\varphi \in L^{\infty}$ is defined as follows $T_{\varphi}: H^2 \to H^2$ and $T_{\varphi}f = P_{H^2}(\varphi f)$ for $f \in H^2$. Let \mathcal{T} denote the space of all Toeplitz operators.

It is well known that $\mathcal{T} = \{T_{\varphi} : \varphi \in L^{\infty}\} = \{A : T_{z}^{*}AT_{z} = A\}$ (see [5, Corollary 1 to Problem 194]). Therefore \mathcal{T} is closed in weak* topology.

Let $\{e_j\}_{j\in\mathbb{N}}$ be the usual basis in H^2 . Let J be a finite subset of $\mathbb{N}\times\mathbb{N}$. Denote by $S_J = \operatorname{span}\{e_i\otimes e_j: (i,j)\in J\}$ and consider the subspace

$$S = T + S_J = \operatorname{span}\{T_{\varphi} + g : \varphi \in L^{\infty}, g \in S_J\}.$$

Notice that S is weak* closed. It was shown in [3, Theorem 3.1] that T is not reflexive but it is 2-reflexive. In [6] similar result was obtained for Toeplitz operators perturbated by rank one operator. In this paper we will prove the same for the subspace S.

Proposition 1

The subspace $S = T + S_J$ is not reflexive but it is 2-reflexive.

Proof. It is easy to see that $(S)_{\perp} = \mathcal{T}_{\perp} \cap (S_J)_{\perp}$. Because there is no rank one operator in \mathcal{T}_{\perp} , hence S cannot be reflexive.

On the other hand, $\mathcal{T}_{\perp} = \text{span}\{e_i \otimes e_j - Se_i \otimes Se_j : i, j = 1, 2, \ldots\}$, where S denotes the unilateral shift. Hence

$$(\mathcal{S})_{\perp} = \operatorname{span}\{e_i \otimes e_j - Se_i \otimes Se_j : i, j = 1, 2, \dots, (i, j) \neq J \text{ and } (i + 1, j + 1) \neq J\}.$$

That implies 2-reflexivity of S.

In [4] Davidson proved hyperreflexivity of the algebra of all analytic Toeplitz operators. Since the space \mathcal{T} is not reflexive it cannot be hyperreflexive, but we know due to [7, 11] that \mathcal{T} is 2-hyperreflexive with $\kappa_2(\mathcal{T}) \leq 2$. Now we will prove that the finite rank perturbation preserves 2-hyperreflexivity of \mathcal{T} . The projection $\pi \colon \mathcal{B}(H^2) \to \mathcal{T}$ given by Arveson in [1] will be a useful tool in the proof.

Proposition 2

The subspace $S = T + S_J$ is 2-hyperreflexive with constant $\kappa_2(S) \leq 2$.

Proof. Let $\pi: \mathcal{B}(H^2) \to \mathcal{T}$ be the projection defined in [1, Proposition 5.2]. This projection has the property that for any $B \in \mathcal{B}(H^2)$ the operator $\pi(B)$ belongs to the weak* closed convex hull of $\{T_{z^n}^*BT_{z^n}: n \in \mathbb{N}\}$.

Let $A \in \mathcal{B}(H^2) \setminus \mathcal{S}$ and $A = (a_{ij})_{i,j \in \mathbb{N}}$. Since J is a finite set, there is $r \in \mathbb{N}$ such that for every $(i,j) \in J$ we have $(i+r,j+r) \notin J$. For each $(i,j) \in J$ we define $\lambda_{ij} = a_{ij} - a_{i+r,j+r}$ and put $\tilde{A} = A - \sum_{(i,j) \in J} \lambda_{ij} e_i \otimes e_j$. Notice that $\pi(A) = \pi(\tilde{A})$. Observe that for any $\lambda \in \mathbb{C}$,

$$d(A, \mathcal{S}) \le \left\| A - \pi(A) - \sum_{(i,j) \in J} \lambda_{ij} e_i \otimes e_j \right\| = \|\tilde{A} - \pi(\tilde{A})\|.$$

In [7] it was shown that the space of Toeplitz operators \mathcal{T} is 2-hyperreflexive with constant at most 2. Using similar calculations as in [7] we obtain that

$$d(\tilde{A}, \mathcal{T}) \le ||\tilde{A} - \pi(\tilde{A})|| \le 2\alpha_2(\tilde{A}, \mathcal{T}).$$

Now we will show that

$$\alpha_2(\tilde{A}, \mathcal{T}) = \alpha_2(A, \mathcal{S}). \tag{2}$$

Firstly, note that $\alpha_2(\tilde{A}, \mathcal{T}) \geq \alpha_2(A, \mathcal{S})$ and

$$\alpha_2(\tilde{A}, \mathcal{T}) = \sup\{|\operatorname{tr}(\tilde{A}t)|: 2t = e_i \otimes e_j - e_{i+k} \otimes e_{j+k}, k \ge 1, i, j = 0, 1, 2, \ldots\}.$$

If the supremum above is realized by $2t = e_i \otimes e_j - e_{i+k} \otimes e_{j+k}$ for $(i,j) \notin J$ and $(i+k,j+k) \notin J$, then we have the equality (2).

Now consider the case, when $2t = e_i \otimes e_j - e_{i+k} \otimes e_{j+k}$ and $(i, j) \in J$ and $(i + k, j + k) \notin J$. Then

$$|\operatorname{tr}(\tilde{A}t)| = \frac{1}{2}|a_{ij} - \lambda_{ij}e_i \otimes e_j - a_{i+k,j+k}| = \frac{1}{2}|a_{i+r,j+r} - a_{i+k,j+k}| \le \alpha_2(A,\mathcal{S})$$

(since
$$e_{i+r} \otimes e_{j+r} - e_{i+k} \otimes e_{j+k} \in \mathcal{S}_{\perp}$$
).

[18] Kamila Kliś-Garlicka

Similarly, if $2t = e_i \otimes e_j - e_{i+k} \otimes e_{j+k}$ and $(i,j) \notin J$ and $(i+k,j+k) \in J$, then

 $|\operatorname{tr}(\tilde{A}t)| = \frac{1}{2}|a_{ij} - a_{i+k+r,j+k+r}| \le \alpha_2(A,\mathcal{S}).$

Finally, if $2t = e_i \otimes e_j - e_{i+k} \otimes e_{j+k}$ and $(i,j) \in J$ and $(i+k,j+k) \in J$, then $|\operatorname{tr}(\tilde{A}t)| = \frac{1}{2}|a_{i+k+r,j+k+r}| \le \alpha_2(A,\mathcal{S}).$

We obtained that $\alpha_2(\tilde{A}, \mathcal{T}) = \alpha_2(A, \mathcal{S})$ and the proof is completed.

References

- [1] N.T. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233. Cited on 17.
- [2] N.T. Arveson, Ten lectures on operator algebras, CBMS Regional Conference Series in Mathematics 55, Amer. Math. Soc., Providence (1984). Cited on 16.
- [3] E.A. Azoff, M. Ptak, A dichotomy for linear spaces of Toeplitz operators, J. Funct. Anal. **156** (1998), 411–428. Cited on 16.
- [4] K. Davidson, The distance to the analytic Toeplitz operators, Illinois J. Math. 31 (1987), 265–273. Cited on 17.
- [5] P.R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London 1967. Cited on 16.
- [6] K. Kliś-Garlicka, Rank-one perturbation of Toeplitz operators and reflexivity, Opuscula Math. **32** (2012), 505–509. Cited on 15 and 16.
- [7] K. Kliś, M. Ptak, k-hyperreflexive subspaces, Houston J. Math. 32 (2006), 299-313. Cited on 16 and 17.
- [8] J. Kraus, D. Larson, Some applications of a technique for constructing reflexive operator algebras, J. Operator Theory, 13 (1985), 227–236. Cited on 16.
- [9] J. Kraus, D. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. **53** (1986), 340–356. Cited on 15 and 16.
- [10] W.E. Longstaff, On the operation Alg Lat in finite dimensions, Linear Algebra Appl. 27 (1979), 27–29. Cited on 15.
- [11] H. Mustafayev, On hyper-reflexivity of some operator spaces, Internat. J. Math. Math. Sci., 19 (1996), 603-606. Cited on 17.

Institute of Mathematics University of Agriculture Balicka 253c 30-198 Kraków Poland

E-mail: rmklis@cyfronet.pl