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The Fifteenth International Conference on Functional Equations and Inequal-
ities was held from May 19 to 25, 2013 in Ustroń, Poland. The series of ICFEI
meetings has been organized by the Department of Mathematics of the Pedagogi-
cal University in Cracow since 1984. As usual, the ICFEI meeting was focused on
various topics connected with functional equations and inequalities as well as on
their applications.

The Organizing Committee of the 15th ICFEI consisted of Janusz Brzdęk as
Chairman, Krzysztof Ciepliński and Zbigniew Leśniak as Vice-Chairmans, Anna
Bahyrycz and Magdalena Piszczek as Scientific Secretaries, Paweł Solarz, Janina
Wiercioch and Paweł Wójcik.

The Scientific Committee consisted of Professors: Dobiesław Brydak as Hon-
orary Chairman, Janusz Brzdęk as Chairman, Nicole Brillouët-Belluot, Jacek
Chmieliński, Roman Ger, Hans-Heinrich Kairies, László Losonczi, Zsolt Páles,
Ekaterina Shulman, László Szekelyhidi and Marek Cezary Zdun.

The 82 participants came from 21 countries: Armenia, Austria, Brasil, Canada,
China, Croatia, Czech Republic, Denmark, France, Germany, Hungary, Israel,
Japan, Luxemburg, Romania, Russia, Serbia, Slovenia, USA, Venezuela and Po-
land. The 23 of them were the first-time ICFEI attendees.

The conference was opened on Monday, May 20 by Professor Janusz Brzdęk
– the Chairman of the Scientific and Organizing Committees, who welcomed the
participants on behalf of the Organizing Committee (and read a letter to them from
Professor Władysław Błasiak, the Dean of the Faculty of Mathematics, Physics
and Technical Science of the Pedagogical University). The opening address was
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given by Professor Jacek Chmieliński, the Head of the Department of Mathematics
of the Pedagogical University.

Altogether, during 21 scientific sessions 69 talks were given. They focused on
functional equations in a single variable and in several variables, functional inequal-
ities, stability theory, convexity, multifunctions, means and other topics. Several
contributions have been made during special Problems and Remarks sessions.

On Tuesday, May 20, a picnic was organized. On the next day afternoon the
participants visited Cieszyn, a town situated in the heart of the historical region of
Cieszyn Silesia, on the border with the Czech Republic. According to the legend,
Cieszyn was established in 810 and up to the present, the town has preserved its
medieval urban plan. On Thursday, May 22, a banquet was held. The conference
was closed on Saturday, May 25 by Professor Janusz Brzdęk. He announced that
the 16th ICFEI will be organized in Mathematical Research and Conference Center
in Będlewo.

The following part of the report contains the abstracts of the talks, the prob-
lems and remarks, and a list of the participants with their addresses.

Abstracts of Talks

Shoshana Abramovich Refined Jensen’s inequalities and Hardy’s inequalities

We present a new set of functions and show how inequalities satisfied by func-
tions of this set lead to and refine Jensen’s type inequalities, Hardy’s type inequal-
ities and many other inequalities.

For Hardy’s inequality the “breaking point”, that is the point where the in-
equality reverses, is p = 1. Here we prove that for a function in our set the refined
Hardy’s type inequality can have a breaking point at any p ≥ 1.

Marcin Adam On the difference property of higher orders for differentiable func-
tions

Let Cp(R,R) denote the class of p-times continuously differentiable functions.
Inspired by some results concerning the double difference property [1], we show
that the class Cp has the difference property of p-th order, i.e. if a function f :R→
R is such that ∆p

hf ∈ Cp(R × R,R), where ∆p
hf is the p-th iterative of the well-

known difference operator ∆hf(x) := f(x+ h)− f(x), then there exists a unique
polynomial function P :R → R of (p − 1)-th order such that f − P ∈ Cp(R,R).
Moreover, the function P is given by the formula

P (x) = f(x)− 1

p!

1∫
0

t1∫
0

t2∫
0

. . .

tp−1∫
0

∂p2 (∆pf)(ux, 0)(xp) du dtp−1 . . . dt1, x ∈ R.

Some new equalities connected with the difference operator are also presented.

[1] J. Tabor, J. Tabor, Stability of the Cauchy type equations in the class of differentiable
functions, J. Approx. Theory 98 (1999), 167–182.
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Roman Badora Remarks on Hyers theorem
(joint work with B. Przebieracz and P. Volkmann)

Let Y be a linear space and let B be a subset of Y . We are looking for
a condition on the set B which guarantees that for every commutative semigroup
S and each function f :S → Y fulfilling

f(s+ t)− f(s)− f(t) ∈ B, s, t ∈ S

there exists an additive function a:S → Y such that

a(s)− f(s) ∈ B, s ∈ S.

Anna Bahyrycz Approximately p-Wright affine functions and inner product
spaces
(joint work with J. Brzdęk and M. Piszczek)

We consider the equation of p-Wright affine functions

g(px+ (1− p)y) + g((1− p)x+ py) = g(x) + g(y) (1)

with a fixed p ∈ F ∈ {R,C}, for functions g mapping a normed space over F into
a normed space.

We present a result on hyperstability of equation (1) and show that for

p =
eiα + 1

2

with some α ∈ R, equation (1) characterizes norms in the complex inner product
spaces. We also obtain in this way some inequalities describing derivations, Lie
derivations and Lie homomorphisms.

Karol Baron On additive involutions and Hamel bases

Let X be a linear topological space, X 6= {0}, put

A = {a:X → X| a is additive}

and consider A with the topology induced by XX with the Tychonoff topology.
Inspired by the foot-note on p.325 of [2] (on p.294 of the original edition) and
making use of the lemma from [1] we show that the following sets are dense in A:

{a ∈ A : a ◦ a = idX , a is discontinuous and a(H) \H 6= ∅ for every
uncountable set H ⊂ X which is linearly independent over Q},

{a ∈ A : a ◦ a = idX , a is discontinuous and a(H) = H for a basis H
of the vectorspace X over the field Q}.

[1] K. Baron, P. Volkmann, Dense sets of additive functions, Seminar LV, No. 16 (2003),
4 pp., http://www.math.us.edu.pl/smdk.
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[2] M. Kuczma, An introduction to the theory of functional equations and inequalities.
Cauchy’s equation and Jensen’s inequality, Second edition (edited by A. Gilányi),
Birkhäuser Verlag, Basel (2009).

Bogdan Batko Stability of the exponential Cauchy functional equation in Riesz
algebras

We deal with the stability of the exponential Cauchy functional equation

f(x+ y) = f(x)f(y) for x, y ∈ G

in the class of functions f :G→ L mapping a group (G,+) into a Riesz algebra L.

Janusz Brzdęk Stability of the Cauchy equation – revisited

The following theorem is considered to be one of the most classical results
concerning stability of the additive Cauchy equation.

Theorem 1
Let E1 and E2 be normed spaces, E2 be complete, c > 0 and p 6= 1 be fixed real
numbers, and f :E1 → E2 satisfy

‖f(x+ y)− f(x)− f(y)‖ ≤ c (‖x‖p + ‖y‖p), x, y ∈ E1 \ {0}. (1)

Then there exists a unique additive function T :E1 → E2 with

‖f(x)− T (x)‖ ≤ c‖x‖p

|2p−1 − 1|
, x ∈ E1 \ {0}.

The particular cases of it have been proved by D.H. Hyers, T. Aoki, Th.M. Ras-
sias and Z. Gajda. We present some comments and recent results connected with
it. In particular, the following holds true.

Theorem 2
Let E1 and E2 be normed spaces, c > 0 and p < 0 be fixed real numbers, and
f :E1 → E2 satisfy (1). Then f is additive.

Liviu Cădariu-Brăiloiu Fixed points and generalized stability of some functional
equations
(joint work with I. Goleţ)

The fixed point method is an extensive technique used for proving the Hyers-
Ulam stability of functional equations. The goal of this talk is to present applica-
tions of some fixed point theorems to the theory of Hyers-Ulam stability of several
functional equations.

[1] J. Brzdęk, J. Chudziak, Z. Páles, A fixed point approach to stability of functional
equations, Nonlinear Anal. 74 (2011), 6728–6732.

[2] L. Cădariu, V. Radu, Fixed points and the stability of Jensen’s functional equation,
J. Inequal. Pure Appl. Math. 4 (2003), Article 4, 7 pp. (electronic).
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[3] L. Cădariu, V. Radu, Fixed point methods for the generalized stability of functional
equations in a single variable, Fixed Point Theory Appl. (2008), Art. ID 749392,
15 pp.

[4] L. Cădariu, L. Găvruţa, P. Găvruţa, Weighted space method for the stability of some
nonlinear equations, Appl. Anal. Discrete Math. 6 (2012), 126–139.

[5] L. Cădariu, L. Găvruţa, P. Găvruţa, Fixed points and generalized Hyers-Ulam stabil-
ity, Abstr. Appl. Anal. (2012), Art.ID 712743, 10 pp.

Jacek Chmieliński Orthogonality equation with two unknown functions

We consider generalized orthogonality equations involving two unknown func-
tions:

〈f(x)|g(y)〉 = 〈x|y〉, 〈f(x)|g(y)〉 = 〈y|x〉, |〈f(x)|g(y)〉| = |〈x|y〉|.

As a related problem, we investigate the orthogonality preserving property

x⊥y =⇒ f(x)⊥g(y).

Jacek Chudziak On solutions of a generalization of the Gołąb-Schinzel functional
equation

Assume that X is a real linear space and let φ, ψ:R → R be continuous func-
tions. We consider solutions of the functional equation

f(xφ(f(y)) + yψ(f(x))) = f(x)f(y) for x, y ∈ X, (1)

where f :X → R is an unknown function. Equation (1) is a generalization of the
Gołąb-Schinzel functional equation

f(x+ yf(x)) = f(x)f(y)

as well as its further generalizations

f(xf(y)k + yf(x)l) = f(x)f(y),

where k and l are fixed positive integers. A particular case of (1), namely the
equation

f(x(pf(y) + (1− p)) + y((1− p)f(x) + p)) = f(x)f(y),

where p is a fixed real number, has been considered in [3]. Continuous solutions
of (1) in the case X = R have been determined in [1] and [2].

[1] J. Chudziak, Continuous solutions of a generalization of the Gołąb-Schinzel equation,
Aequationes Math. 61 (2001), 63–78.

[2] J. Chudziak, Continuous solutions of a generalization of the Gołąb-Schinzel equation
II, Aequationes Math. 71 (2006), 115–123.

[3] J. Matkowski, A generalization of the Gołąb-Schinzel functional equation, Aequa-
tiones Math. 80 (2010), 181–192.
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Marek Czerni Representation theorems for regular solutions of linear functional
inequality

In the talk we present representation theorems for regular solutions of the linear
functional inequality

ψ[f(x)] ≤ g(x)ψ(x) + h(x), (1)

where ψ is an unknown function and f , g, h are given.
We assume the following hypotheses about given functions f , g and h:

(H1) The function f : I → R is continuous and strictly increasing in an interval
I = [0, a), where 0 < a ≤ ∞. Moreover, 0 < f(x) < x for x ∈ I? = I \ {0}.

(H2) The function g: I → R is continuous in I and g(x) > 0 for x ∈ I?. Moreover,
functional sequence Gn(x) =

∏n−1
i=0 g[f i(x)] tends to zero almost uniformly

in I?.

(H3) The function h: I → R is continuous in I and functional sequence ϕ?n(x) =∑n−1
i=0

h[fi(x)]
Gi+1(x) converges almost uniformly in I?.

We shall be concerned with such regular solutions of (1) that for some fixed
continuous solution ϕ of the linear functional equation

ϕ[f(x)] = g(x)ϕ(x) + h(x)

or
ϕ[f(x)] = g(x)ϕ(x)

the following asymptotic condition

ψ[f(x)] = g(x)ψ(x) + h(x) +O(ϕ(x)), x→ 0+

holds.
The result presented are related to those from [1] (see in particular section 12.5

pp.488–490)

[1] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia of
Mathematics and its Applications, 32, Cambridge University Press, Cambridge, 1990.

Thomas M.K. Davison Near-homomorphisms on semigroups

If a complex-valued function f defined on a group satisfies d’Alembert’s equa-
tion

f(xy) + f(xy−1) = 2f(x)f(y),

then it also satisfies the centrality equation

f(xy) = f(yx) (1)
and

f(xyz) + f(xzy) = 2f(x)f(yz) + 2f(y)f(xz) + 2f(z)f(xy)− 4f(x)f(y)f(z). (2)

Now looking at (1) and (2) we see that every semigroup homomorphism satisfies
them. This leads to the main concept of this paper.
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Definition
Let S be a semigroup and α1, α2, β1, β2, β3 complex numbers, not all zero. Then
f :S → C is a near-homomorphism if f is central (satisfies (1)), and for all x, y, z
in S,

α1f(xyz) + α2f(xzy) = β1f(x)f(yz) + β2f(y)f(xz) + β3f(z)f(xy)

+ (α1 + α2 − β1 − β2 − β3)f(x)f(y)f(z).

Here is our main result:

Theorem
If f is a near-homomorphism on S, then at least one of the following is true

(i)
f(xyz) = f(xzy)

for all x, y, z in S.

(ii) There is a complex number λ such that for all x, y in S,

f(xy) = λf(x)f(y).

(iii) Either f or 1
2f satisfies (2).

Joachim Domsta Unitary operators with gaussian kernels

All unitary one-parameter continuous groups on L2(R) formed by integral op-
erators with kernels of the following gaussian form

U (t)(x, y) =

√
Bt
2πi

exp
{
− 1

2i

[
Atx

2 − 2Btxy + Cty
2
]}
, x, y ∈ R, t ∈ R,

are presented unless the coresponting operator Ut equals the identity.
The following three cases are possible, only (not counting the trivial group of

identities)

(1) Bt =
S

t
, At = Bt +R, Ct = Bt −R; t 6= 0;

(2) Bt =
Sα

sinh(αt)
, At = Bt cosh(αt) +R, Ct = Bt cosh(αt)−R; t 6= 0;

(3) Bt =
Sα

sin(αt)
, At = Bt cos(αt) +R, Ct = Bt cos(αt)−R; αt 6= kπ;

for some real R, S 6= 0, α 6= 0. Correspondingly, the unitary groups cover all
quantum dynamical systems on R driven by the hamiltonians

H = −a ∂
2

∂x2
+ bx2 + ic

(
x
∂

∂x
+

∂

∂x
x
)
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with real a, b, c. The case of R = 0 (equivalently, c = 0) covers the standard
quantum dynamics of one dimensional free particle (if b = 0), possibly under the
influence of the quadratic potential (attracting or repulsing “harmonic” oscilator -
when a · b 6= 0).

El-Sayed El-Hady On a two-variable functional equation
(joint work with W. Förg-Rob and H. Nassar)

Functional equations have applications in many fields such as communications,
economics, and information theory. We study a two-variable functional equation
which naturally arises from modeling two-queue queueing systems. This functional
equation could be solved by reduction to a boundary value problem, most notably
to a Riemann-Hilbert boundary value problem. However, the exact form of the
solutions for this equation is rarely obtained. We manage to solve a challenged
two-variable functional equation arising from a gateway queueing model by trial
and error. There we got many solutions which do not make sense with the system
under consideration of the application.

Włodzimierz Fechner Functional inequalities connected with averaging opera-
tors

In 1934 J. Kampé de Fériet [7] introduced the notion of averaging operators.
If A is a function algebra then a linear operator T :A → A is called averaging if it
satisfies the equality

T (f · Tg) = Tf · Tg (1)

for each f, g ∈ A. This idea was developed further by G. Birkhoff [1]. After the
Birkhoff’s paper was published, this topic was extensively discussed by a number
of authors.

Assume that (G, ∗) is an arbitrary semigroup and f :G → G. The following
functional equation

f(x ∗ f(y)) = f(x) ∗ f(y)

is motivated by relation (1) and was studied mainly by J. Dhombres [2]–[6].
In the talk we will investigate special cases of the following functional inequality

f(x ∗ f(y)) ≥ f(x) ∗ f(y)

for the unknown mapping f acting on a partially ordered ring R. We will exhibit
two cases, namely when the operation ∗ is equal to addition or multiplication on
R, respectively.

[1] G. Birkhoff, Moyennes des fonctions bornées, Colloques internationaux du C. N. R.
S.: Algèbre et Théorie des nombres 24 (1950), 143–153.

[2] J. Dhombres, Caractérisation d’une classe de transformations semi-multiplicatives,
C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A113–A116.

[3] J. Dhombres, A functional characterization of Markovian linear exaves, Bull. Amer.
Math. Soc. 81 (1975), 703–706.
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[4] J. Dhombres, Functional equations, averaging operators, interpolation operators, and
linear extension operators (in Chinese), Nanta Math. 9 (1976), 109–116.

[5] J. Dhombres, Solution générale sur un groupe abélien de l’équation fonctionnelle f(x∗
f(y)) = f(f(x) ∗ y), Aequationes Math. 15 (1977), 173–193.

[6] J. Dhombres, Some aspects of functional equations, Chulalongkorn University, De-
partment of Mathematics, Bangkok, 1979.

[7] J. Kampé de Fériet, L’etat actuel du problème de la turbulence (I and II), La Science
Aérienne 3 (1934), 9–34; 4 (1935), 12–52.

Carlos E. Finol An inequality related to geometrically concave functions

We shall consider the class of functions f : [1,∞) → [1,∞), which are twice
continuously differentiable in (1,∞) and such that:

(A1) The function h(t) := tf ′(t)
f(t) , t > 1, is strictly decreasing, 0 < h(t) < 1 for

t > 1 and limt→∞ h(t) = 0.

(A2) f(1) = 1 and limt→∞ f(t) =∞.

(A3) The function t 7→ t
f(t) is concave.

Lemma
The functions in this class are strictly submultiplicative; that is, for x, y ∈ (1,∞),
x 6= y, we have f(xy) < f(x)f(y).

Let X be a Banach space with unit Schauder basis {en}∞n=1, and let ‖ · ‖ be its
norm. An important numerical parameter associated to the unit basis is defined
as follows, λ(n) = ‖e1 + e2 + . . .+ en‖, n ∈ N.

Theorem
For each m ∈ N we have that λ(m) = m

f(m) , where f satisfies (A1), (A2) and (A3).

Ajda Fošner Some results on the Hyers–Ulam–Rassias stability of functional
equations

A classical question in the theory of functional equations is: Under what condi-
tions is it true that a mapping which approximately satisfies a functional equation
E must be somehow close to an exact solution of E? We say that a functional
equation E is stable if any approximate solution of E is near to a true solution
of E . We will present some new results on the generalized Hyers–Ulam–Rassias
stability of functional equations.

Ji Gao Some equations and inequalities related to geometric properties in Banach
spaces
(joint work with S. Saejung and J. Gao)

A bounded, convex subset K of a Banach space X is said to have normal
structure if every convex subsetH ofK that contains more than one point contains
a point x0 ∈ H, such that sup{‖x0 − y‖ : y ∈ H} < diam(H), where diam(H) =
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sup{‖x − y‖ : x, y ∈ H} denotes the diameter of H. Normal structure implies
fixed point property for non-expansive mapping.

At this talk, we show some equations and inequalities and demonstrate the
relationships among parameters δ(ε), C(X), ρX(τ), J(X), O(X), Q(X) and ω(X)
of X, that imply normal structure. Many results in this field are either improved
under a certain condition or obtained in a different way.

Roman Ger On a problem of Nicolae Bourbăcuţ

In the April 2012 issue of The American Mathematical Monthly (119, Problems
and Solutions, p.345) the following problem was proposed by Nicolae Bourbăcuţ
(Sarmizegetusa, Romania):

Let f be a convex function from R into R and suppose that

f(x+ y) + f(x− y)− 2f(x) ≤ y2

for all real x and y.

(a) Show that f is differentiable.

(b) Show that for all real x and y,

|f ′(x)− f ′(y)| ≤ |x− y|.

(Problem 11641).
We shall present a solution of the problem in question (in much more general

setting) from which the solution of Bourbăcuţ’s problem will result as an obvious
corollary.

Dorota Głazowska Invariance equation involving quasi-arithmetic mean and
Matkowski means

Let I ⊂ R be an open interval. We consider the following functional equation

ϕ
(
(f+g)−1(f(x)+g(y))

)
+ϕ
(
(f+g)−1(g(x)+f(y))

)
= ϕ(x)+ϕ(y), x, y ∈ I,

where ϕ, f, g: I → R are continuous and strictly monotone functions such that f
and g are strictly monotone in the same sense. We solve this equation under two
times continuous differentiability of the unknown functions ϕ, f, g.

Attila Házy On approximately (k, h)-convex functions

In our talk we define the so-called approximately (k, h)-convex function with
respect to a set, which is a natural generalization of the usual convexity, the s-
convexity in the first (Orlicz) and second (Breckner) sense, the h-convexity, the
Godunova-Levin functions and the P -functions. We investigate some regularity
and Bernstein-Doetsch type results for this type functions.

Let X be a real or complex topological vector space, T be a nonempty set such
that the following property holds

t ∈ T if and only if 1− t ∈ T .
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Furthermore, let k, h:T → R be given functions and D ⊂ X be a nonempty open,
k-convex set (that is, k(t)x + k(1 − t)y ∈ D whenever x, y ∈ D and t ∈ T ). We
say that a function f :D → R is approximately (k, h)-convex with respect to T , if

f(k(t)x+ k(1− t)y) ≤ h(t)f(x) + h(1− t)f(y) + d(x, y)

for all x, y ∈ D and t ∈ T , where d:X ×X → R is a given function.

Dijana Ilišević Orthogonally additive mappings on Hilbert C∗-modules
(joint work with A. Turnšek and Dilian Yang)

Let A be a C∗-algebra and let (W, 〈 . , . 〉) be a Hilbert C∗-module over A.
A mapping f on W is said to be orthogonally additive if for all x, y ∈W

〈x, y〉 = 0 =⇒ f(x+ y) = f(x) + f(y).

If T is an additive mapping on W and Φ is an additive mapping on A, then the
mapping f defined by

f(x) = T (x) + Φ(〈x, x〉) for x ∈W

is an orthogonally additive mapping. The aim of this talk is to answer the question
whether the converse also holds true.

Hideaki Izumi Formal series solutions of iterative functional equations

We will introduce ϕ-power series

f(x) = a1ϕ(x) + a2ϕ(x)2 + . . .+ anϕ(x)n + . . . ,

where an ∈ R, n = 1, 2, . . . and ϕ is a given function analytic in the neighborhood
of 0 satisfying ϕ(0) = 0, ϕ′(0) = 1. We will show that for each n ∈ N the iterative
functional equation

fn(x) = ϕ(x)

has a formal solution. Moreover, we will discuss the radius of convergence of the
formal solution.

Wojciech Jabłoński Regular groups of formal power series commuting in pairs

Let R be an integral domain of characteristic 0. We consider groups Fs of
invertible formal power series

∑s
k=1 ckX

k ∈ Γs commuting in pairs, i.e. satisfying

(F1 ◦ F2)(X) = (F2 ◦ F1)(X) for F1(X), F2(X) ∈ Fs.

In some cases these groups are the regular one-parameter groups (F (t,X))t∈T of
formal power series, which means that the formal derivative ∂F

∂t (t,X) exists for
each t ∈ T . We obtain formal differential equations in the ring of formal power
series over the field KR of fractions of the ring R.

Justyna Jarczyk Uniform convexity of paranormed generalizations of Lp spaces
(joint work with J. Matkowski)

For a measure space (Ω,Σ, µ) and a bijective increasing function ϕ: [0,∞) →
[0,∞) the Lp-like paranormed function space with the paranorm of the form
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pϕ(x) = ϕ−1(
∫

Ω
ϕ ◦ |x| dµ) is considered. Main results give general conditions un-

der which this space is uniformly convex. The Clarkson theorem on the uniform
convexity of Lp-space is generalized. Under some specific assumptions imposed
on ϕ we give not only theorems on the uniform convexity but also formulas of
modulus of convexity.

Witold Jarczyk Iterative roots of piecewise monotonic functions revisited
(joint work with J. Jarczyk, Lin Li, Liu Liu and Weinian Zhang)

We continue research presented in [Liu Liu, W. Jarczyk, Lin Li and Weinian
Zhang, Nonlinear Anal. 75 (2012), 286–03], where the so-called case T1 was stud-
ied. The talk reports a progress made recently while developing the complementary
case T2.

Sándor Jenei On the geometry of associativity

A two geometric descriptions of associativity of residuated operations will be
presented from [3] along with their possible applications for investigating even
non-continuous (only left-continuous) solutions of the associativity equation. In
particular, we shall show an answer ([2]) to a problem about convex combinations
of certain associative functions, posed in [1].

Acknowledgement
Supported by the SROP-4.2.2.C-11/1/KONV-2012-0005 grant and the MC ERG
grant 267589.

[1] C. Alsina, M.J. Frank, B. Schweizer, Problems on associative functions, Aequationes
Math. 66, (2003), 128–140.

[2] S. Jenei, On the convex combination of left-continuous t-norms, Aequationes Math.
72 (2006), 47–59.

[3] S. Jenei, On the geometry of associativity, Semigroup Forum 74 (2007), 439–466.

Gergely Kiss Linear functional equations and derivations
(joint work with M. Laczkovich)

We investigate the structure of solutions of the linear functional equation
n∑
i=1

aif(bix+ ciy) = 0, x, y ∈ C,

where ai, bi, ci are given complex numbers, and the numbers bi/ci are distict. In
order to describe the solutions on the field K generated by the numbers bi, ci, we
introduce a new method which is related to abstract spectral synthesis on abelian
groups. We show that spectral synthesis holds in the variety of the solutions by
presenting a dense subset of the variety in terms of the injective homomorphisms
and derivations on K.

Zdeněk Kočan Solutions of a conditional composite type functional equation
(joint work with J. Chudziak)

Let X be a real linear space and C ⊂ X be a convex cone. We deal with the
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solutions of the following functional equation

f(x+ g(x)y) = f(x)f(y) whenever x, y, x+ g(x)y ∈ C,

where f, g:C → R are unknown functions.

Tomasz Kochanek Stability of disjointness preserving in C∗-algebras

We deal with non-commutative analogues of some results, due to Araujo, Font
and Dolinar, concerning linear operators defined on C(X)-spaces that almost pre-
serve disjointness (that is, the operators T :C(X) → C(Y ) such that f · g = 0
implies ‖T (f)‖‖T (g)‖ ≤ ε‖f‖ · ‖g‖ for all f, g ∈ C(X) and for some ε ≥ 0). We
shall deal with the corresponding property for operators T :A → B, where A and
B are C∗-algebras. In particular, we are interested in the question of identifying
those properties of the spectra of A and B which guarantee the stability effect for
operators A → B that almost preserve disjointness.

Bartosz Kołodziejek The Olkin-Baker functional equation on symmetric cones

In the talk we will discuss the Olkin-Baker functional equation defined on the
cone of symmetric positive definite matrices V (or generally on symmetric cones)

f1(x) + f2(y) = f3(x+ y) + f4(w−1
i (x+ y)x), (x, y) ∈ V2, i = 1, 2,

where w1(x)y = x
1
2 yx

1
2 , w2(x)y = txyt

T
x and tx is the upper triangular matrix

in the Cholesky decomposition of x ∈ V. It is known that both “multiplication
algorithms” wi give different solutions under assumption of twice differentiability
of respective functions. The assumption is now reduced to continuity only.

For the purpose of the proof, the general solutions of the Cauchy functional
equation with respect to wi on positive definite symmetric matrices are found. If
the following equation holds for every (x, y) ∈ V2

gi(x) + gi(y) = gi(wi(x)y), i = 1, 2,

then g1(x) = H(det(x)) and g2(x) =
∑n
k=1Hk(det(k)(x)), where det(k)(x) is the

kth principal minor of x, n is the rank of V and H,H1, . . . ,Hn are generalized
logarithmic functions.

The Olkin-Baker functional equation is related to the characterization of
a Wishart probability distribution on V (Lukacs-Olkin-Rubin theorem).

Aleksandar Krapež An application of quasigroup equations in cryptography

A general solution in closed form for all generalized quadratic quasigroup equa-
tions is given. The solution depends on isostrophy classes of quasigroup operations
and the tree of the equation. An application of this result in the choice of quasi-
groups suitable for parastrophic stream cyphers is presented.
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Zbigniew Leśniak On approximate solutions of the generalized Volterra integral
equation
(joint work with A. Bahyrycz and J. Brzdęk)

We prove some results on approximate solutions of the following generalized
Volterra integral equation

ψ(x) =

x∫
a

N(x, t, ψ(α(t)) dt+G(x), x ∈ I

for continuous functions ψ mapping a real interval I equal to [a, b) or [a, b] into
a Banach space B, where N : I × I × B → B, G: I → B, α: I → I are given
continuous functions and

∫
denotes the Bochner integral. We show that, under

suitable assumptions, they generate exact solutions of the equation.

Lin Li On conjugacy of r-modal interval maps with nonmonotonicity height equal
to 1
(joint work with Z. Leśniak and Yong-Guo Shi)

We construct all homeomorphic solutions and continuously non-monotone so-
lutions of the conjugacy equation ϕ ◦ f = g ◦ ϕ, where f : I → I, g: J → J are
two given r-modal interval maps with nonmonotonicity height equal to 1, and
I, J are closed intervals. Moreover, some sufficient conditions are also presented
for the existence of C1 homeomorphic solutions and C1 non-monotone solutions,
respectively.

Radosław Łukasik Stability of some generalization of the quadratic and Wilson’s
functional equation

In the present talk, we consider the stability of functional equation∑
λ∈K

f(x+ λy) = |K|α(y)g(x) + h(y), x, y ∈ S,

where (S,+) is an abelian group, K is a finite, abelian subgroup of automorphism
group on S, L := |K|, (X, ‖ · ‖) is a Banach space over the field K ∈ {R,C},
f, g, h:S → X, α:S → K.

We present the stability results in the case of the constant control function.

[1] R. Badora, On Hyers-Ulam stability of Wilson’s functional equation, Aequationes
Math. 60 (2000), 211–218.

[2] R. Badora, On the stability of a functional equation for generalized trigonometric
functions, Functional equations and inequalities, 1–5, Math. Appl. 518, Kluwer Acad.
Publ., Dordrecht, 2000.

[3] R. Badora, Stability properties of some functional equations, Functional Equations in
Mathematical Analysis, 52 (2012), 3–13.

[4] R. Łukasik, Some generalization of Cauchy’s and quadratic functional equations, Ae-
quationes Math. 83 (2012), 75–86.

[5] R. Łukasik, Some generalization of the quadratic and Wilson’s functional equation,
Aequationes Math. DOI: 10.1007/s00010-013-0185-y.
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Ewelina Mainka-Niemczyk Sine and cosine families, and series

Let K be a convex cone in a normed linear space X and let Et:K → n(K),
Ft:K → n(X) for t ≥ 0. A family {Et : t ≥ 0} is called a sine family associated
with a family {Ft : t ≥ 0} if

Et+s(x) = Et−s(x) + 2Ft(Et(x)), 0 ≤ s ≤ t, x ∈ K,

while a family {Ft : t ≥ 0} is called a cosine family if

F0(x) = {x}, Ft+s(x) + Ft−s(x) = 2Ft(Fs(x)), 0 ≤ s ≤ t, x ∈ K

(here of course under assumption that values of Ft are in K).
In the talk a necessary and sufficient condition for a family given by some

series to be a regular cosine family is presented. Moreover, assumptions under
which a regular cosine and sine families can be expressed by series are given.

Judit Makó On Hermite-Hadamard type inequalities
(joint work with A. Házy)

In this talk, the connection between the functional inequalties

f
(x+ y

2

)
≤ f(x) + f(y)

2
+ αJ(x− y), x, y ∈ I

and∫
[0,1]

f(tx+ (1− t)y) dµ(t) ≤ λf(x) + (1− λ)f(y) + αH(x− y), x, y ∈ I

is investigated, where I is a real interval of R, f : I → R, αH , αJ :R→ R are even
functions, λ ∈ R and µ is a Borel probability measure on [0, 1].

Gyula Maksa Additive functions which differentiate elementary functions in
some sense

A real derivation is a function d:R→ R for which the functional equations

d(x+ y) = d(x) + d(y), x, y ∈ R (1)
and

d(xy) = xd(y) + yd(x), x, y ∈ R (2)

hold simultaneously. The solutions of (1) are called additive functions and, some-
what surprisingly, it is true that there is a non-zero additive function d that fulfils
(2), too. Let I ⊂ R be an interval of positive length and ϕ: I → R be the dif-
ferentiable function. We say that the additive function d:R → R differentiates ϕ
if

d(ϕ(x)) = ϕ′(x)d(x), x ∈ I.
In this talk, we present that an additive function which differentiates any of

a function from a rather rich list of so-called elementary functions, in the sense
above, is real derivation. Furthermore, we discuss the partially exceptional case
of power functions and open problems will also be formulated.
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Renata Malejki On stability of Volterra type integral equations in a complex
domain
(joint work with J. Brzdęk and Z. Leśniak)

We consider Volterra type integral equations of the first and the second order
on a simply connected region D ⊂ C. We prove some Hyers-Ulam stability results
using a fixed point theorem for a complete extended metric space of all analytic
function defined on D and a Volterra type operator defined on this space.

Tomasz Małolepszy Schröder equation and the existence of the blow-up solutions
of some class of Volterra integral equations

We show how the Schröder equation can be used to determine if the following
Volterra integral equation

u(t) =

t∫
0

k(t− s)g(u(s)) ds, t ≥ 0,

possesses a blow-up solution when g(0) = 0. We apply this approach to obtain the
necessary and sufficient condition for the existence of the blow-up solutions in the
following model of superdiffusion in the unbounded spatial domain of dimension
N , N = 1, 2, 3:

∂

∂t
T (x, t) =

N∑
n=1

∂µ

∂|xn|µ
T (x, t) + λD(x|0)g(T (0, t)), x ∈ RN , t > 0,

T (x, 0) = 0, x ∈ RN ,
lim
|x|→∞

T (x, t) = 0, t > 0,

where the operator ∂µ

∂|xn|µ , 1 < µ < 2, is the so-called Riesz fractional derivative
operator, the parameter of superdiffusion λ > 0 and the localization function
D(x|0) is defined as follows

D(x|0) =

{
1, x ∈ Ω,

0, x /∈ Ω,

where Ω = {x ∈ RN : −a < xn < a}, n = 1, 2, . . . , N , 0 < a� 1.

[1] T. Małolepszy, Nonlinear Volterra integral equations and the Schröder functional
equation, Nonlinear Anal. 74 (2011), 424–432.

[2] W.E. Olmstead, C.A. Roberts, Dimensional influence on blow-up in a superdiffusive
medium, SIAM J. Appl. Math. 70 (2010), 1678–1690.

Janusz Matkowski Continuity of means and uniqueness of invariant means

In general the meanM need not to be continuous. It is known that if Mi: I
p →

I for i = 1, . . . , p are continuous means and

max(M1x), . . . ,Mp(x))−min(M1(x), . . . ,Mp(x)) < max(x)−min(x),

for all x = (x1, . . . , xp) ∈ Ip such that min(x) < max(x), then the sequence of
iterates of the mean-type mapping M = (M1, . . . ,Mp) converges to a mean-type
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mapping K = (K, . . . ,K), where K: Ip → I is a continuous and M-invariant
mean, i.e. K ◦M = K; moreover, a continuous M-invariant mean is unique.

At this background it was an open and frequently asked question if there can
exists another (necessarily discontinuous) M-invariant mean.

We prove that the answer is “no”. We also show that every increasing and ho-
mogeneous mean is continuous. Moreover, we give new conditions on convergence
of the sequence of iterates of a mean-type mapping M to a unique M-invariant
mean-type mapping, where the continuity of the mean-type mapping is not as-
sumed.

Bartosz Micherda A new characterization of convex ϕ-functions with a param-
eter

Let ρ be the Orlicz-Musielak modular generated by a ϕ-function with a pa-
rameter Φ, i.e. the functional of the form

ρ(f) =

∫
Ω

Φ(t, |f(t)|) dµ(t),

and denote by LΦ the corresponding Orlicz-Musielak space.
Then, as in metric spaces, for D ⊂ LΦ we may define two operators: the

projection onto D

PD(f) =
{
g ∈ D : ρ(f − g) = inf

d∈D
ρ(f − d)

}
and the antiprojection onto D

P aD(f) =
{
g ∈ D : ρ(f − g) = sup

d∈D
ρ(f − d)

}
, where f ∈ LΦ.

In our talk, based on [2], we present a new theorem showing that, under some
additional assumptions on the function Φ, all projections onto latticially closed
subsets of LΦ are isotonic (and all antiprojections onto such sets are antiisotonic)
if and only if Φ is convex with respect to its second variable.

This gives the positive answer to the question presented as an open problem
in [1].

[1] B. Micherda, A characterization of convex ϕ-functions, Opuscula Math. 32 (2012),
169–176.

[2] B. Micherda, A new characterization of convex ϕ-functions with a parameter,
preprint.

Janusz Morawiec Around a problem of Nicole Brillouët-Belluot

Motivated by papers [1]–[5] we are interested in continuous bijections f : I → I
satisfying

f(x)f−1(x) = xα for x ∈ I,

where I ⊂ (0,+∞) is a nontrivial interval and α is a real number.
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[1] R. Anschuetz, H. Scherwood, When is a function’s inverse equal to its reciprocal?,
College Math. J. 27 (1997), 388–393.

[2] R. Cheng, A. Dasgupta, B.R. Ebanks, L.F. Kinch, L.M. Larson, R.B. McFadden,
When does f−1 = 1/f?, Amer. Math. Monthly 105 (1998), 704–716.

[3] R. Euler, J. Foran, On functions whose inverse is their reciprocal, Math. Mag. 54
(1981), 185–189.

[4] W. Jarczyk, J. Morawiec, Note on an equation occurring in a problem of Nicole
Brillouët-Belluot, Aequationes Math. 84 (2012), 227–233.

[5] J. Morawiec, On a problem of Nicole Brillouët-Belluot, Aequationes Math. 84 (2012),
219–225.

Kazimierz Nikodem Strongly convex set-valued maps
(joint work with H. Leiva, N. Merentes and J.L. Sánchez)

Let (X, ‖ · ‖) and (Y, ‖ · ‖) be real normed spaces, D be a convex subset of X
and B be the closed unit ball in Y . A set-valued map F :D → n(Y ) is said to be
strongly convex with modulus c > 0 if

tF (x1) + (1− t)F (x2) + ct(1− t)‖x1 − x2‖2B ⊂ F (tx1 + (1− t)x2),

for all x1, x2 ∈ D and t ∈ [0, 1].
F is strongly midconvex with modulus c > 0 if

1

2
F (x1) +

1

2
F (x2) +

c

4
‖x1 − x2‖2B ⊂ F

(x1 + x2

2

)
,

for all x1, x2 ∈ D.
Some properties of strongly convex (midconvex) set-valued maps are presented.

In particular, a Bernstein-Doetsch and Sierpiński-type theorems for strongly mid-
convex set-valued maps, as well as a Kuhn-type result are obtained. A represen-
tation of strongly convex set-valued maps in inner product spaces and a charac-
terization of product spaces involving this representation are given. Jensen and
Hermite-Hadamard-type inequalities are proved. Finally, a connection between
strongly convex set-valued maps and strongly convex sets is presented.

Agata Nowak On Taylor reminder mean

Let I ⊆ R be an open interval and n ∈ N be fixed. We consider a Taylor
reminder mean of degree n given by

M [f ]
n (x, y) =

 (f (n))−1
(
n!
f(y)−

∑n−1
k=0

f(k)(x)
k! (y − x)k

(y − x)n

)
, x 6= y

x, x = y.

We discuss comparability problem for this class of means.
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Andrzej Olbryś On some inequalities equivalent to the Wright convexity

Let D ⊂ X be an open and convex subset of a real linear topological space.
We say that a function f :D → R is convex in the Wright sense if

∀x,y∈D∀λ∈[0,1] f(λx+ (1− λ)y) + f((1− λ)x+ λy) ≤ f(x) + f(y). (1)

The aim of this talk is to give some inequalities which are equivalent to the in-
equality (1).

Zsolt Páles Comparison of the geometric mean with Gini means

For p, q ∈ R, the Gini mean Gp,q:
⋃∞
n=1Rn+ → R+ is defined by

Gp,q(x1, . . . , xn) :=


(
xp1+...+xpn
xq1+...+xqn

) 1
p−q

, if p 6= q,

exp
(
xp1 ln(x1)+...+xpn ln(xn)

xp1+...+xpn

)
, if p = q.

The general comparison problem of Gini means can be formulated in the following
way: Given a nonempty subset N ⊆ N, find necessary and sufficient conditions on
the parameters p, q, r, s ∈ R such that the comparison inequality

Gp,q(x1, . . . , xn) ≤ Gr,s(x1, . . . , xn), n ∈ N, x1, . . . , xn ∈ R+

is satisfied.
The solution to this problem is known if N = N (see [1]) or if N = {2} (see

[2]).
In the main results, we give a complete answer to the above comparison problem

for any subset N if either (p, q) = (0, 0) or (r, s) = (0, 0), i.e. if either Gp,q or Gr,s
is the geometric mean.

[1] Z. Daróczy, L. Losonczi, Über den Vergleich von Mittelwerten, Publ. Math. Debrecen
17 (1970), 289–297 (1971).

[2] Zs. Páles, Inequalities for sums of powers, J. Math. Anal. Appl. 131 (1988), 265–270.

Boris Paneah Asymptotic behavior of solutions to linear multi-dimensional func-
tional equations depending on a small parameter and inverse problems

The talk is devoted to the linear multi-dimensional functional operator

(PF )(x) =

N∑
j=1

cj(x)(F ◦ aj)(x), x ∈ D ⊂ Rn.

Here F ∈ C(I) with I = (−1, 1), and coefficients cj and arguments aj of P are
sufficiently smooth functions D → R and D → I, respectively; D is a domain with
a compact closure.

We will discuss the asymptotic behavior of solutions to equation PF = hε
depending on a small parameter ε→ 0 under condition hε = O(ε). This problem
has been formulated by Ulam in his book “A collection of mathematical problems”,
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Los Alamos, 1941, in the case when hε(x) = O(ε) for all x ∈ D, and in this form
it generated an infinite stream of publications.

At the very beginning of this century it was established that in the original
Ulam form the above problem is not well posed (in the Hadamard sense), as the
input information |PF (x)| < ε for any x ∈ D is redundant. For this reason
the possibility to apply the results obtained have never been studied seriously.
It turned out that in all considered cases (described in available to the author
literature) the asymptotic behavior of a function F is determined completely by
the validity of the inequality |F (x)| < ε at the points x of some one-dimensional
submanifold Γ (subject to determining), but not everywhere in D. The wide class
of such operators P is considered in this talk, and, respectively, the asymptotic
behavior of the solutions to equations Pu = Hε. Our method make it possible to
investigate in details a new (I hope) extremely interesting problem very important
in different applications - inverse problem for the latter equation. This is a problem
of reconstructing the form of operator P, by using the asymptotic behavior of the
solution to equation PF = Hε, ε→ 0.

Paweł Pasteczka Arrow-Pratt index is instrumental in estimating differences
among quasi-arithmetic means

Quasi-arithmetic (QA) mean is defined for any continuous strictly monotone
function f :U → R. We assume U to be open, bounded interval. When a =
(a1, . . . , an) is a sequence of points in U and w = (w1, . . . , wn) is a sequence of
weights (wi > 0, w1+. . .+wn = 1), then the meanMf (a,w) := f−1(

∑n
i=1 wif(ai))

directly generalizing the way power means have been defined.
This family of means was shown, by Kolmogorov in 1930, to be very vast and

ubiquitous. In fact, he proved that if a mean satisfies a tiny list of very natural
axioms, then it has to be a QA mean for a certain function f .

Later, Mikusiński, in the first postwar issue of Banach and Steinhaus’ renowned
Studia Mathematica, put forward a very powerful tool in the theory of QA means.
Namely, upon assuming f, g ∈ C2(U) strictly monotone with nonvanishing first
derivative

Mf ≥Mg, with equality only when the vector a is constant
iff

f ′′

f ′ >
g′′

g′ on a dense subset of U .

This theorem makes “Mikusiński’s mapping” f 7→ f ′′

f ′ most interesting to us
(nowadays it is better known as the Arrow–Pratt measure of risk aversion or
measure of absolute risk aversion).

Later, in 1960’s, Cargo and Shisha obtained some majorizations of the differ-
ence ‖Mf −Mg‖∞ uniform with respect to a and w.

We are going, under the assumption of f and g being twice differentiable with
the first derivative bounded away from zero, to word Cargo and Shisha’s results
in terms of Mikusiński’s mapping. Then we relate the convergence of QA means
in L∞ norm to the convergence of the images of the underlying functions under
a Mikusiński’s mapping in L1 norm.
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Magdalena Piszczek On selections of set-valued maps

We present some applications of the result corresponding to the existence of
a unique selection of a set-valued function satisfying inclusions in a single variable
to the inclusions in several variables, especially the general linear inclusions or
quadratic inclusions.

Wolfgang Prager On a functional equation of O.G. Bokov

Seizing a suggestion of Nicole Brillouët-Belluot (personal communication and
Problem 4 posed at the 13th ICFEI), we consider the functional equation

f(x, y)f(x+ y, z) + f(y, z)f(y + z, x) + f(z, x)f(z + x, y) = 0,

introduced by O.G. Bokov in [1]. We present some solutions aside from those in
C[[x, y]] given by A.V. Yagzhev in [2].

[1] O.G. Bokov, A model of Lie fields and multiple-time retarded Green’s functions of an
electromagnetic field in dielectric media, Nauchn. Tr. Novosib. Gos. Pedagog. Inst. 86
(1973), 3–9.

[2] A.V. Yagzhev, A functional equation of theoretical physics, Funct. Anal. Appl. 16
(1982), 38–44.

Barbara Przebieracz Is dynamical system stable?
(joint work with Z. Moszner)

Let I ⊂ R be an interval. A function F :R×I → I is called a dynamical system
if it satisfies the translation equation

F (s, F (t, x)) = F (s+ t, x), s, t ∈ R, x ∈ I

and the identity condition

F (0, x) = x, x ∈ I.

Dynamical systems can be defined equivalently by other systems of equations.
We consider stability in the sense of Hyers-Ulam of these systems, and of the
translation equation in some classes of functions (in which the solution of the
translation equation is a dynamical system).

Teresa Rajba A generalization of multiple Wright-convex functions via random-
ization

We define and study classes Wn(Θ,Mj) of non-negative real functions associ-
ated with the classesMj of j-times monotone functions, where j = 0, 1, 2, . . . ,∞
(see [2]). These classes are generalizations of n-Wright-convex functions introduced
in [1].

For a fixed number h ∈ R the difference operator ∆h, acting on a real function
F :R → R, is defined by ∆hF (x) = F (x) − F (x − h) (x ∈ R). The superposition
of several difference operators will be denoted shortly ∆h1h2...hn (h1, h2, . . . , hn ∈
R, n ∈ N). The higher order convexity can be described in terms of difference
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operators ∆h1h2...hn+1
: a function F is Wright-convex of order n (or n-Wright-

convex ) if ∆h1h2...hn+1
F (x) > 0 for all h1, h2, . . . , hn+1 > 0.

Let Θ be a real valued random variable with the distribution concentrated on
[0,∞). Replacing in ∆h1h2...hn the real numbers h1, . . . , hn (n ∈ N) by independent
random variables Θ1, . . . , Θn with the same distribution as the random variable
Θ, and taking expectation, we define the randomized difference operator Φn =
ΦnΘ1...Θn

by

ΦnF (x) = ΦnΘ1...ΘnF (x) = E∆Θ1...ΘnF (x), x ∈ R.

Given a function F ∈Mj (j = 0, 1, 2, . . . ,∞), we say that F is n-times Θ-Wright-
convex with respect to Mj , or that F ∈ Wn(Θ,Mj), if

ΦkΘ1...Θk
F ∈Mj

for all k = 1, 2, . . . , n.
We prove that each function from Wn(Θ,Mj) can be represented as a series

of functions generated by a function fromMj . We give an integral representation
of these functions in the case when the random variable Θ has an exponential
or a discrete arithmetic distribution. As a consequence we show, that for an
arithmetic discrete Θ,

∞⋂
n=1

Wn(Θ,Mj) )M∞

and that when the Θ is exponential we have equality in the above formula.

[1] A. Gilányi, Zs. Páles, On convex functions of higher order, Math. Inequal. Appl. 11
(2008), 271–282.

[2] T. Rajba, A generalization of multiple Wright–convex functions via randomization,
J. Math. Anal. Appl. 388 (2012), 548–565.

Maciej Sablik Additivity of insurance premium

Let u denote a utility function, X be a random loss, H(X) - a premium paid
in case of loss, and, finally, let w denote the initial wealth of insurer. Then the
generalized zero utility principle under the rank-dependent utility model may be
expressed as the following equation

u(w) = Eg(u(w +H(X)−X)), (1)

where g: [0, 1] → [0, 1] is a so called probability distortion function, and Eg de-
notes the Choquet integral. We ask for utility and probability distortion functions
satisfying (1) if additionally the additivity of H for independent risks is assumed.

[1] S. Heilpern, A rank–dependent generalization of zero utility principle, Insurance Math.
Econom. 33 (2003), 67–73.

[2] D. Kahneman, A. Tversky, Prospect theory: an analysis of decision under risk, Econo-
metrica 47 (1979), 263–291.

[3] M. Kaluszka, M. Krzeszowiec, Pricing insurance contracts under Cumulative Prospect
Theory, Insurance Math. Econom. 50 (2012), 159–166.

[4] A. Tversky, D. Kahneman, Advances in prospect theory: cumulative representation of
uncertainty, J. of Risk and Uncertainty 5 (1992), 297–323.
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Jens Schwaiger Remarks on the history of some stability results

Several reviews (Zbl 1256.39022, Zbl 1256.39019, Zbl 1245.39018,
Zbl 1219.39020, Zbl 1219.39011) in Zentralblatt MATH by Gian Luigi Forti con-
tain a remark saying that a generalization of Rassias’ theorem due to Găvruţă
is a special case of a result from 1980 by him. A review in the same journal (Zbl
1232.39026) by Găvruţă contains a remark saying that Forti’s remark clearly is
not true.

The results of both authors are discussed and compared. In doing so it is shown
that in the speakers opinion Forti is right.

Ekaterina Shulman On almost subadditive set-functions on groups

Let G be a group and Ω be an arbitrary set. A map F :G → 2Ω is called
subadditive if F (gh) ⊂ F (g)∪F (h) for all g, h ∈ G. Some stability type problems
for subadditive functions will be discussed.

Andrzej Smajdor Permutability of set-valued cosine families
(joint work with W. Smajdor)

Let K be a closed convex cone with the nonempty interior in a real Banach
space.

A one-parameter family {Ft : t ≥ 0} of multifunctions Ft:K → cc(K) is said
to be cosine if

F0 = Id
and

Ft+s + Ft−s = 2Ft ◦ Fs,
whenever 0 ≤ s ≤ t.

A cosine family {Ft : t ≥ 0} is regular if

lim
t→0+

d(Ft(x), {x}) = 0

for every x ∈ K.

Theorem
If {Ft : t ≥ 0} is a regular cosine family of continuous additive set-valued functions
Ft:K → cc(K) such that x ∈ Ft(x) for t ≥ 0 and x ∈ K, then

Ft ◦ Fs = Fs ◦ Ft

for s, t ≥ 0.

M. Sova in 1966 proved that every regular cosine family of single-valued con-
tinuous linear functions on a Banach space is permutable. The goal of this paper
is to prove the same for regular cosine families of continuous additive set-valued
functions.

Wei Song The first order iteration problem for iterative equations

By mean of fixed point theorems, many scholars have discussed the general
iterative equation H(f(x), f2(x), . . . , fn(x)) = F (x), n ≥ 2. Because of difficulties
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in applying fixed point theorems, most of known results on solutions demand that
the first order iteration of the unknown function f must appear in these equations.
So we name this phenomenon the first order iterative problem. In the present
paper we will discuss C1 solutions for the general iterative equations without the
assumption that the first order iterations of an unknown function f must appear.

Peter Stadler Curve shortening by short rulers

We look at homomorphisms h: (R,+)→ (G, ◦) on a Lie group G:

h(s+ t) = h(s) ◦ h(t), h(0) = e and h(1) = g.

The restriction of h to the interval [0, 1] is a geodesic, i.e. a locally shortest line.
The problem is to construct long geodesics. But any curve connecting two

points can be shortened by using a ruler which allows to construct short geodesics.

In normed vector spaces, the curve converges to the straight line if it’s shortened
iterative. This result can be generalized to planes which are curved in one direction.

Henrik Stetkær An exponential-cosine functional equation

Let (G,+) be an abelian group and let µ:G → C. The proposition below
extends results by Parnami, Singh and Vasudeva [1] to the equation

g(x+ y) + µ(y)g(x− y) = 2g(x)g(y), x, y ∈ G, (1)

in which g:G→ C is the unknown function. G is a Banach space in [1].

Proposition
Let g be a solution of (1) such that g(0) = 1.

1. If G = 2G, then µ is multiplicative from G to C∗.

2. If µ:G→ C∗ is multiplicative, then g has the form

g(x) =
χ(x) + µ(x)χ(−x)

2
for all x ∈ G

for some multiplicative map χ:G→ C∗.

For more information see Chapter 9 of the forthcoming book [2].

[1] J.C. Parnami, H. Singh, H. L. Vasudeva, On an exponential-cosine functional equa-
tion, Period. Math. Hungar. 19 (1988), 287–297.

[2] H. Stetkær, Functional Equations on Groups, World Scientific Publishing Co. 2013.
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Stevo Stević Behaviour at infinity of solutions of some linear functional and
functional-difference equations

We present some results on the linear functional equation

x(φ(t)) = α(t)x(t) + f(t), t ∈ R (or t ∈ C),

as well as on the linear functional-difference equation

x(φ(n)) = α(n)x(n) + f(n), n ∈ Z,

under some conditions posed on functions α, φ and f .
Some applications of these results on the behavior of bounded at infinity solu-

tions of the functional equation

x(φ[k](t)) =

k−1∑
j=0

αj(t)x(φ[j](t)) + f(t), t ∈ R (or t ∈ C),

as well as of the functional-difference equation

x(φ[k](n)) =

k−1∑
j=0

αj(n)x(φ[j](n)) + f(n), n ∈ Z,

under some conditions posed on functions αj , j = 0, 1, . . . , k− 1, φ and f , are also
presented.

Tomasz Szostok Functional equations connected with quadrature rules of Hermite
and Birkhoff

In classical quadrature rules of numerical analysis the definite integral of a
given function is approximated by a weighted sum of values of f . As it is well
known for polynomials of certain degree this approximation gives exact results.
Thus the following equation

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + . . .+ anf(αnx+ βny)]

becomes interesting. In the current talk we consider a functional equation con-
nected with quadrature rules of Hermite and Birkhoff. In the Hermite quadrature
rule the integral of f is approximated with use of values of f (taken from the
interval of integration) and values of f ′ at the endpoints. Therefore we get the
equation

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + . . .+ anf(αnx+ βny)]

+ (y − x)2[g(y)− g(x)].
(1)

Similarly, in Birkhoff rule values of f ′′ are used which yields the equation

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + . . .+ anf(αnx+ βny)]

+ (y − x)3[b1g(γ1x+ δ1y) + . . .+ bkg(γkx+ δky)].
(2)
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We obtain solutions of equations (1) and (2) (under some assumptions on the
coefficients ocurring in these equations).

Patricia Hilario Tacuri Existence and uniqueness of solution of measure neutral
functional differential equations

We introduce the equations called neutral measure functional differential equa-
tions and we prove that these equations can be also related with a class of abstract
generalized ordinary differential equations (GODEs). Then, using this correspon-
dence, we are able to prove existence and uniqueness of solutions and continuous
dependence results for neutral measure functional differential equations.

Jörg Tomaschek On the characterization of generalized Dhombres functional
equations
(joint work with L. Reich)

The generalized Dhombres functional equation in the complex domain is given
by

f(zf(z)) = ϕ(f(z)),

where f is an unknown function and ϕ is a known one.
At ICFEI 14th a talk on the solvability of this equation for non constant formal

or local analytic solutions f , where f(0) = w0 ∈ C \ {0}, was presented. In this
talk we continue these investigations for the case where f(∞) = w0 ∈ C \ {0} or
f(∞) =∞ and f(z0) = 1 for z0 6= 0.

[1] L. Reich, J. Smítal, M. Štefánková, Local analytic solutions of the generalized Dhom-
bres functional equations I, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II
214 (2005), 3–25.

[2] L. Reich, J. Smítal, M. Štefánková, Local analytic solutions of the generalized Dhom-
bres functional equations II, J. Math. Anal. Appl. 355 (2009), 821–829.

[3] J. Tomaschek, Contributions to the local theory of generalized Dhombres functional
equations in the complex domain, Grazer. Math. Ber. 358, p. 72+iv (2011).

[4] J. Tomaschek, L. Reich, Local solutions of the generalized Dhombres functional equa-
tion in a neighbourhood of infinity, submitted.

Peter Volkmann On stability of max{f((xy)y), f(x)} = f(xy) + f(y)
(joint work with R. Badora and B. Przebieracz)

Let S be a groupoid having a left unit, and suppose for x, y ∈ S there always
exists k ∈ {1, 2, 3, . . .} such that

(xy)2k = x2ky2k , ((xy)y)2k = (x2ky2k)y2k , (1)

the powers x2k being recursively defined. We consider the functional equation
given in the title for real-valued functions f defined on S, and we show its stability
in the sense of Pólya-Szegő-Hyers-Ulam. The special case (xy)2 = x2y2 of (1) had
been treated in 2011 by A. Gilányi, Kaori Nagatou and P. Volkmann.
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Jacek Wesołowski Tail asymptotics for random perpetuities

We will consider the random perpetuity equation

R
d
= RM +Q, (1)

where R,M,Q are real random variables, R and the pair (M,Q) are independent.
Here d

= denotes equation in law. Under suitable conditions on the joint distribution
of (M,Q) this equation (1) has a unique (in distribution) probabilistic solution,
being the law of the random variable R. Note that (1) can be rewritten as∫

R

f(u) ν(du) =

∫
R2

∫
R

f(au+ b) ν(du) µ(da, db),

for any function f which is continuous and has a compact support, where µ de-
notes the distribution of (M,Q) (assumed to be known) and ν is the unknown
distribution of R.

Investigation of tail behaviour of the measure ν (which in, so called, critical
case may not even be probabilistic - see e.g. Buraczewski (2007)) goes back to
the seminal paper of Kesten (1973). Thin tails were considered e.g. in Goldie and
Grübel (1996). The results I will present are concerned with even thinner tails.

[1] D. Buraczewski, On invariant measures of stochastic recursions in a critical case,
Ann. Appl. Probab. 17 (2007), 1245–1272.

[2] C.M. Goldie, R. Grübel, Perpetuities with thin tails, Adv. Appl. Probab. 28 (1996),
463–480.

[3] P. Hitczenko, J. Wesołowski, Perpetuities with thin tails, revisited, Ann. Appl. Probab.
19 (2009), 2080–2101.

[4] H. Kesten, Random difference equations and renewal theory for products of random
matrices, Acta Math. 131 (1973), 207—248.

Alfred Witkowski Invariance equation for means of power growth

A symmetric, homogeneous mean M is called a mean of power growth if there
exists a number m called order of M such that the limit limx→0+M(x, 1)/xm is
positive.

We show that if, under some weak assumptions, the invariance equation
M(N,K) = M has a solution in the class of means of power growth, then the
orders of M,N,K must be equal.

As an application we conclude that the invariance equation has only the trivial
solution M = N = K in the class of Heinz means.

Paweł Wójcik Linear operators preserving orthogonality

Let H, K be Hilbert spaces. For ε ∈ [0, 1), we define approximate orthogonality
of vectors x and y

x⊥ε y :⇐⇒ |〈x|y〉| 6 ε‖x‖·‖y‖.
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We say that f ∈ L(H;K) is approximately orthogonality preserving iff

∀x,y∈H x⊥δ y =⇒ fx⊥ε fy

with some δ, ε ∈ [0, 1). In particular, if the linear operator f satisfies this state-
ment with δ = ε, then f has to be a similarity, i.e. a scalar multiple of an isometry.
We will discuss the problem, whether each approximately orthogonality preserv-
ing operator f ∈ L(H;K) can be approximated by an orthogonality preserving
operator h ∈ L(H;K), i.e.

∀x,y∈H x⊥y =⇒ hx⊥hy.

Marek Cezary Zdun On commuting continuous mappings nonembeddable in
iteration semigroups
(joint work with D. Krassowska)

Let f, g: I = (0, b] → I be commuting continuous injections. We consider the
case when there is no semigroup in which f and g can be embedded. We explain
the reasons of this phenomenon and modify the definition of an iteration semigroup
introducing a new notion a refinement iteration semigroup that is a family {f t: I →
I, t ∈ T} for which f t ◦ fs = f t+s, t, s ∈ T , such that f = f1 and g = fs for an
s ∈ T , where T  R+ is a dense in R+ additive semigroup. We determine a wide
class of semigroups T admitting the embeddability of f and g.

Problems and Remarks

1. Problem.
Let X, Y be the normed spaces, U be a nonempty subset of X. We say that

a function f :U → Y is Jensen on U if it is satisfies

f
(x+ y

2

)
=
f(x) + f(y)

2
, x, y ∈ U, x+ y

2
∈ U. (1)

We present some hyperstability result for the equation (1). Namely, for some
natural particular forms of ϕ (and under some additional assumptions on U),
the conditional functional equation (1) is ϕ-hyperstable in the class of functions
f :U → Y , i.e. each f :U → Y satisfying the inequality∥∥∥f(x+ y

2

)
− f(x) + f(y)

2

∥∥∥ ≤ ϕ(x, y), x, y ∈ U, x+ y

2
∈ U,

must be Jensen on U . The following result was proved in the paper [1].

Theorem
Let U be nonempty subset of X \ {0} and f :U → Y satisfies∥∥∥f(x+ y

2

)
− f(x) + f(y)

2

∥∥∥ ≤ c‖x‖p‖y‖q, x, y ∈ U, x+ y

2
∈ U, (2)

where c ≥ 0, p, q ∈ R. Assume that the set U and the numbers p, q satisfy one of
the following conditions:
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(a) p+ q < 0, and there exists a positive integer n0 with

nx ∈ U, x ∈ U, n ∈ N, n ≥ n0,

(b) p+ q > 1, and there exists a positive integer n0 with

− 1

n
x,

1

2

(
1− 1

n

)
x ∈ U, x ∈ U, n ∈ N, n ≥ n0,

(c) 0 < p+ q < 1, there exists a positive integer n0 with

1

n
x,
(

2− 1

n

)
x ∈ U, x ∈ U, n ∈ N, n ≥ n0.

Then f is Jensen on U .

It is also known that the additional assumptions on U in above theorem are
necessary and we do not have the hyperstability of the Jensen equation on U if
p+ q = 1.

For the case p + q = 0, the method used in the proof of the above Theorem
can not be applied, thus this is still an open problem. However, if p = q = 0
(ϕ(x, y) = c), the case was investigated, (see for example [2, 3]) and then the
equation (1) is not ϕ-hyperstable in the class of functions f :U → Y .

[1] A. Bahyrycz, M. Piszczek, Hyperstability of the Jensen functional equation, Acta
Mathematica Hungarica, accepted for publication.

[2] S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen’s equation, Proc. Amer. Math.
Soc., 126 (1998), 3137–3143.

[3] S.-M. Jung, M.S. Moslehian, P.K. Sahoo, Stability of a generalized Jensen equation
on restricted domains, J. Math. Ineq., 4 (2010), 191–206.

Anna Bahyrycz

2. Problem.
Let f be a complex-valued function on the semigroup S. If f satisfies

f(xyz) + f(xzy) + f(yzx) + f(zxy) + f(zyx)

= 3f(x)[f(yz) + f(zy)] + 3f(y)[f(zx) + f(xz)]

+ 3f(z)[f(xy) + f(yx)]− 12f(x)f(y)f(z)

for all x, y, z in S must be CENTRAL? That is must f satisfy

f(xy) = f(yx)

for all x, y in S?
Thomas M.K. Davison
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3. Remark.
If I ⊂ R is an interval and f, g: I → R are continuous increasing functions such

that f + g is strictly increasing, then A[f,g]: I2 → I defined by

A[f,g](x, y) := (f + g)−1(f(x) + g(y)), x, y ∈ I,

is a mean generalizing the weighted quasi-arithmetic mean ([4] cf. also [2], [3]).
The following result contains an invariance formula for this type of means.

Theorem
Let f, g, h: I → R be continuous functions. Suppose that f , g are strictly increasing
and h, f − h, g − h are increasing. Then:

(i) the mean A[f,g] is invariant with respect to the mean-type mapping
(A[f−h,h], A[h,g−h]): I2 → I2 ([1]), that is

A[f,g] ◦ (A[f−h,h], A[h,g−h]);

(ii) the sequence of iterates ((A[f−h,h], A[h,g−h])n)n∈N converges in I2,

lim
n→∞

(A[f−h,h], A[h,g−h])n = (A[f,g], A[f,g]),

(and the limit does not depend on the function h);

(iii) a function Φ: I2 → R, being continuous on the diagonal {(x, x) : x ∈ I},
satisfies the functional equation

Φ(A[f−h,h](x, y), A[h,g−h](x, y)) = Φ(x, y), x, y ∈ I,

if, and only if, there is a continuous function ϕ: I → R such that

Φ(x, y) = ϕ(A[f,g](x, y)), x, y ∈ I.

If k ∈ N, k ≥ 2, and f1, . . . , fk: I → R are continuous, increasing functions
such that f1 + . . .+ fk is strictly increasing, then A[f1,...,fk]: Ik → I,

A[f1,...,fk](x1, . . . , xk) := (f1+. . .+fk)−1(f1(x1)+. . .+fk(xk)), x1, . . . , xk ∈ I,

generalizes the k-variable weighted quasi-arithmetic mean ([4]).
The above result can be extended to the class of k-variable means.

[1] J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes
Math. 57 (1999), 87–107.

[2] J. Matkowski, Remark 1 (at the Second Debrecen-Katowice Winter Seminar on Func-
tional Equations and Inequalities Hajdúszoboszló) Ann. Math. Sileasianae 16 (2002),
p.93.

[3] J. Matkowski, P. Volkmann, A functional equation with two unknown functions,
http://www.uni-karlsruhe.de/~semlv, Seminar LV, No. 30, 6 pp., 28.04.2008.

[4] J. Matkowski, Generalized weighted quasi-arithmetic means, Aequationes Math. 79
(2010), 203–212.

Janusz Matkowski
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4. Problem.
Given an open interval I, functions f : I → R of the form f = g − h, where

g, h: I → R are nondecreasing functions, are characterized by the property that
they are of bounded variation on any compact subinterval of I, that is, for any
[a, b] ⊆ I,

V[a,b]f := sup

{ n∑
i=1

|f(ti)− f(ti−1)| : (t0, t1, . . . , tn) ∈ P[a,b]

}
is finite. Here P[a,b] denotes the set of partitions of the interval [a, b] defined by

P[a,b] :=

∞⋃
n=1

{(t0, t1, . . . , tn) : a = t0 < t1 < . . . < tn = b}.

This remarkable result of Jordan was extended to convex differences by Frigyes
Riesz. He proved that f : I → R is of the form f = g − h, where g, h: I → R
are convex functions if and only if f has bounded second-order variation on any
compact subinterval of I, that is, for any [a, b] ⊆ I,

V 2
[a,b]f := sup

{ n−1∑
i=1

∣∣∣∣f(ti)− f(ti−1)

ti − ti−1
− f(ti+1)− f(ti)

ti+1 − ti

∣∣∣∣ : (t0, t1, . . . , tn) ∈ P[a,b]

}
.

Now consider the problem of characterizing Jensen convex differences, i.e. func-
tions of the form f = g − h, where g, h: I → R are Jensen convex functions. For
these functions, V 2

[a,b]f is not finite in general. However, one can verify that if f is
a Jensen convex difference, then the following second-order Q-variation is finite:

V 2,Q
[a,b]f := sup

{ n−1∑
i=1

∣∣∣∣f(ti)− f(ti−1)

ti − ti−1
− f(ti+1)− f(ti)

ti+1 − ti

∣∣∣∣ : (t0, t1, . . . , tn) ∈ PQ
[a,b]

}
,

where PQ
[a,b] denotes the set of Q-partitions of the interval [a, b] defined by

PQ
[a,b] :=

{
(t0, t1, . . . , tn) ∈ P[a,b] :

ti − a
b− a

∈ Q, (i = 1, . . . , n− 1)

}
.

The open problem is to show the reversed implication, that is, the finiteness of
V 2,Q

[a,b]f for every [a, b] ⊆ I implies that f is of the form f = g−h, where g, h: I → R
are Jensen convex functions.

Zsolt Páles

5. Problem.
Given an open interval I and a strictly increasing continuous function f , the

quasi-arithmetic mean Mf is defined by

Mf (x1, . . . , xn) := f−1
(x1 + . . .+ xn

n

)
, n ∈ N, x1, . . . , xn ∈ I.



[122] Report of Meeting

For a twice differentiable function f with a nonvanishing first derivative, the
Arrow–Pratt index of the mean Mf is defined as Af := f ′′/f ′. The distance
of two quasi-arithmetic means Mf and Mg was defined by Paweł Pasteczka in his
talk by

ρ(Mf ,Mg) = sup{|Mf (x1, . . . , xn)−Mg(x1, . . . , xn)| : n ∈ N, x1, . . . , xn ∈ I}.

Pasteczka gave an upper estimate on this distance using the Arrow–Pratt index
of Mf and Mg provided that f and g are twice differentiable functions with a
nonvanishing first derivatives.

One can be interested in an upper estimate for ρ(Mf ,Mg) which does not
involve the second order derivatives of f and g. A three variable function which is
naturally connected to the quasi-arithmetic mean Mf is the function µf given by

µf (x, y, u) :=
f(u)− f(x)

f(y)− f(x)
, x ≤ u ≤ y, x < y, x, y ∈ I.

Using this function, one can, for instance, show that

(a) Mf ≤Mg if and only if µf ≤ µg;

(b) A sequence Mfn converges pointwise to Mf if and only if µfn converges
pointwise to µf .

The open problem is to establish a formula or an upper estimate for the distance
ρ(Mf ,Mg) in terms of µf and µg.

Zsolt Páles

6. Problem.
The talk is devoted to the linear multi-dimensional functional operator

(PF )(x) =

N∑
j=1

cj(x)(F ◦ aj)(x), x ∈ D ⊂ Rn.

Here F ∈ C(I) with I = {t | −1 ≤ t ≤ 1}, and coefficients cj and arguments
aj of P are sufficiently smooth functions D → R and D → I, respectively; D is
a domain with a compact closure.

We will discuss the asymptotic behavior of solutions to equation PF = hε
depending on a small parameter ε→ 0 under condition hε = O(ε). This problem
has been formulated by Ulam in his book “A collection of mathematical problem”,
Los Alamos, 1941, in the case when hε(x) = O(ε) for all x ∈ D.

At the very beginning of this century it was established that in the original
Ulam form the above problem is not well posed (in the Hadamard sense), as the
input information (|PF (x)| < ε for any x ∈ D) is redundant. It turned out that
in all considered cases the asymptotic behavior of a function F is determined
completely by the validity of the latter inequality only at the points x of some
one-dimensional submanifold Γ ⊂ D (subject to determining), but not everywhere
in D.
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Turn out to the examples of functional operators.

1. The Cauchy type functional operators. The functional operator

(CF )(x) = F (a(x))−
N∑
j=1

F ◦ aj(x), x ∈ D ⊂ Rn, (1)

with

a =

N∑
j=1

aj everywhere in D. (2)

has never been studied with the asymptotic point of view with the exception of,
probably, linear functions a(x), aj(x). If (2) holds only at points x of a curve
Γ ⊂ D, then the operator C is called weak Cauchy type operator (along Γ ).

Proposition 1
Let C be a weak Cauchy operator (1) along Γ ⊂ D. Then there is a constant c
(depending on Γ) such that any solution F of the equation C(F ) = H with

|HΓ|〈r〉 < ε

satisfies the condition
F (t) = λt+ cε

for some real λ.

2. Quasiquadratic functional operators. Turn now to a little studied quasi-
quadratic operators, for example,

Q(F ) := F (x1 + x2) + F (x1 − x2)− c1F (x1)− c2F (x2),

in D = {x | |x1 ± x2| 6 1}, c1, c2 > 0.
Take a curve Γ = {x | x1 = t, x2 = t+ 1; −1 6 t 6 0}.

Proposition 2
1◦. If c1 + c2 6= 2k for any integer k, k ≥ 2, then F = 0 is the unique solution of

the equation QΓF = 0 in the space Cm, m = dlog2(c1 + c2)e.

2◦. If c1 + c2 = 2m and F ∈ Cm, QΓF = 0, then F =
∑m
j=0 ajt

j with a =
(a0, a1, . . . , am) a vector from the subspace ker Λm.

But if |QΓF |r < ε for all arbitrary small ε > 0, then F (t) =
∑m
j=0 ajt

j +O(ε)
0 6 t 6 1.

As to Λm, it is the matrix of the operator QΓ in the space of polynomials with
the basis 1, t, . . . , tm.

Boris Paneah
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7. Problem.
Let Mf denotes a quasi-arithmetic mean generated by a function f : I → R,

I – an open interval. Let A(f) := f ′′/f ′ and (fn)n∈N be a family of functions
fn ∈ C2(I), f ′n 6= 0 satisfying

A(f1)(x) ≤ A(f2)(x) ≤ . . . for all x ∈ I.

One can ask how to express the property

Mfn → max pointwise (1)

in terms of operator A. In [1] it was proved that

(1) implies A(fn)→∞ on some dense subset of I, (2)

A(fn)→∞ on the whole interval I implies (1). (3)

On 15th ICFEI it was announced that the implication (3) might be strength-
ened to

A(fn)→∞ a.e. on I implies (1). (4)

There appeared a natural question. How to fulfilled a gap between conditions
(2) and (4)? Namely, how to express a necessary and sufficient condition of (1) in
terms of operator A?

Remark 1
Upon replacing ∞, ≤ and max by −∞, ≥ and min respectively one gets a dual,
and equivalent, problem.

Remark 2
This problem is closely related to the one presented in [1, p.207].

[1] P. Pasteczka, When is a Family of Generalized Means a Scale?, Real Anal. Exchange,
38 (2013), 193–210.

Paweł Pasteczka

8. Problem.
We present some stability and hyperstability results for the Drygas equation

on restricted domain. Let X be a nonempty subset of a normed space and Y be
a normed space. We say that a function f :X → Y satisfies the Drygas functional
equation on X if

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y), x, y ∈ X, x+ y, x− y ∈ X.

Theorem
Let X be a nonempty subset of a normed space, Y be a Banach space, c ≥ 0 and
a function f :X → Y satisfy

‖f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y)‖ ≤ c(‖x‖p + ‖y‖p)

for all x, y ∈ X such that x+ y, x− y ∈ X.
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1) If p > 2, X is such that 0,−x, x2 ∈ X for all x ∈ X, then there exists a
unique function g:X → Y satisfying the Drygas equation on X such that

‖f(x)− g(x)‖ ≤ 2c

2p − 4
‖x‖p, x ∈ X.

2) If 0 < p < 1, X is such that 0,−x, 2x ∈ X for all x ∈ X, then there exists a
unique function g:X → Y satisfying the Drygas equation on X such that

‖f(x)− g(x)‖ ≤ 2c

2− 2p
‖x‖p, x ∈ X.

3) If p = 0, X is such that 0,−x, 2x, 3x ∈ X for all x ∈ X, then there exists a
function g:X → Y satisfying the Drygas equation on X such that

‖f(x)− g(x)‖ ≤ c, x ∈ X.

4) If p < 0, X is such that 0 /∈ X and there exists n0 ∈ N with nx ∈ X for
x ∈ X, n ∈ N, n ≥ n0, then f satisfies the Drygas equation on X.

The open problem is: what happened if p ∈ [1, 2]?
Magdalena Piszczek

9. Remark.
The following functional equation is connected with quadrature rules of nu-

merical integration

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + . . .+ anf(αnx+ βny)]. (1)

In [1] it was (under some assumptions) proved that if f, F :R→ R satisfy (1) then
F must be continuous. This means that the (possibly) discontinuous part of f
vanishes at the right hand side and, consequently, the expression

a1f(α1x+ β1y) + . . .+ anf(αnx+ βny)

is continuous.
Recently, more general equations stemming from numerical analysis such as

g(αx+ βy)(y − x)k = a1f(α1x+ β1y) + . . .+ anf(αnx+ βny),

F (y)−F (x) = (y−x)[a1f(α1x+β1y)+. . .+anf(αnx+βny)]+(y−x)2[g(y)−g(x)]

or

F (y)− F (x)

= (y − x) [a1f(x) + b1f(α1x+ β1y) + . . .+ bnf(αnx+ βny) + a1f(y)]

+ (y − x)3[c1g(α1x+ β1y) + . . .+ cng(αnx+ βny)],

were considered in [3]. A natural question arises whether the sums

a1f(α1x+ β1y) + . . .+ anf(αnx+ βny),
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a1f(x) + b1f(α1x+ β1y) + . . .+ bnf(αnx+ βny) + a1f(y)

and
c1g(α1x+ β1y) + . . .+ cng(αnx+ βny)

occurring in these, more general, equations also must be continuous.

[1] B. Koclȩga-Kulpa, T. Szostok, On a class of equations stemming from various quadra-
ture rules Acta Math. Hungarica 2011,130, 340–348.

[2] A. Lisak, M. Sablik, Trapezoidal rule revisited, Bull. Inst. Math. Acad. Sin. (N.S.) 6
(2011), 347-–360.

[3] T. Szostok, Functional equations stemming from numerical analysis, submitted.

Tomasz Szostok

10. Remark.
If we assume that formulas used in the numerical differentation give exact

results then the following functional equation appears

g(αx+ βy)(y − x)k = a1f(α1x+ β1y) + . . .+ anf(αnx+ βny). (1)

Using a result from [1], it is possible to prove (under some assumptions) that
functions f, g:R→ R satisfying (1) must be polynomial functions. Since continu-
ous polynomial functions are ordinary polynomials, we concentrate our attention
on the continuity of solutions of (1).

Moreover it can be shown that if polynomial functions g, f satisfy (1) then
their monomial summands of orders p, p+k, respectively, are also solutions of this
equation. Therefore it is possible to deal with monomial functions only.

In [2] the following result has been proved.

Theorem
Let functions f, g:R → R satisfy equation (1) Let p be a positive integer, g be
a monomial function of order p, f be a monomial function of order p + k and let
numbers α, β, ai, α,βi, i = 1, . . . , n satisfy:

a1α
p+k
1 + . . .+ anα

p+k
n 6= 0, a1β

p+k
1 + . . .+ anβ

p+k
n 6= 0. (2)

Let ap be defined by

ap :=
(−1)kαp

a1α
p+k
1 + . . .+ anα

p+k
n

.

If the following conditions are satisfied

ap

[
a1α1β

p+k−1
1 + . . .+ anαnβ

p+k−1
n

]
6= αβp−1,

ap

[
a1α

2
1β

p+k−2
1 + . . .+ anα

2
nβ

p+k−2
n

]
6= α2βp−2,

...
ap

[
a1α

p−1
1 βk+1

1 + . . .+ a1α
p−1
n βk+1

n

]
6= αp−1β,

ap
[
a1α

p
1β

k
1 + . . .+ anα

p
nβ

k
n

]
6= αp,

(3)

then functions f and g are continuous.
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It is easy to see that assumptions (2) are essential, therefore we pose the fol-
lowing problem. Are the assumptions (3) also essential in order to obtain the
continuity of f and g.

[1] A. Lisak, M. Sablik, Trapezoidal rule revisited, Bull. Inst. Math. Acad. Sin. (N.S.) 6
(2011), 347-–360.

[2] T. Szostok, Functional equations stemming from numerical analysis, submitted

Tomasz Szostok

11. Problem.
A general question was asked whether computer calculations, graphs etc. can

be accepted as valid proofs of some mathematical facts.
In particular, will we accept the statement “f increases in [0, 1]” if the graph of its
derivative looks like this:

x

y

1

1

f ′

Alfred Witkowski
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