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On a sum form functional equation containing three

unknown mappings

Abstract. The general solutions of a sum form functional equation containing
three unknown mappings have been obtained without imposing any regular-
ity condition on any of three mappings.

1. Introduction

For n = 1, 2, . . .; let

Γn =

{
(p1, . . . , pn) : pi ≥ 0, i = 1, . . . , n;

n∑
i=1

pi = 1

}
denote the set of all n-component complete discrete probability distributions with
nonnegative elements. Let R denote the set of all real numbers; I = {x ∈ R :
0 ≤ x ≤ 1}, the unit closed interval; ]0, 1[ = {x ∈ R : 0 < x < 1}, the unit open
interval; ]0, 1] = {x ∈ R : 0 < x ≤ 1} and [0, 1[ = {x ∈ R : 0 ≤ x < 1}.

Recently, P. Nath and D.K. Singh [8] (see also [3, 5, 6]) obtained the general
solutions of

n∑
i=1

m∑
j=1

F (piqj) =

n∑
i=1

G(pi) +

m∑
j=1

H(qj) +

n∑
i=1

K(pi)

m∑
j=1

L(qj) (FE1)

by assuming F , G, H, K and L to be real-valued mappings each with domain
I; without imposing any regularity condition on any of the mappings F , G, H,
K and L; but assuming (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 to
be fixed integers. During the process of finding such general solutions, they came
across three functional equations. The first one is

n∑
i=1

m∑
j=1

F1(piqj) =

n∑
i=1

F1(pi) +

m∑
j=1

F1(qj) +

n∑
i=1

K1(pi)

m∑
j=1

L1(qj) (FE2)

with (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 being fixed integers and
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F1 : I → R, K1 : I → R and L1 : I → R are mappings which satisfy the conditions

F1(1) = (n− 1)(m− 1)F1(0),

K1(1) = −(n− 1)K1(0),

L1(1) = −(m− 1)L1(0).

The second one is
n∑

i=1

m∑
j=1

F1(piqj) =

n∑
i=1

F1(pi) +

m∑
j=1

F1(qj) + c

n∑
i=1

K1(pi)

m∑
j=1

K1(qj)

+ c(n−m)K1(0)

n∑
i=1

K1(pi),

(FE3)

where F1 : I → R, K1 : I → R are the same mappings which appear in (FE2);
c 6= 0 is a given real constant; (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3
being fixed integers. The third one is

n∑
i=1

m∑
j=1

F2(piqj) =

n∑
i=1

F2(pi) +

m∑
j=1

F2(qj) + c

n∑
i=1

K2(pi)

m∑
j=1

K2(qj), (FE4)

where F2 : I → R, K2 : I → R are mappings which satisfy the conditions

F2(0) = 0, K2(0) = 0, (1.1)
F2(1) = 0, K2(1) = 0; (1.2)

c 6= 0 is a given real constant (same as in (FE3)); (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈
Γm; n ≥ 3, m ≥ 3 being fixed integers.

The main object of this paper is to determine the general solutions of the
functional equations (FE2) without imposing a regularity condition on any of the
mappings F1 : I → R, K1 : I → R and L1 : I → R, assuming it to be valid for
all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 being fixed integers. To
achieve this objective, we need the general solutions of the equations (FE3) and
(FE4) (assuming only (1.1)).

2. Some known definitions and results

In this section, we mention some known definitions and results which are needed
to develop the remaining sections 3 to 5 of this paper.

A mapping a : I → R is said to be additive on I or on the unit triangle ∆ =
{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x + y ≤ 1} if it satisfies the equation
a(x + y) = a(x) + a(y) for all (x, y) ∈ ∆. A mapping A : R → R is said to be
additive on R if the equation A(x+ y) = A(x) + A(y) holds for all x ∈ R, y ∈ R.
It is known (see Z. Daróczy and L. Losonczi [2]) that if a mapping a : I → R is
additive on I, then it has a unique additive extension A : R→ R in the sense that
A : R→ R is additive on R and A(x) = a(x) for all x ∈ I.

A mapping M : I → R is said to be multiplicative if M(pq) = M(p)M(q) for
all p ∈ I, q ∈ I.
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A mapping ` : I → R is said to be logarithmic if `(0) = 0 and `(pq) = `(p)+`(q)
for all p ∈ ]0, 1], q ∈ ]0, 1].

Result 2.1 ([4])
Let h : I → R be a mapping which satisfies the equation

∑n
i=1 h(pi) = d for all

(p1, . . . , pn) ∈ Γn, d a given real constant and n ≥ 3 a fixed integer. Then, there
exists an additive mapping b : R → R such that h(p) = b(p) − 1

nb(1) + d
n for all

p ∈ I.

T.W. Chaundy and J.B. Mcleod [1] considered the functional equation

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

f(pi) +

m∑
j=1

f(qj), (2.1)

where f : I → R, (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n and m being positive
integers.

Result 2.2 ([4])
If a mapping f : I → R satisfies (2.1) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm,
n ≥ 3, m ≥ 3 being fixed integers, then f is of the form

f(p) =

{
f(0) + f(0)(nm− n−m)p+ a(p) +D(p, p) if 0 < p ≤ 1,

f(0) if p = 0,

where f(0) is an arbitrary real constant; a : R → R is an additive mapping; the
mapping D : R× ]0, 1]→ R is additive in the first variable; there exists a mapping
E : R×R→ R additive in both variables such that a(1) = E(1, 1) and D(pq, pq) =
D(pq, p) +D(pq, q) + E(p, q) for all p ∈ ]0, 1], q ∈ ]0, 1].

Modified Form of Result 2.2
If a mapping f : I → R satisfies (2.1) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm,
n ≥ 3, m ≥ 3 being fixed integers, then f is of the form

f(p) = f(0) + f(0)(nm− n−m)p+ a(p) +D(p, p) (2.2)

for all p ∈ I; f(0) is an arbitrary real constant; a : R→ R is an additive mapping;
the mapping D : R× I → R is additive in the first variable; there exists a mapping
E : R× R→ R additive in both variables such that a(1) = E(1, 1) and

D(pq, pq) = D(pq, p) +D(pq, q) + E(p, q) (2.3)

for all p ∈ I, q ∈ I.
Using the fact that a(1) = E(1, 1), it can be easily deduced from (2.3) that

a(1) +D(1, 1) = 0. (2.4)

Result 2.3 ([7])
Let c 6= 0 be a given constant and F2 : I → R, K2 : I → R be mappings which
satisfy (FE4) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 being
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fixed integers. Suppose further that F2 : I → R, K2 : I → R satisfy (1.1). Then,
the mapping K2 : I → R satisfies the functional equation[ m∑

j=1

K2(xqj)−K2(x)

] m∑
t=1

K2(rt) =

[ m∑
t=1

K2(xrt)−K2(x)

] m∑
j=1

K2(qj) (2.5)

for all x ∈ I and (r1, . . . , rm) ∈ Γm, (q1, . . . , qm) ∈ Γm, m ≥ 3 being a fixed
integer.

For the proof of Result 2.3, see pp. 90-91 in [7] (take F2 as f and K2 as g).

Result 2.4 ([8])
Let F1 : I → R, K1 : I → R and L1 : I → R be mappings which satisfy (FE2) for
all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 being fixed integers. Then,
the mappings K1 and L1 satisfy the equation[ m∑

t=1

K1(rt) + (n−m)K1(0)

] m∑
j=1

L1(qj)

=

[ m∑
j=1

K1(qj) + (n−m)K1(0)

] m∑
t=1

L1(rt)

(2.6)

for all (r1, . . . , rm) ∈ Γm, (q1, . . . , qm) ∈ Γm; m ≥ 3 being fixed integers. Moreover,
for all p ∈ I, any general solution (K1, L1) of (2.6) is of the form

K1(p) = Ā1(p) +K1(0) with Ā1(1) = −nK1(0), L1 arbitrary (2.7)

or
K1 arbitrary, L1(p) = Ā2(p) + L1(0) with Ā2(1) = −mL1(0) (2.8)

or else K1 and L1 are related to each other as

L1(p) = c[K1(p)−K1(0)]+Ā3(p)+L1(0) with Ā3(1) = −mL1(0)+cnK1(0), (2.9)

where Āi : R → R (i = 1, 2, 3) are additive mappings and c 6= 0 an arbitrary real
constant in (2.9).

Remark 2.5
Result 2.4 is a combination of Lemmas 3.3 and 3.2 in [8].

3. On the functional equation (FE4)

The main result of this section is the following:

Theorem 3.1
Let c 6= 0 be a given real constant and F2 : I → R, K2 : I → R be mappings which
satisfy (FE4) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 being fixed
integers. Suppose further that the mappings F2 : → R, K2 : I → R satisfy (1.1).
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Then, for all p ∈ I, any general solution (F2,K2) of (FE4) is one of the following
forms: {

(i) F2(p) = − c [b1(1)]2p+ a(p) +D(p, p)

(ii) K2(p) = b1(p)
(α1)

or {
(i) F2(p) = 1

2cp[`(p)]
2 + a(p) +D(p, p)

(ii) K2(p) = p`(p)
(α2)

or {
(i) F2(p) = cµ2[M(p)− p] + a(p) +D(p, p)

(ii) K2(p) = µ[M(p)− p]
(α3)

where µ 6= 0 is an arbitrary real constant; b1 : R → R is an additive mapping
with b1(1) an arbitrary real constant; the mappings a : R→ R and D : R× I → R
are as described in the Modified Form of Result 2.2; M : I → R is a multiplicative
mapping which is not additive and M(0) = 0, M(1) = 1; ` : I → R is a logarithmic
mapping.

Note 3.2
Since ` : I → R is a logarithmic mapping, so 0`(0) = 0 and 0[`(0)]2 = 0.

Proof of Theorem 3.1. Let us pay attention to equation (2.5) in Result 2.3.
We divide our discussion into two cases:

Case 1.
∑m

t=1K2(rt) ≡ 0 on Γm.
In this case, by using Result 2.1, it follows that there exists an additive mapping

b1 : R→ R such that K2(p) = b1(p) with b1(1) = 0. This form of K2(p) is included
in (α1)(ii) when b1(1) = 0.

Case 2.
∑m

t=1K2(rt) does not vanish identically on Γm.
In this case, there exists a probability distribution (r∗1 , . . . , r

∗
m) ∈ Γm such that∑m

t=1K2(r∗t ) 6= 0. Putting rt = r∗t , t = 1, . . . ,m in (2.5) and using
∑m

t=1K2(r∗t ) 6=
0, it follows that

m∑
j=1

K2(xqj) = K2(x) +M(x)

m∑
j=1

K2(qj), (3.1)

where M : I → R is defined as

M(x) =

[ m∑
t=1

K2(r∗t )

]−1[ m∑
t=1

K2(xr∗t )−K2(x)

]
(3.2)

for all x ∈ I. Since K2(0) = 0 by assumption, it follows from (3.2) that M(0) = 0.
But since we are not assuming that K2(1) = 0, it does not follow from (3.2) that
M(1) = 1. So, the technique adopted on pp. 88-89 in [7] does not work
here. Let us write (3.1) in the form

m∑
j=1

{K2(xqj)−M(x)K2(qj)− qjK2(x)} = 0.
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By Result 2.1, there exists a mapping E : I × R → R, additive in the second
variable such that

K2(xq)−M(x)K2(q)− qK2(x) = E(x; q)− 1

m
E(x; 1). (3.3)

Putting q = 0 in (3.3) and using K2(0) = 0, E(x; 0) = 0 for all x ∈ I, (3.3) gives
E(x; 1) = 0 for all x ∈ I. So, (3.3) reduces to the equation

K2(xq)−M(x)K2(q)− qK2(x) = E(x; q) (3.4)

valid for all x ∈ I, q ∈ I. Also from equation (3.4) it follows that E(0; q) = 0 for
all q ∈ I.

Case 2.1. E(x; q) ≡ 0 on I × I.
In this case, (3.4) reduces to the equation

K2(xq) = M(x)K2(q) + qK2(x) (3.5)

valid for all x ∈ I, q ∈ I. The left hand side of (3.5) is symmetric in x and q.
Hence, so should be its right hand side. This fact gives rise to the equation

[M(x)− x]K2(q) = [M(q)− q]K2(x) (3.6)

valid for all x ∈ I, q ∈ I.
Consider the case when the mapping x→M(x)−x, x ∈ I, vanishes identically

on I. This means that M(x) = x for all x ∈ I. Making use of this form of
M : I → R in (3.5), we obtain the equation

K2(xq) = xK2(q) + qK2(x) (3.7)

valid for all x ∈ I, q ∈ I. The general solution of (3.7), for all p ∈ I, is K2(p) =
p`(p), where ` : I → R is a logarithmic mapping. Thus, we have obtained (α2)(ii).

Now consider the case when the mapping x 7→ M(x) − x, x ∈ I, does not
vanish identically on I. In this case, there exists an element x0 ∈ I such that
[M(x0) − x0] 6= 0. Putting x = x0 in (3.6) and using [M(x0) − x0] 6= 0, we get
K2(q) = µ[M(q)−q] for all q ∈ I, where µ = K2(x0)[M(x0)−x0]−1. If µ = 0, then
K2(q) = 0 for all q ∈ I. Then

∑m
t=1K2(r∗t ) = 0 contradicting

∑m
t=1K2(r∗t ) 6= 0.

Hence µ 6= 0. So
K2(q) = µ[M(q)− q] (3.8)

for all q ∈ I; µ 6= 0 being an arbitrary real constant. Now, by assumption K2(0) =
0 (see (1.1)). Hence, from (3.8), it follows that M(0) = 0. Also, from (3.5) and
(3.8), it follows that M is multiplicative, that is,

M(xq) = M(x)M(q) (3.9)

for all x ∈ I, q ∈ I. Thus we have to consider only those forms of M which are
multiplicative and satisfy the condition M(0) = 0. Since M(0) = 0, therefore the
possibility of M(x) ≡ 1 is ruled out. Also, [M(x0)−x0] 6= 0. It follows, from (3.8)
that

K2(x0) 6= 0. (3.10)
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The possibility that x0 = 0 is ruled out because, in this case, (3.10) givesK2(0) 6= 0
contradicting the assumption K2(0) = 0.

Now we discuss the case when x0 = 1. In this case, (3.10) gives K2(1) 6= 0.
Now, (3.8) givesM(1) 6= 1. But from (3.9),M(x)[M(1)−1] = 0 holds for all x ∈ I.
Hence M(x) ≡ 0. Consequently, (3.8) gives K2(q) = −µq which is contained in
(α1)(ii) (choose b1(q) = −µq with b1(1) = −µ).

Now, we have to discuss the case when x0 ∈ ]0, 1[, keeping in mind thatK2(0) =
0 (by assumption) and K2(1) = 0 because we have already discussed above the
case when K2(1) 6= 0. Now, from (3.8), 0 = K2(1) = µ[M(1) − 1], µ 6= 0. So,
M(1) = 1. Hence, we get (α3)(ii) with M(0) = 0 and M(1) = 1.

Now we prove that M : I → R is not additive. To the contrary, suppose
that M : I → R is additive. Then, for all (r1, . . . , rm) ∈ Γm, using (α3)(ii) and
M(1) = 1, we have

m∑
t=1

K2(rt) = µ

( m∑
t=1

M(rt)− 1

)
= µ(M(1)− 1) = 0

contradicting
∑m

t=1K2(r∗t ) 6= 0. So, M : I → R is not additive. In particular,
M(q) ≡ q is ruled out because if M(q) ≡ q, then K2(q) = 0 contradicting (3.10).

Case 2.2. E(x; q) does not vanish identically on I × I.
In this case, there exists an element (x∗; q∗) ∈ I × I such that E(x∗; q∗) 6= 0.

Since E(x; 1) = 0 and E(x; 0) = 0 for all x ∈ I; E(0; q) = 0 for all q ∈ I, it follows
that E(x∗; 1) = 0, E(x∗; 0) = 0 and E(0; q∗) = 0. Hence, we must have x∗ ∈ ]0, 1]
and q∗ ∈ ]0, 1[. So, (x∗; q∗) ∈ ]0, 1]× ]0, 1[. Now we prove that

r = [E(x∗; q∗)]−1
{
M(x∗)M(q∗)K2(r) +M(x∗)E(q∗; r) + E(x∗; q∗r)

−M(x∗q∗)K2(r)− E(x∗q∗; r)
} (3.11)

holds for all r ∈ I. Using (3.4), we have

K2((x∗q∗)r) = M(x∗q∗)K2(r) + rM(x∗)K2(q∗) + rq∗K2(x∗)

+ rE(x∗; q∗) + E(x∗q∗; r)
(3.12)

and

K2(x∗(q∗r)) = M(x∗)M(q∗)K2(r) + rM(x∗)K2(q∗) +M(x∗)E(q∗; r)

+ q∗rK2(x∗) + E(x∗; q∗r).
(3.13)

Since K2((x∗q∗)r) = K2(x∗(q∗r)) and E(x∗; q∗) 6= 0, equations (3.12) and (3.13)
give (3.11) for r ∈ I.

Equation (3.11) can be rewritten as

r − [E(x∗; q∗)]−1[M(x∗)E(q∗; r) + E(x∗; q∗r)− E(x∗q∗; r)]

= [E(x∗; q∗)]−1[M(x∗)M(q∗)−M(x∗q∗)]K2(r).
(3.14)

Putting r = 1 in equation (3.14) and using E(x; 1) = 0, we obtain

[M(x∗)M(q∗)−M(x∗q∗)]K2(1) = 0 (3.15)
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for some x∗ ∈ ]0, 1], q∗ ∈ ]0, 1[.

Case 2.2.1. M(x∗)M(q∗)−M(x∗q∗) 6= 0 for some x∗ ∈ ]0, 1], q∗ ∈ ]0, 1[.
Then, from equation (3.15), we have K2(1) = 0. Since the left hand side of

equation (3.14) is additive in r, so the right hand side must also be additive in r,
r ∈ I. But, the right hand side of equation (3.14) can not be additive because if
it is so then 0 6=

∑m
t=1K2(r∗t ) = K2(1) = 0, a contradiction. So, this case is not

possible.

Case 2.2.2.

M(x∗)M(q∗)−M(x∗q∗) = 0 (3.15a)

for some x∗ ∈ ]0, 1] and for some q∗ ∈ ]0, 1[. Then, from (3.15), it follows that
K2(1) is an arbitrary real number. Let us put x = 1 in equation (3.4). We obtain

K2(q)[1−M(1)] = E(1; q) + qK2(1) (3.16)

for all q ∈ I.

Case 2.2.2.1. 1−M(1) 6= 0.
From equation (3.16), we obtain K2(q) = b1(q), where b1 : R → R is defined

as b1(q) = [1 −M(1)]−1[E(1; q) + qK2(1)]. Since q → E(1; q) and q → qK2(1)
are additive mappings, so q → b1(q) is also additive. Now 0 6=

∑m
t=1K2(r∗t ) =∑m

t=1 b1(r∗t ) = b1(
∑m

t=1 r
∗
t ) = b1(1). Thus b1(1) 6= 0 and also b1(1) = [1 −

M(1)]−1K2(1). Hence K2(1) 6= 0. So, solution (α1)(ii) arises when b1(1) 6= 0.

Case 2.2.2.2. 1−M(1) = 0.
Putting 1−M(1) = 0 in (3.16), we obtain 0 = E(1; q) + qK2(1) for all q ∈ I.

Substituting q = 1 in this equation and using the fact that E(1; 1) = 0 (because
E(x; 1) = 0 for all x ∈ I), we obtain K2(1) = 0.

Substituting p1 = 1, p2 = . . . = pn = 0; q1 = 1, q2 = . . . = qm = 0 in (FE4);
using (1.1) and the fact that K2(1) = 0, we get F2(1) = 0. So, we have F2(0) = 0,
K2(0) = 0, F2(1) = 0, K2(1) = 0. These are precisely the assumptions which we
made in [7]. Now we make use of the Theorem (p-86) in [7] and take only those
solutions which satisfy (1.1), (1.2) and (3.15a). There is only one such solution,
namely, (α3)(ii) in which M : I → R is multiplicative. Making use of (α3)(ii) in
(3.4) and using the multiplicativity of M : I → R, it follows that E(x; q) = 0 for
all x ∈ I, q ∈ I; contradicting the fact that E(x∗; q∗) 6= 0 (Case 2.2). So, in this
case, we do not get any solution.

So far, we have obtained all possible forms of K2 : I → R mentioned in (α1)
to (α3). Now our task is to find the corresponding forms of F2 : I → R needed in
(α1) to (α3).

Making use of (α1)(ii) in (FE4), we obtain the equation

n∑
i=1

m∑
j=1

F2(piqj) =

n∑
i=1

F2(pi) +

m∑
j=1

F2(qj) + c[b1(1)]2
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which can be written in the form
n∑

i=1

m∑
j=1

{F2(piqj) + c[b1(1)]2piqj}

=

n∑
i=1

{F2(pi) + c[b1(1)]2pi}+

m∑
j=1

{F2(qj) + c[b1(1)]2qj}.
(3.17)

Thus if we define f : I → R as

f(x) = F2(x) + c[b1(1)]2x (3.18)

for all x ∈ I, then (3.17) reduces to the functional equation (2.1) with f(0) = 0.
Now, from f(0) = 0, (3.18) and (2.2), (α1)(i) follows. Similarly, making use of
(α2)(ii) and (α3)(ii) in (FE4) and proceeding as above, we can obtain respectively
(α2)(i) and (α3)(i).

Note 3.3
In the solution (α1), if b1(1) 6= 0, then F2(1) = −c[b1(1)]2 6= 0 (because of (2.4))
and K2(1) = b1(1) 6= 0.

The above observations reveal that under the conditions stated in the statement
of Theorem 3.1, there are three solutions, namely (α1) to (α3) which satisfy (1.1)
and out of these three solutions, there is one solution namely (α1) (with b1(1) 6= 0),
in which both F2(1) 6= 0, K2(1) 6= 0.

Note 3.4 ([7])
Let c 6= 0 be a given real constant and F2 : I → R, K2 : I → R be mappings
which satisfy (FE4) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3
be fixed integers. Suppose further that the mappings F2 : I → R and K2 : I → R
satisfy (1.1) and (1.2). Then, any general solution (F2,K2) of (FE4) is of the
form (α1)(with b1(1) = 0), (α2) and (α3); µ 6= 0 is an arbitrary real constant;
b1 : R → R is an additive mapping; the mappings a : R → R, D : R × I → R are
as described in Modified Form of Result 2.2; and the mappings M : I → R and
` : I → R are as described in the statement of Theorem 3.1.

4. On the functional equation (FE3)

In this section, we make use of Theorem 3.1 to prove:

Theorem 4.1
Suppose the mappings F1 : I → R, K1 : I → R satisfy the functional equation
(FE3) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 being fixed
integers. Then, any general solution (F1,K1) of (FE3), for all p ∈ I, is of the
form{

(i) F1(p) = F1(0)− c[b1(1)]2p+ (nm− n−m)F1(0)p+ a(p) +D(p, p)

(ii) K1(p) = b1(p)− nK1(0)p+K1(0)
(β1)
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or{
(i) F1(p) = F1(0) + (nm− n−m)F1(0)p+ 1

2cp[`(p)]
2 + a(p) +D(p, p)

(ii) K1(p) = p`(p)− nK1(0)p+K1(0)
(β2)

or{
(i)F1(p) = F1(0) + (nm− n−m)F1(0)p+ cµ2[M(p)− p] + a(p) +D(p, p)

(ii) K1(p) = µ[M(p)− p]− nK1(0)p+K1(0)
(β3)

where µ 6= 0 is an arbitrary real constant; b1 : R→ R is an additive mapping with
b1(1) an arbitrary real constant; the mappings a : R → R and D : R × I → R are
as described in the Modified Form of Result 2.2; the mappings M : I → R and
` : I → R are as described in Theorem 3.1.

Proof. Let us define the mappings F2 : I → R and K2 : I → R as

F2(p) = F1(p)− (nm− n−m)F1(0)p− F1(0) (4.1)
and

K2(p) = K1(p) + nK1(0)p−K1(0) (4.2)

for all p ∈ I. Then, from (4.1) and (4.2), we have (1.1) and

F2(1) = F1(1)− (n− 1)(m− 1)F1(0), K2(1) = K1(1) + (n− 1)K1(0). (4.3)

Also, from (FE3), (4.1) and (4.2), the functional equation (FE4) follows for all
(p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3, being fixed integers.

From (4.1), (4.2) and (FE4), we obtain
n∑

i=1

m∑
j=1

F1(piqj)− (nm− n−m)F1(0)− nmF1(0)

=

n∑
i=1

F1(pi)− (nm− n−m)F1(0)− nF1(0)

+

m∑
j=1

F1(qj)− (nm− n−m)F1(0)−mF1(0)

+ c

[ n∑
i=1

K1(pi) + nK1(0)− nK1(0)

]
×
[ m∑

j=1

K1(qj) + nK1(0)−mK1(0)

]
.

This gives
n∑

i=1

m∑
j=1

F1(piqj) =

n∑
i=1

F1(pi) +

m∑
j=1

F1(qj) + c

n∑
i=1

K1(pi)

m∑
j=1

K1(qj)

+ c(n−m)K1(0)

n∑
i=1

K1(pi)

which is (FE3). So, by Theorem 3.1, the solutions (α1) to (α3) follow. The required
solutions (β1) to (β3) follow respectively from solutions (α1) to (α3) by making
use of (4.1) and (4.2). The details are omitted for the sake of brevity.
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5. On the functional equation (FE2)

In this section, by making use of Theorem 4.1, we prove:

Theorem 5.1
Let F1 : I → R, K1 : I → R and L1 : I → R be mappings which satisfy the func-
tional equation (FE2) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3
being fixed integers. Then, for all p ∈ I, any general solution (F1,K1, L1) of (FE2)
is of the form

F1(p) = F1(0) + (nm− n−m)F1(0)p+ a(p) +D(p, p)

K1(p) = Ā1(p) +K1(0)

L1 an arbitrary real-valued mapping
(S1)

or 
F1(p) = F1(0) + (nm− n−m)F1(0)p+ a(p) +D(p, p)

K1 an arbitrary real-valued mapping
L1(p) = Ā2(p) + L1(0)

(S2)

or

(β1)(i), (β1)(ii) and L1(p) = c[b1(p)− nK1(0)p] + Ā3(p) + L1(0) (S3)

or

(β2)(i), (β2)(ii) and L1(p) = c[p`(p)− nK1(0)p] + Ā3(p) + L1(0) (S4)

or

(β3)(i), (β3)(ii) and L1(p) = c{µ[M(p)− p]− nK1(0)p}+ Ā3(p) + L1(0) (S5)

where Āi : R → R (i = 1, 2, 3), b1 : R → R are additive mappings with Ā1(1) =
−nK1(0), Ā2(1) = −mK1(0), Ā3(1) = −mL1(0) + cnK1(0); µ 6= 0, c 6= 0 and
b1(1) are arbitrary real constants; the mappings a : R → R and D : R × I → R
are as described in the Modified Form of Result 2.2; the mappings M : I → R and
` : I → R are as described in Theorem 3.1.

Proof. The functional equation (FE2) has, indeed, two types of general solu-
tions (F1,K1, L1). The first type of these general solutions (F1,K1, L1) are those
whose first two components F1 and K1 do not form a general solution (F1,K1) of
(FE3). There are two such solutions (S1) and (S2). The second type of general
solutions (F1,K1, L1) are those whose first two components F1 and K1 do form
a general solution (F1,K1) of (FE3). There are three such solutions (S3) to (S5)
and each such solution (F1,K1, L1) may be written in the form (β, L1(p)), where
β = (βt(i), βt(ii)), t = 1, 2, 3. Both types of these solutions can be obtained by
making use of Result 2.4.

From (2.7), for all (p1, . . . , pn) ∈ Γn,
∑n

i=1K1(pi) = 0. So, referring to (FE2),
the mapping L1 is arbitrary and also (FE2) reduces to the functional equation∑n

i=1

∑m
j=1 F1(piqj) =

∑n
i=1 F1(pi) +

∑m
j=1 F1(qj) valid for all (p1, . . . , pn) ∈ Γn,
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(q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 being fixed integers. By Modified Form of Result
2.2, it follows that

F1(p) = F1(0) + (nm− n−m)F1(0)p+ a(p) +D(p, p) (5.1)

for all p ∈ I. Equation (5.1), together with (2.7), constitute the solution (S1) of
(FE2). Similarly, one can obtain the solution (S2) of (FE2). Now, referring to
(2.9), we have

m∑
j=1

L1(qj) = c

[ m∑
j=1

K1(qj) + (n−m)K1(0)

]
. (5.2)

Making use of (5.2) in (FE2), we get the functional equation (FE3) whose solutions
are (β1), (β2) and (β3). Making use of the respective forms of K1(p) appearing in
(β1)(ii), (β2)(ii) and (β3)(ii), the corresponding forms of L1(p) can be obtained.
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