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Simultaneous primality of the integers n and 2n − d

Abstract. A necessary and sufficient condition for the simultaneous primality
of integers n and 2n−d is given by means of congruences modn(2n− d) that
hold if and only if they form a prime pair. These are used to obtain explicit
primality criteria for some values of d, after computation of a finite number
of exceptions that appear when n is lower than a fixed quantity depending
only on d.

Many primality criteria for pairs of primes originates by the well known con-
verse of Wilson’s theorem: n is a prime if and only if (n− 1)! ≡ −1 modn.

Using it and focusing on twin primes, Clement proved in 1949 [2] that n and
n+ 2 are both primes if and only if 4((n− 1)! + 1) + n ≡ 0 modn(n+ 2). Dence
and Dence [3] later improved previous results proving that n and n + 2 are both
primes if and only if 2(n−12 )!2 ≡ ±(5n+ 2) modn(n+ 2).

A new characterization of twin primes was recently given by Górowski and
Łomnicki [6]: they proved that 2n + 1 and 2n + 3 are both primes if and only if
12((2n− 1)!− 1)− 5(2n+ 1) ≡ 0 mod (2n+ 1)(2n+ 3).

Other forms of prime pairs appear to be less studied. In 1905, again starting
from Wilson’s theorem, Carmichael [1] proved that p and 2p−1 are simultaneously
primes if and only if (p− 1)!4 ≡ 1 mod p(2p− 1).

The aim of this work is to extend Carmichael’s result to generic pairs of odd
primes p and 2p−d by suitable variations on the original proof of Wilson’s theorem.
Using elementary methods, we start by proving the following theorem.

Theorem 1
Let n > d and A = (d−12 )!2. Let moreover 2n− d > A, then (n, 2n− d) is an odd
prime pair if and only if

Ad
(
n− d+ 1

2

)
!2 ≡ 2n

(
A(−1)

d+1
2 − 1

)
+ d modn(2n− d).

Proof. A necessary and sufficient condition for an integer p to be a prime is
the following congruence holding true:

(p− x)!(x− 1)! ≡ (−1)x mod p. (1)

AMS (2000) Subject Classification: 11A51.



[84] Flavio Torasso

According to Dickson [4, page 64], this was first proved in 1783 by Genty [5].
For x = p+1

2 , the latter expression is(p− 1

2

)
!2 ≡ (−1)

p+1
2 mod p, (2)

a result already obtained in 1771 by Lagrange [8].
Choosing p = n, x = d+1

2 in (1) and squaring both sides of the congruence, we
obtain

A
(
n− d+ 1

2

)
!2 ≡ 1 modn, (3)

while choosing p = 2n− d in (2), we get(
n− d+ 1

2

)
!2 ≡ (−1)

2n−d+1
2 mod2n− d

or (
n− d+ 1

2

)
!2 ≡ (−1)

d+1
2 mod2n− d. (4)

Therefore integers n and 2n− d are simultaneously primes if and only if both
congruences (3) and (4) hold.

The combined necessary and sufficient condition for (n, 2n− d) to be a prime
pair is preserved even if we multiply both sides of these congruences by d, obtaining

Ad
(
n− d+ 1

2

)
!2 ≡ d modn (5)

and

d
(
n− d+ 1

2

)
!2 ≡ d(−1)

d+1
2 mod2n− d. (6)

In (6) the condition is indeed satisfied also when 2n− d is a composite number
(whose factors are less than 2n−d−1

2 ): the left-hand side of (6) is then divisible by
2n− d but the right-hand side is not, because 2n− d can not divide d, as d is less
than n.

The left-hand sides of (5) and (6) now differ only by a factor A. Fixing 2n−d >
A, we can then multiply both sides of (6) by A, without missing the condition for
primality, because A is not divisible by 2n− d. So we obtain

Ad
(
n− d+ 1

2

)
!2 ≡ Ad(−1)

d+1
2 mod2n− d, (7)

a congruence that continues to be a necessary and sufficient condition for the
primality of 2n− d.

We then remark that (n, 2n− d) is a prime pair if and only if congruences (5)
and (7) simultaneously hold.

The next step requires to combine (5) and (7) into a single congruence
modn(2n− d), that is solved by rewriting (5) and (7) in form of equations. Pro-
ceeding with (7), we obtain

Ad
(
n− d+ 1

2

)
!2 −Ad(−1)

d+1
2 = r(2n− d)
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or

Ad
(
n− d+ 1

2

)
!2 −Ad(−1)

d+1
2 − (2n− d)

(
A(−1)

d+1
2 − 1

)
= r′(2n− d)

or

Ad
(
n− d+ 1

2

)
!2 − 2n

(
A(−1)

d+1
2 − 1

)
− d = r′(2n− d) (8)

for some r, r′ ∈ N. Similarly from (5), we have

Ad
(
n− d+ 1

2

)
!2 − d = sn

or

Ad
(
n− d+ 1

2

)
!2 − 2n

(
A(−1)

d+1
2 − 1

)
− d = s′n (9)

for some s, s′ ∈ N. Thus, we can infer that the quantity on the left-hand sides of
(8) and (9) is divisible by the product of n and 2n− d. Rearranging it in form of
congruence, we get

Ad
(
n− d+ 1

2

)
!2 ≡ 2n

(
A(−1)

d+1
2 − 1

)
+ d modn(2n− d),

as was to be shown.

Now we obtain a simpler result for the case when d is a prime.

Theorem 2
Let A = (d−12 )!2 and d be a prime. If 2n−d > A, then (n, 2n−d) is an odd prime
pair if and only if

A
(
n− d+ 1

2

)
!2 ≡ 2n

d

(
A(−1)

d+1
2 − 1

)
+ 1 modn(2n− d).

Proof. We infer from (2) that d divides (A(−1) d+1
2 − 1) if and only if d is

a prime. Thus, it is possible to divide by d any term of the congruence found in
Theorem 1 avoiding the constraint n > d, which is instead required in Theorem 1.
Hence, Theorem 2 follows.

It is possible to improve on Theorem 1 by analysing the divisors of A relatively
prime to d, as shown in the next theorem.

Theorem 3
Let n > d and B be the greatest odd divisor of A satisfying gcd(B, d) = 1. Let
moreover 2n− d > B, then (n, 2n− d) is an odd prime pair if and only if

Ad
(
n− d+ 1

2

)
!2 ≡ 2n

(
A(−1)

d+1
2 − 1

)
+ d modn(2n− d).

Proof. Starting from congruences (5) and (7) as obtained in the proof of The-
orem 1, it suffices to consider the case when n ≤ A:
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– congruence (7) may hold when 2n − d is a composite divisor of A, having
prime factors which are less than d−1

2 , but

– congruence (5) can not hold because, assumed 2n− d > B, the properties of
B imply that n is a composite number (indeed, gcd(2n − d, d) 6= 1 forces n
to be an odd composite number).

This assures that both (5) and (7) can not jointly hold and hence, the necessary
and sufficient condition for the simultaneous primality of n and 2n−d is preserved.
To complete the proof it only requires to apply the same scheme outlined in the
proof of Theorem 1. Then Theorem 3 follows.

Next, we write the simplified form of Theorem 3 for the case when d is a prime.

Theorem 4
Let B be the greatest odd divisor of A satisfying gcd(B, d) = 1 and d be a prime.
If 2n− d > B, then (n, 2n− d) is an odd prime pair if and only if

A
(
n− d+ 1

2

)
!2 ≡ 2n

d

(
A(−1)

d+1
2 − 1

)
+ 1 modn(2n− d).

Proof. We infer from (2) that d divides (A(−1) d+1
2 − 1) if and only if d is

a prime. Thus, it is possible to divide by d any term of the congruence obtained in
Theorem 3 avoiding the constraint n > d, which is instead required in Theorem 3.
Hence, Theorem 4 follows.

Note that Theorem 4 improves on Theorem 2 by a factor A
B = 2t, where t is

the exact power of 2 dividing A.
As showed by Legendre [9] in 1808, the exact power of a prime q dividing x!

is [xq ] + [ xq2 ] + [ xq3 ] + . . . and equals x−σq(x)
q−1 , where σq(x) is the sum of the digits

appearing in the base q representation of x.
Thus, it is easy to see that t = d + 1 − 2σ2(d), where σ2(d) is the sum of the

digits in the binary representation of d.
Similarly, note that Theorem 3 improves on Theorem 1 by a factor A

B =

2tqt11 q
t2
2 . . . qtnn , where qi are the primes dividing d and ti are their exact powers

dividing A.
The number B can be computed starting from the initial value x = A and

applying recursively the relation x→ x
gcd(x,2d) until gcd(x, 2d) = 1.

The last theorem reformulates the previous results unconditionally respect to
n, revealing a number of consequently exceptions.

Theorem 5
Let D = d if d is a composite number or D = 1 otherwise. Then (n, 2n − d) is
a prime pair if and only if

AD
(
n− d+ 1

2

)
!2 ≡ 2n

d

(
A(−1)

d+1
2 − 1

)
D +D modn(2n− d)

except for a finite number of pairs that are those pairs where n is a prime and
2n − d ≡ (−1) d−1

2 mod4 is a composite divisor of B and those pairs where n is
a prime or 1 and 2n− d = 1.
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Proof. Thanks to Theorems 3 and 4, it is sufficient to resume from congruences
(5) and (7), this time restricting the analysis to the case n ≤ B. Hence it happens
that congruence (7) holds when 2n − d is a composite divisor of B or equals 1.
Two cases arise:

– if 2n − d ≡/ (−1) d−1
2 mod4, then n is forced to be even and (5) would

consequently fail;

– in the opposite case n is odd and then (5) and (7) both hold when n is
a prime or equals 1.

To complete the proof, match (5) and (7) into a single congruence modn(2n− d),
and then Theorem 5 follows.

We can now use Theorem 5 to derive explicit primality criteria for some values
of d. To do so it is necessary to identify and specify the exceptions foreseen by
Theorem 5. Therefore we wrote a program in Pari-GP that runs over any integer
b belonging to the set of composite divisor of B and checks the numbers b+d

2
for primality. Applying this procedure for any d = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 we
obtained the explicit primality criteria listed in the following corollaries. Note
that for d = 1, 3, it was also necessary a supplementary check for the two special
cases due to n = 2, not covered by the program, for which the corresponding
congruences would incorrectly fail, for the prime pair (2,3), and would incorrectly
hold, for the pair (2,1).

Corollary 1
For n > 2, (n, 2n− 1) is a prime pair if and only if

(n− 1)!2 ≡ −4n+ 1 modn(2n− 1).

Corollary 2
For n > 2, (n, 2n− 3) is a prime pair if and only if

(n− 2)!2 ≡ 1 modn(2n− 3).

Corollary 3
Except for n = 3, (n, 2n− 5) is a prime pair if and only if

(2!(n− 3)!)2 ≡ −2n+ 1 modn(2n− 5).

Corollary 4
(n, 2n− 7) is a prime pair if and only if

(3!(n− 4)!)2 ≡ 10n+ 1 modn(2n− 7).

Corollary 5
Except for n = 5, (n, 2n− 9) is a prime pair if and only if

9(4!(n− 5)!)2 ≡ −1154n+ 9 modn(2n− 9).
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Corollary 6
Except for n = 13, 43, (n, 2n− 11) is a prime pair if and only if

(5!(n− 6)!)2 ≡ 2618n+ 1 modn(2n− 11).

Corollary 7
Except for n = 7, 11, 19, 29, 47, 1019, (n, 2n− 13) is a prime pair if and only if

(6!(n− 7)!)2 ≡ −79754n+ 1 modn(2n− 13).

Corollary 8
(n, 2n− 15) is a prime pair if and only if

15(7!(n− 8)!)2 ≡ 50803198n+ 15 modn(2n− 15).

Corollary 9
Except for n = 13, 19, 31, 61, 103, 131, 211, 229, 271, 1021, 1993, 2371, 5521, 9931,
(n, 2n− 17) is a prime pair if and only if

(8!(n− 9)!)2 ≡ −191259106n+ 1 modn(2n− 17).

Corollary 10
Except for n = 17, 23, 41, 47, 83, 97, 131, 167, 293, 347, 617, 797, 1103, 1427, 1847,
5477, 16547, 22973, 53591, 114827, (n, 2n− 19) is a prime pair if and only if

(9!(n− 10)!)2 ≡ 13861252042n+ 1 modn(2n− 19).

The above mentioned program in Pari-GP was also used to count E(d), the
total number of exceptions appearing in each corollary and for any further value
of d from d = 21 up to d = 65, as reported in Table 1.

We can not go beyond this limit in computing E(d) because the set of composite
divisors of the corresponding B grows too fast and overcomes the dimension Pari-
GP’s algorithm can handle.

Indeed, writing B = pα1
1 pα2

2 . . . p
αω(B)
ω(B)

in term of its prime factorization, we see
that the total number of its divisors is given by ν(B) =

∏ω(B)

i=1 (αi + 1), where ω(B)

is the number of its distinct prime factors.
The number of composite divisors of B amounts then to ν(B) − ω(B) − 1. For

d = 67, this quantity exceeds 35× 106.
A formula, depending only on d, that approximates the expected total number

of exceptions, is adapted from the simplified model developed in [10] by Torasso
and summarized in the following conjecture.

Conjecture 1
The expected number of exceptions in Theorem 5 (or equivalently, the number of
primes over the set of numbers b+d

2 , with b being any divisor of B) is

E′(d) = log
(B 1

2 + d

2

)−1 ω(B)∏
i=1

( piαi
pi − 1

+ 1
)∏
q|d

q

q − 1
,

where pi and αi are respectively, the prime factors and their exponents appearing
in the prime factorization of B.
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The numbers of exceptions E′(d) resulting from Conjecture 1, for any value of
d from d = 3 up to d = 65, are listed in Table 1.

The comparison with the known data E(d) seems to support the conjecture well
enough even if it should be noted that we can not expect a better approximation
because Conjecture 1 is found on a probabilistic model that simply considers pri-
mality of different integers as independent. As explained in [7, §22.20] by Hardy
and Wright, any such model is likely to be off by a factor of 2e−γ ≈ 1.12, which
can be seen as a measure of thecorrelation, and the numerical results are often off
by just as much.

d E(d) E′(d) d E(d) E′(d)
3 0 2 35 69 64
5 1 1 37 1,596 1,592
7 0 3 39 147 150
9 1 1 41 5,657 5,395

11 2 6 43 7,991 7,716
13 6 8 45 159 136
15 0 3 47 34,861 34,275
17 14 17 49 6,623 6,194
19 20 22 51 1,280 1,188
21 3 3 53 80,846 78,433
23 81 77 55 2,275 2,107
25 28 23 57 2,511 2,231
27 28 32 59 346,428 335,916
29 332 338 61 410,947 397,097
31 512 489 63 7,644 7,288
33 28 24 65 22,861 21,397

Table 1: Actual E(d) and conjectured E′(d) exceptions in Theorem 5
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