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Simultaneous primality of the integers n and 2n — d

Abstract. A necessary and sufficient condition for the simultaneous primality
of integers n and 2n —d is given by means of congruences mod n(2n — d) that
hold if and only if they form a prime pair. These are used to obtain explicit
primality criteria for some values of d, after computation of a finite number
of exceptions that appear when n is lower than a fixed quantity depending
only on d.

Many primality criteria for pairs of primes originates by the well known con-
verse of Wilson’s theorem: n is a prime if and only if (n — 1)! = —1 mod n.

Using it and focusing on twin primes, Clement proved in 1949 [2] that n and
n + 2 are both primes if and only if 4((n — 1)! + 1) +n = 0 mod n(n + 2). Dence
and Dence [3] later improved previous results proving that n and n + 2 are both
primes if and only if 2(251)1? = +(5n + 2) mod n(n + 2).

A new characterization of twin primes was recently given by Goérowski and
Lomnicki [6]: they proved that 2n + 1 and 2n + 3 are both primes if and only if
12((2n — 1)1 = 1) = 5(2n 4+ 1) = 0 mod (2n + 1)(2n + 3).

Other forms of prime pairs appear to be less studied. In 1905, again starting
from Wilson’s theorem, Carmichael [1] proved that p and 2p—1 are simultaneously
primes if and only if (p — 1)!* = 1 mod p(2p — 1).

The aim of this work is to extend Carmichael’s result to generic pairs of odd
primes p and 2p—d by suitable variations on the original proof of Wilson’s theorem.
Using elementary methods, we start by proving the following theorem.

THEOREM 1
Letn > d and A = (451)12. Let moreover 2n — d > A, then (n,2n —d) is an odd
prime pair if and only if

d+1

)!2 =2n(A(-1)> —1)+d modn(2n —d).

Ad(n— d—;—l

Proof. A necessary and sufficient condition for an integer p to be a prime is
the following congruence holding true:

(p—2)(z—1)!=(-1)" modp. (1)
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According to Dickson [4, page 64], this was first proved in 1783 by Genty [5].

For x = %, the latter expression is
-1 P

(%)!2 = (—1)%1 mod p, (2)

a result already obtained in 1771 by Lagrange [8].
Choosing p=n, x = % in (1) and squaring both sides of the congruence, we
obtain
d+1
A(n—%)@zlmodn, (3)

while choosing p = 2n — d in (2), we get

(n — d; 1)!2 =(-1) 5" mod2n — d

or

d+1

(" 2

Therefore integers n and 2n — d are simultaneously primes if and only if both
congruences (3) and (4) hold.

The combined necessary and sufficient condition for (n,2n — d) to be a prime

pair is preserved even if we multiply both sides of these congruences by d, obtaining

)!2 = (-1)** mod2n — d. (4)

— )P =
Ad(n 5 ) =d modn (5)

and

d+1

d(n — %)!2 =d(—1)"2 mod2n —d. (6)

In (6) the condition is indeed satisfied also when 2n —d is a composite number
(whose factors are less than 22=4=1): the left-hand side of (6) is then divisible by
2n — d but the right-hand side is not, because 2n — d can not divide d, as d is less
than n.

The left-hand sides of (5) and (6) now differ only by a factor A. Fixing 2n—d >
A, we can then multiply both sides of (6) by A, without missing the condition for
primality, because A is not divisible by 2n — d. So we obtain

Ad(n - = Ad(—l)% mod 2n — d, (7)

@)12
2
a congruence that continues to be a necessary and sufficient condition for the
primality of 2n — d.

We then remark that (n,2n — d) is a prime pair if and only if congruences (5)
and (7) simultaneously hold.

The next step requires to combine (5) and (7) into a single congruence
mod n(2n — d), that is solved by rewriting (5) and (7) in form of equations. Pro-
ceeding with (7), we obtain

d+1

Ad(nf )!2 —Ad(—1)*F = r(2n - d)
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Ad(n - d; 1)12 — Ad(—1)F = 2n—d)(A(-1)F —1) =+ (2n — d)
Ad(n— d‘gl)!?—zn(A(—n% — 1) —d=r'(2n—d) (8)

for some 7,7’ € N. Similarly from (5), we have

Ad(nf %)!2 —d=sn

or

d+1
Ad(n— =) = on(A(-1)F —1) —d = s'n )
for some s,s’ € N. Thus, we can infer that the quantity on the left-hand sides of
(8) and (9) is divisible by the product of n and 2n — d. Rearranging it in form of

congruence, we get

d+1

d+1

)!2 =2n(A(-1)> —1) +d modn(2n — d),

Ad (n —
as was to be shown.
Now we obtain a simpler result for the case when d is a prime.

THEOREM 2
Let A= (1)1 and d be a prime. If2n—d > A, then (n,2n—d) is an odd prime
pair if and only if

A(n— d—; 1)!2 = 2—”(14(—1)T —1) + 1 modn(2n — d).

d

Proof. We infer from (2) that d divides (A(—l)% — 1) if and only if d is
a prime. Thus, it is possible to divide by d any term of the congruence found in
Theorem 1 avoiding the constraint n > d, which is instead required in Theorem 1.
Hence, Theorem 2 follows.

It is possible to improve on Theorem 1 by analysing the divisors of A relatively
prime to d, as shown in the next theorem.

THEOREM 3
Let n > d and B be the greatest odd divisor of A satisfying ged(B,d) = 1. Let
moreover 2n —d > B, then (n,2n — d) is an odd prime pair if and only if

d+1

d+1

)!2 =2n(A(-1)"7 —1)+d modn(2n —d).

Ad(n —

Proof. Starting from congruences (5) and (7) as obtained in the proof of The-
orem 1, it suffices to consider the case when n < A:
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— congruence (7) may hold when 2n — d is a composite divisor of A, having
prime factors which are less than %, but

— congruence (5) can not hold because, assumed 2n — d > B, the properties of
B imply that n is a composite number (indeed, ged(2n — d, d) # 1 forces n
to be an odd composite number).

This assures that both (5) and (7) can not jointly hold and hence, the necessary
and sufficient condition for the simultaneous primality of n and 2n—d is preserved.
To complete the proof it only requires to apply the same scheme outlined in the
proof of Theorem 1. Then Theorem 3 follows.

Next, we write the simplified form of Theorem 3 for the case when d is a prime.

THEOREM 4

Let B be the greatest odd divisor of A satisfying ged(B,d) = 1 and d be a prime.
If 2n — d > B, then (n,2n — d) is an odd prime pair if and only if

d—+ 1)'2 _ ZJ dt1

5 = —(A(-1)> —1)+1 modn(2n —d).

A(n— 1

Proof. We infer from (2) that d divides (A(—l)% — 1) if and only if d is
a prime. Thus, it is possible to divide by d any term of the congruence obtained in
Theorem 3 avoiding the constraint n > d, which is instead required in Theorem 3.
Hence, Theorem 4 follows.

Note that Theorem 4 improves on Theorem 2 by a factor % = 2! where t is
the exact power of 2 dividing A.

As showed by Legendre [9] in 1808, the exact power of a prime ¢ dividing x!
is [2] + [z] + [5] + ... and equals %, where o4 (x) is the sum of the digits
appearing in the base g representation of x.

Thus, it is easy to see that t = d + 1 — 203(d), where o9(d) is the sum of the
digits in the binary representation of d.

Similarly, note that Theorem 3 improves on Theorem 1 by a factor % =
2tqirgl> .. qlr, where g; are the primes dividing d and t; are their exact powers

dividing A.

The number B can be computed starting from the initial value z = A and
applying recursively the relation z — m until ged(z, 2d) = 1.

The last theorem reformulates the previous results unconditionally respect to
n, revealing a number of consequently exceptions.

THEOREM 5

Let D = d if d is a composite number or D = 1 otherwise. Then (n,2n — d) is

a prime pair if and only if

d+ 1)12 _2n
2 /0 T d

except for a finite number of pairs that are those pairs where n is a prime and

2n —d = (71)% mod 4 is a composite divisor of B and those pairs where n is
a prime or 1 and 2n —d = 1.

AD(n— (A(=1)“F —=1)D + D mod n(2n — d)
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Proof. Thanks to Theorems 3 and 4, it is sufficient to resume from congruences
(5) and (7), this time restricting the analysis to the case n < B. Hence it happens
that congruence (7) holds when 2n — d is a composite divisor of B or equals 1.
Two cases arise:

—if 2n —d =# (71)% mod 4, then n is forced to be even and (5) would
consequently fail;

— in the opposite case n is odd and then (5) and (7) both hold when n is
a prime or equals 1.

To complete the proof, match (5) and (7) into a single congruence mod n(2n — d),
and then Theorem 5 follows.

We can now use Theorem 5 to derive explicit primality criteria for some values
of d. To do so it is necessary to identify and specify the exceptions foreseen by
Theorem 5. Therefore we wrote a program in Pari-GP that runs over any integer
b belonging to the set of composite divisor of B and checks the numbers %
for primality. Applying this procedure for any d = 1,3,5,7,9,11,13,15,17,19 we
obtained the explicit primality criteria listed in the following corollaries. Note
that for d = 1, 3, it was also necessary a supplementary check for the two special
cases due to n = 2, not covered by the program, for which the corresponding
congruences would incorrectly fail, for the prime pair (2,3), and would incorrectly
hold, for the pair (2,1).

COROLLARY 1
Forn >2, (n,2n — 1) is a prime pair if and only if

(n—1"? = —4n +1 modn(2n — 1).

COROLLARY 2
Forn > 2, (n,2n — 3) is a prime pair if and only if

(n —2)1* =1 modn(2n — 3).

COROLLARY 3
Except for n =3, (n,2n —5) is a prime pair if and only if

(2'(n —3)1)? = —2n + 1 modn(2n — 5).

COROLLARY 4
(n,2n —7) is a prime pair if and only if

(31 (n —4))* =10n + 1 modn(2n — 7).

COROLLARY 5
Except forn =15, (n,2n —9) is a prime pair if and only if

9(4!(n — 5)1)? = —1154n + 9 mod n(2n — 9).
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COROLLARY 6
Ezcept for n = 13,43, (n,2n — 11) is a prime pair if and only if

(5!(n — 6)1)? = 2618n + 1 mod n(2n — 11).

COROLLARY 7
Except for n =7,11,19,29,47,1019, (n,2n — 13) is a prime pair if and only if

(6!(n — 7)) = —79754n + 1 mod n(2n — 13).

COROLLARY 8
(n,2n — 15) is a prime pair if and only if

15(7!(n — 8)1)? = 50803198n + 15 mod n(2n — 15).

COROLLARY 9
Ezcept for n = 13,19,31,61,103, 131,211, 229,271,1021, 1993, 2371, 5521, 9931,
(n,2n — 17) is a prime pair if and only if

(8!(n — 9)1)? = —191259106n + 1 mod n(2n — 17).

COROLLARY 10
Except for n = 17,23,41,47,83,97,131,167,293,347,617,797,1103, 1427, 1847,
5477,16547,22973,53591, 114827, (n,2n — 19) is a prime pair if and only if

(9!(n — 10)!)? = 138612520421 + 1 mod n(2n — 19).

The above mentioned program in Pari-GP was also used to count Eg), the
total number of exceptions appearing in each corollary and for any further value
of d from d = 21 up to d = 65, as reported in Table 1.

We can not go beyond this limit in computing E4) because the set of composite
divisors of the corresponding B grows too fast and overcomes the dimension Pari-
GP’s algorithm can handle.

Indeed, writing B = p{'p52 ... pZ:é? in term of its prime factorization, we see
that the total number of its divisors is given by v(p) = [T (v + 1), where w(B)
is the number of its distinct prime factors.

The number of composite divisors of B amounts then to v(p) —w(py — 1. For
d = 67, this quantity exceeds 35 x 10°.

A formula, depending only on d, that approximates the expected total number
of exceptions, is adapted from the simplified model developed in [10] by Torasso
and summarized in the following conjecture.

CONJECTURE 1
The expected number of exceptions in Theorem 5 (or equivalently, the number of
btd

primes over the set of numbers 5%, with b being any divisor of B) is

By +d\-1 1Y DiC; q
B :log( ) (#4’1) —
@ 2 E pi—1 Hq—l

where p; and «; are respectively, the prime factors and their exponents appearing
in the prime factorization of B.
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The numbers of exceptions EE Q) resulting from Conjecture 1, for any value of
d from d = 3 up to d = 65, are listed in Table 1.

The comparison with the known data F(qy seems to support the conjecture well
enough even if it should be noted that we can not expect a better approximation
because Conjecture 1 is found on a probabilistic model that simply considers pri-
mality of different integers as independent. As explained in [7, §22.20] by Hardy
and Wright, any such model is likely to be off by a factor of 2¢™7 ~ 1.12, which
can be seen as a measure of thecorrelation, and the numerical results are often off
by just as much.

d| Ew | B d|  Ea | Ba

30 0] 2 35 69 64

51 1] 1 37| 1,596 | 1,592

7| 0| 3 39 147 150

ol 1] 1 41| 5657 | 5,395
1| 2/ 6 43| 7991 | 7,716
13 6| 8 45 159 136
50 0 3 AT | 34,861 | 34,275
17| 14| 17 49| 6,623 | 6,194
19 20| 22 51| 1,280 | 1,188
21| 3| 3 53 | 80,846 | 78,433
23| 81| 77 55| 2,275 | 2,107
25 | 28| 23 57| 2511 | 2231
27 | 28| 32 59 | 346,428 | 335,916
29 | 332 | 338 61 | 410,947 | 397,097
31| 512 | 489 63| 7,644 | 7,288
33| 28| 24 65 | 22,861 | 21,397

Table 1: Actual E;) and conjectured EE 4) exceptions in Theorem 5
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