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On Levinson's inequality

Abstract. We give a very simple proof of the classical Levinson inequality
and generalize the result by Mercer.

1. Introduction

In 1964 Norman Levinson ([3]) used the Taylor expansion to prove the following
inequality.

Theorem 1.1 ([3])
Suppose that f : [0, c] → R has a nonnegative third derivative, for i = 1, . . . , n
pi > 0, 0 6 xi 6 c

2 , yi = c− xi and
∑n

i=1 pi = 1, then the inequality

n∑
i=1

pif(xi)− f(x) 6
n∑

i=1

pif(yi)− f(y) (1)

holds. Here x =
∑n

i=1 pixi and y =
∑n

i=1 piyi denote the weighted arithmetic
means.

The same year Tiberiu Popoviciu generalized it by showing that for (1) to
hold it is enough that f be 3-convex ([6]), and Peter S. Bullen ([2]) gave an
alternative proof using mathematical induction. There are also other versions of
this inequality, see e.g. [5]. By rescaling axes, the classic Levinson inequality can
be restated in the following way.

Theorem 1.2 ([2])
If f : [a, b] → R is 3-convex, a 6 xi, yi 6 b, xi + yi = c, pi > 0 for i = 1, . . . , n,∑n

i=1 pi = 1 and
max(x1, . . . , xn) 6 min(y1, . . . , yn), (2)

then (1) holds.

As we can see, both versions assume that x’s and y’s add up to the same
number. Recently, Mercer made a significant improvement in [4].
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Theorem 1.3
If f : [a, b]→ R satisfies f ′′′ > 0, pi > 0 for i = 1, . . . , n,

∑n
i=1 pi = 1, and a 6 xi,

yi 6 b are such that (2) holds and

n∑
i=1

pi(xi − x)2 =

n∑
i=1

pi(yi − y)2, (3)

then (1) holds.

It is natural to try to get similar result for 3-convex function. In this paper we
shall give a very simple proof of Theorem 1.2 and generalize the Mercer’s result in
the following way.

Theorem 1.4
Let I be an open subinterval of R (bounded or unbounded), f : I → R be a 3-convex
function and X,Y : (Ω, µ)→ I be two random variables satisfying

V1) E[X2], E[Y 2], E[f(X)], E[f(Y )], E[f ′(X)], E[f ′(Y )], E[Xf ′(X)], E[Y f ′(Y )]
are finite,

V2) ess supX 6 ess inf Y ,

V3) VarX = VarY ,

then
E[f(X)]− f(E[X]) 6 E[f(Y )]− f(E[Y ]). (4)

We also provide some conditions for (4) to hold if the condition V3) is not
satisfied.

2. Definitions and basic properties

Definition 2.1
For a function f : I → R its nth divided difference is defined inductively by the
formula

[x0, . . . , xn; f ] =


f(x0) if n = 0,

[x0, . . . , xn−2, xn; f ]− [x0, . . . , xn−2, xn−1; f ]

xn − xn−1
if n > 0,

where xi’s are pairwise distinct.

Definition 2.2
A function f : I → R is called n-convex if

[x0, . . . , xn; f ] ≥ 0

for any choice of arguments, and n-concave if the inverse inequality holds.
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The 1-convex (resp. concave) functions are the increasing (resp. decreasing)
functions, while the 2-convex (resp. concave) functions are convex (resp. concave)
functions, i.e. the functions satisfying the inequality

f(tx+ (1− t)y) 6 (resp. >) tf(x) + (1− t)f(y)

for all x, y ∈ I and 0 < t < 1.
The following property follows immediately from definition.

Property 2.3
The function g is convex if and only if its divided difference h(x, y) = g(x)−g(y)

x−y ,
x 6= y increases in both variables.

This implies immediately

Property 2.4
If g is convex, then its right and left derivatives exist in the interior of its domain
and for x < y the inequalities

g′−(x) 6 g′+(x) 6 g′−(y) 6 g′+(y)

hold.

Another useful property of symmetric sum follows also from Property 2.3.

Property 2.5
If g is convex, then the symmetric sum g(a+ x) + g(a− x) increases for x > 0.

Boas and Widder gave the following characterization of n-convex functions.

Property 2.6 ([1])
If a function g is n-convex, then it is n − 2 times differentiable and g(n−2) is
convex.

At the end of this section let us remind the Leibniz Rule.

Lemma 2.7 (Differentiation under integral)
Let I be an open subinterval of R and (Ω, µ) be a measure space. Suppose a function
h : I × Ω→ R satisfies the following conditions:

L1) for every t ∈ I the function h(t, ·) is integrable,

L2) for every t ∈ I the derivative ht exists µ a.e.

L3) there exists an integrable function θ : Ω→ R such that for every t |ht(t, ω)| 6
θ(ω).

Then for every t ∈ I

d

dt

∫
Ω

h(t, ω)µ(dω) =

∫
Ω

ht(t, ω)µ(dω).
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3. Simple proof of Theorem 1.2

We can rewrite (1) as

f

(
c−

n∑
i=1

pixi

)
− f

( n∑
i=1

pixi

)
6

n∑
i=1

pif(c− xi)−
n∑

i=1

pif(xi), (5)

which is the Jensen inequality for the function g(x) = f(c−x)−f(x). The function
g is differentiable by Property 2.6. To show its convexity, note that

g′(x) = −[f ′(c− x) + f ′(x)] = −
[
f ′
( c

2
+
( c

2
− x
))

+ f ′
( c

2
−
( c

2
− x
))]

.

As x increases, c
2 − x decreases, and by Property 2.5, the expression in square

brackets decreases. Thus g′ increases, so g is convex and we are done.

4. Proof of Theorem 1.4

For 0 6 t 6 1 define two new random variables

Xt = tX + (1− t)E[X] and Yt = tY + (1− t)E[Y ]

and consider the function

U(t, ω) = f(Yt(ω))− f(E[Y ])− [f(Xt(ω))− f(E[X])]. (6)

Our goal will be to show that V (t) =
∫

Ω
U(t, ω)µ(dω) is a nonnegative, increasing,

convex function of t.
Let d be any number satisfying ess supX 6 d 6 ess inf Y . The proof is split

into several steps.

4.1. Behavior near the endpoints of the interval I = (a, b)

The functions f and f ′ are continuous, thus bounded on every compact subin-
terval of (a, b). In order to obtain some global bounds we need to know how they
behave near the ends.

Remark 4.1
Since a function g is convex or concave in the interval (a, b), its monotonicity
cannot change more that once. If it is not bounded near a, we conclude that there
exists a′ > a such that g preserves sign and |g| decreases in (a, a′). Similarly, or g
is bounded near b or there exists b′ < b such that g preserves sign and |g| increases
in (b′, b).

Since f is 3-convex, its derivative is convex and its monotonicity changes at
most once. Thus the convexity of f changes at most once, and consequently the
Remark 4.1 applies to both f and f ′.

4.2. Absolute integrability

Let g be any of f , f ′ or IdR ·f ′, where IdR is the identity function on R. It
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follows from the results of the subsection 4.1. that g is bounded from above or
from below on (a, d]. Since∫

Ω

g(X)µ(dω) =

∫
{ω: g(X(ω))>0}

g(X)µ(dω) +

∫
{ω: g(X(ω))<0}

g(X)µ(dω)

we conclude that two integrals in this formula are finite, thus so is the third one,
therefore∫

Ω

|g(X)|µ(dω) =

∫
{ω: g(X(ω))>0}

g(X)µ(dω)−
∫

{ω: g(X(ω))<0}

g(X)µ(dω)

is also finite.
The same holds for g(Y ).

4.3. Leibniz Rule

We shall show now that the function U defined by formula (6) satisfies the
Leibniz Rule. Consider f(Xt). If f is bounded near a, then clearly the assumption
L1) is satisfied. If not, then choose a′ as in step 4.1. in such a way that a′ < E[X].
Let M = maxx∈[a′,d] |f(x)|. Then we have

|f(Xt(ω))| 6
{
M if Xt(ω) ∈ [a′, d],

|f(X(ω))| otherwise, since Xt(ω) > X(ω).

Thus |f(Xt)| 6 max(M,f(X)) and we are done with L1).
By Property 2.6 condition L2) is also satisfied. To show that L3) holds note

that ∣∣∣ d
dt
f(Xt)

∣∣∣ = |(X −E[X])f ′(Xt)| 6 |X||f ′(Xt)|+ |E[X]||f ′(Xt)|.

If f ′ is bounded, then the right-hand side is not greater that M |X|+N for some
M,N > 0, otherwise the same reasoning as above applied to f ′ gives the bound
max(|Xf ′(X)|+ |E[X]||f ′(X)|, (max(|a′|, |d|) + |E[X]|)M).

The same reasoning can be applied to f(Yt), so we can apply the Leibniz Rule
to the function U .

4.4. Final step

Clearly, U(0, ω) = 0, so V (0) = 0. The function U is differentiable in t for all
ω and

Ut(t, ω) = (Y (ω)−E[Y ])f ′(Yt(ω))− (X(ω)−E[X])f ′(Xt(ω)). (7)

Applying the Leibniz Rule we obtain

V ′(0) =

∫
Ω

Ut(0, ω)µ(dω) = 0.
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In virtue of Property 2.6, the convexity of the derivative of a 3-convex functions
implies that f ′′−(ess supX) 6 f ′′+(ess inf Y ) (f ′′± denotes here the right and left
derivatives of f ′). Let A be an arbitrary number from the interval [f ′′−(ess supX),
f ′′+(ess inf Y )].

We have

Ut(u, ω)− Ut(v, ω)

u− v
= (Y (ω)−E[Y ])

f ′(Yu(ω))− f ′(Yv(ω))

u− v

− (X(ω)−E[X])
f ′(Xu(ω))− f ′(Xv(ω))

u− v

= (Y (ω)−E[Y ])2 f
′(Yu(ω))− f ′(Yv(ω))

Yu(ω)− Yv(ω)

− (X(ω)−E[X])2 f
′(Xu(ω))− f ′(Xv(ω))

Xu(ω)−Xv(ω)
(8)

= (Y (ω)−E[Y ])2
[f ′(Yu(ω))− f ′(Yv(ω))

Yu(ω)− Yv(ω)
−A

]
+ (X(ω)−E[X])2

[
A− f ′(Xu(ω))− f ′(Xv(ω))

Xu(ω)−Xv(ω)

]
+A[(Y (ω)−E[Y ])2 − (X(ω)−E[X])2].

Property 2.3 applied to f ′ shows that the expressions in square brackets in (8) are
nonnegative a.e., so

Ut(u, ω)− Ut(v, ω)

u− v
> A[(Y (ω)−E[Y ])2 − (X(ω)−E[X])2] a.e.

Integrating and applying once more the Leibniz Rule one get

V ′(u)− V ′(v)

u− v
> A(VarY −VarX) = 0. (9)

This means V ′ is increasing, and we conclude that V is nonnegative and convex
in the unit interval. In particular V (0) 6 V (1), which is the Levinson inequality.

5. Further results

Let us take a closer look at the proof of Theorem 1.4. We have some freedom in
selection of A: this can be any number from the gap between f ′′(X) and f ′′(Y ).
The critical inequality (9) holds not only if VarY = VarX but also in case
when A(VarY −VarX) > 0. This means that if the gap between X’s and Y ’s
is in the area where the function f is strictly convex/concave (i.e. A > (<)0),
then the assumption V3) of Theorem 1.4 can be replaced by a weaker condition
VarY > (6)VarX.

If f changes convexity between X’s and Y ’s, then we can choose A = 0 and
the assumption V3) becomes obsolete. In fact, in this case the Levinson inequality
follows immediately from the Jensen inequality, because the left-hand side of (4) is
nonpositive, while its right-hand side is nonnegative. Thus we obtain the following
version of Theorem 1.4.
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Theorem 5.1
Let I be an open subinterval of R (bounded or unbounded), f : I → R be a 3-convex
function and X,Y : (Ω, µ)→ I be two random variables satisfying

(1) E[X2], E[Y 2], E[f(X)], E[f(Y )], E[f ′(X)], E[f ′(Y )], E[Xf ′(X)], E[Y f ′(Y )]
are finite,

(2) ess supX 6 ess inf Y ,

(3) f ′′+(ess supX) > 0 and VarX 6 VarY , or f ′′−(ess inf Y ) < 0 and VarX >
VarY , or f ′′+(ess supX) 6 0 6 f ′′−(ess inf Y ),

then
E[f(X)]− f(E[X]) 6 E[f(Y )]− f(E[Y ])

If X and Y are discrete random variables, then we obtain the following corol-
lary.

Corollary 5.2
Let f : I → R be a 3-convex function, p1, . . . , pm and q1, . . . , qn be positive real
numbers such that p1 + . . .+pm = q1 + . . .+ qn = 1. For x1, . . . , xm, y1, . . . , yn ∈ I
such that

max
16i6m

xi 6 min
16i6n

yi, (10)

let x =
∑m

i=1 pixi and y =
∑n

i=1 qiyi. If

f ′′+(maxxi) > 0 and
m∑
i=1

pi(xi − x)2 6
n∑

i=1

qi(yi − y)2,

or

f ′′−(minxi) < 0 and
m∑
i=1

pi(xi − x)2 >
n∑

i=1

qi(yi − y)2,

or
f ′′+
(

max
16i6m

xi
)
6 0 6 f ′′−

(
min

16i6n
yi
)
,

then
m∑
i=1

pif(xi)− f(x) 6
n∑

i=1

qif(yi)− f(y).

The function V used in the proof of Theorem 1.4 is convex, so we can apply
the Hermite-Hadamard inequality.

Corollary 5.3
If the assumptions of Theorem 1.4 or 5.1 are satisfied and F (x) =

∫
f(x) dx, then

0 6 E
[
f
(Y + E[Y ]

2

)]
− f(E[Y ])−E

[
f
(X + E[X]

2

)]
+ f(E[X])

6 E
[F (Y )− F (E[Y ])

Y −E[Y ]

]
− f(E[Y ])−E

[F (X)− F (E[X])

X −E[X]

]
+ f(E[X])

6
1

2
(E[f(Y )]− f(E[Y ])−E[f(X)] + f(E[X])).
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Its discrete version reads as follows

Corollary 5.4
Under the assumptions of Corollary 5.2 the following inequalities are valid:

0 6
n∑

i=1

qif
(yi + y

2

)
− f(y)−

m∑
i=1

pif
(xi + x

2

)
+ f(x)

6
n∑

i=1

qi

∫ yi

y
f(t) dt

yi − y
− f(y)−

m∑
i=1

pi

∫ xi

x
f(t) dt

xi − x
+ f(x)

6
1

2

[ n∑
i=1

qif(yi)− f(y)−
m∑
i=1

pif(xi) + f(x)

]
.

Note that the rightmost inequality can be rewritten in a nice symmetric form

m∑
i=1

pi

(
f(xi) + f(x)

2
−
∫ xi

x
f(t) dt

xi − x

)
6

n∑
i=1

qi

(
f(yi) + f(y)

2
−
∫ yi

y
f(t) dt

yi − y

)
, (11)

while the leftmost inequality is

m∑
i=1

pi

(∫ xi

x
f(t) dt

xi − x
− f

(xi + x

2

))
6

n∑
i=1

qi

(∫ yi

y
f(t) dt

yi − y
− f

(yi + y

2

))
. (12)

6. Applications

As an application we provide generalization and refinement of the famous Ky-
Fan inequality: if 0 < xi 6 1

2 and yi = 1− xi, then

A(y1, . . . , yi)

A(x1, . . . , xi)
6
G(y1, . . . , yi)

G(x1, . . . , xi)
.

Levinson in [3] noticed, that this inequality (in weighted version) follows from
his inequality by taking f(x) = log x. The logarithmic function is concave, so if∑m

i=1 pi(xi − x)2 >
∑n

i=1 qi(yi − y)2 and (10) holds, then Corollary 5.4 yields∑n
i=1 qiyi∑m
i=1 pixi

6

∏n
i=1A

qi(yi, y)∏m
i=1A

pi(xi, x)
6

∏n
i=1 I

qi(yi, y)∏m
i=1 I

pi(xi, x)
6

∏n
i=1G

qi(yi, y)∏m
i=1G

pi(xi, x)
6

∏n
i=1 y

qi
i∏m

i=1 x
pi

i

,

where A(x, y) = x+y
2 , I(x, y) = e−1(xx

yy )
1

x−y and G(x, y) =
√
xy are the arithmetic,

identric and geometric means.
Consider the function f(x) = − 1

x for x > 0.
If x’s and y’s are the same as in the previous example, then, by (11)

m∑
i=1

pi

( 1

H(xi, x)
− 1

L(xi, x)

)
>

n∑
i=1

qi

( 1

H(yi, y)
− 1

L(yi, y)

)
,
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where H(x, y) = 2xy
x+y and L(x, y) = x−y

log x−log y denote the harmonic and the loga-
rithmic means. In this case Corollary 5.4 gives

1

x
− 1

y
>

m∑
i=1

pi
L(xi, x)

−
n∑

i=1

qi
L(yi, y)

.

In particular, setting y1 = . . . = yn > maxxi we obtain the inequality

1

x
>

m∑
i=1

pi
L(xi, x)

valid for all positive x’s.
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