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On Levinson’s inequality

Abstract. We give a very simple proof of the classical Levinson inequality
and generalize the result by Mercer.

1. Introduction

In 1964 Norman Levinson ([3]) used the Taylor expansion to prove the following
inequality.

THEOREM 1.1 ([3])
Suppose that f: [0,¢] — R has a nonnegative third derivative, for i = 1,...,n
pi>0,0<> <5, y,=c—x; and Yo pi =1, then the inequality

Zpif(xi) —f(@) < Zpif(yi) - /@) (1)
i=1 i=1

holds. Here T = Y .  pix; and § = > -, p;y; denote the weighted arithmetic
means.

The same year Tiberiu Popoviciu generalized it by showing that for (1) to
hold it is enough that f be 3-convex ([6]), and Peter S. Bullen ([2]) gave an
alternative proof using mathematical induction. There are also other versions of
this inequality, see e.g. [5]. By rescaling axes, the classic Levinson inequality can
be restated in the following way.

THEOREM 1.2 ([2])
If f: [a,b] = R is 8-convex, a < x;, y; < b, v, +y; =c¢, p; >0 fori=1,...,n,
St pi=1 and

max(x1,...,%,) < min(yy, ..., Yn), (2)

then (1) holds.

As we can see, both versions assume that x’s and y’s add up to the same
number. Recently, Mercer made a significant improvement in [4].
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THEOREM 1.3
If f: [a,b] = R satisfies f" >0, p; >0 fori=1,...,n, > pi=1, and a < a;,
y; < b are such that (2) holds and

Y opil@i =2 =Y pilyi —9)% 3)
i=1 i=1

then (1) holds.

It is natural to try to get similar result for 3-convex function. In this paper we
shall give a very simple proof of Theorem 1.2 and generalize the Mercer’s result in
the following way.

THEOREM 1.4
Let I be an open subinterval of R (bounded or unbounded), f: I — R be a 3-convex
function and X, Y : (Q,u) — I be two random variables satisfying

V1) E[X;], E[Y?], E[f(X)], E[f(Y)], E[f"(X)], E[f'(Y)], E[X f'(X)], E[Y f'(Y)]
are finite,

V2) esssup X < essinfY,

V3) Var X = VarY,

then
E[f(X)] - f(E[X]) < E[f(Y)] - F(E[Y]). (4)

We also provide some conditions for (4) to hold if the condition V3) is not
satisfied.

2. Definitions and basic properties

DEFINITION 2.1
For a function f: I — R its n'" divided difference is defined inductively by the
formula

f(zo) if n =0,
[an ceey Iy .ﬂ = [-r07 vy Tn—2,Tn; .ﬂ - [an ey Tn—2,Tn—1;, f]
Ty — Tp—1

if n >0,

where z;’s are pairwise distinct.

DEFINITION 2.2
A function f: I — R is called n-convez if

[0y ..., Zn; f]1 >0

for any choice of arguments, and n-concave if the inverse inequality holds.
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The 1-convex (resp. concave) functions are the increasing (resp. decreasing)
functions, while the 2-convex (resp. concave) functions are convex (resp. concave)
functions, i.e. the functions satisfying the inequality

fltz+ (1 =t)y) < (resp. 2)tf(z) + (1 —1)f(y)

forall z,ye T and 0 <t < 1.
The following property follows immediately from definition.

PROPERTY 2.3 o) am)
The function g is convex if and only if its divided difference h(x,y) = %,
x # y increases in both variables.

This implies immediately

PROPERTY 2.4
If g is convex, then its right and left derivatives exist in the interior of its domain
and for x < y the inequalities

hold.

Another useful property of symmetric sum follows also from Property 2.3.

PROPERTY 2.5
If g is convezx, then the symmetric sum g(a+ z) + g(a — x) increases for x > 0.

Boas and Widder gave the following characterization of n-convex functions.

PROPERTY 2.6 ([1])
If a function g is n-convex, then it is n — 2 times differentiable and ¢("~2) is
CONver.

At the end of this section let us remind the Leibniz Rule.

LEMMA 2.7 (DIFFERENTIATION UNDER INTEGRAL)
Let I be an open subinterval of R and (2, p) be a measure space. Suppose a function
h: I xQ — R satisfies the following conditions:

L1) for everyt € I the function h(t,-) is integrable,
L2) for every t € I the derivative hy exists u a.e.

L3) there exists an integrable function 0: Q@ — R such that for every t |h:(t,w)| <
O(w).

Then for everyt € I
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3. Simple proof of Theorem 1.2

We can rewrite (1) as

f(C - gpﬂ?i> - f(gpil‘i) < gpif(c —xi) - iz:pif(l“i)a (5)

which is the Jensen inequality for the function g(z) = f(c—z)— f(z). The function
g is differentiable by Property 2.6. To show its convexity, note that

e I ({ R CEP) RV CR CBP)
J@=-lf =)+ F@==f(5+(5-2))+7(5-(5-2))]

As x increases, 5 — x decreases, and by Property 2.5, the expression in square
brackets decreases. Thus ¢’ increases, so g is convex and we are done.

4. Proof of Theorem 1.4
For 0 < t < 1 define two new random variables
X, =tX+ (1 -tE[X] and Y, =tV + (1 —t)E[Y]
and consider the function
U(t,w) = f(Ye(w)) = FEY]) = [f(Xe(w)) = FE[X])]. (6)

Our goal will be to show that V (t) = [, U(t,w) p(dw) is a nonnegative, increasing,
convex function of ¢.

Let d be any number satisfying esssup X < d < essinf Y. The proof is split
into several steps.

4.1. Behavior near the endpoints of the interval I = (a, b)

The functions f and f’ are continuous, thus bounded on every compact subin-
terval of (a,b). In order to obtain some global bounds we need to know how they
behave near the ends.

REMARK 4.1

Since a function g is convex or concave in the interval (a,b), its monotonicity
cannot change more that once. If it is not bounded near a, we conclude that there
exists a’ > a such that g preserves sign and |g| decreases in (a,a’). Similarly, or g
is bounded near b or there exists b’ < b such that g preserves sign and |g| increases

in (V/,b).

Since f is 3-convex, its derivative is convex and its monotonicity changes at
most once. Thus the convexity of f changes at most once, and consequently the
Remark 4.1 applies to both f and f’.

4.2. Absolute integrability

Let g be any of f, f’ or Idgr -f’, where Idgr is the identity function on R. It
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follows from the results of the subsection 4.1. that g is bounded from above or
from below on (a,d]. Since

/ 9(X) pldw) = / 9(X) p(dw) + / 9(X) uldw)
Q {w: g(X(w))>0} {w: g(X(w))<0}

we conclude that two integrals in this formula are finite, thus so is the third one,
therefore

Jlsoiman = [ a@uan - [ g ()
Q {w: g(X (w))>0} {w: g(X(w))<0}

is also finite.
The same holds for g(Y).

4.3. Leibniz Rule

We shall show now that the function U defined by formula (6) satisfies the
Leibniz Rule. Consider f(X;). If f is bounded near a, then clearly the assumption
L1) is satisfied. If not, then choose a’ as in step 4.1. in such a way that o’ < E[X].
Let M = max,e[q,q) |f(2)]. Then we have

M if Xy(w) € [d, d],

F(Xelw)l < { |f (X (w))] otherwise, since X;(w) > X (w).

Thus | f(X¢)| < max(M, f(X)) and we are done with L1).
By Property 2.6 condition L2) is also satisfied. To show that L3) holds note
that

| S760] = 10X = BIXDF (X)) < X7/ (X)) + [BIXLF ()

If f' is bounded, then the right-hand side is not greater that M|X|+ N for some
M, N > 0, otherwise the same reasoning as above applied to f’ gives the bound
max(|X f/(X)| + [BIX]|Lf/(X)], (max(la’], d]) + [E[X])M).

The same reasoning can be applied to f(Y}), so we can apply the Leibniz Rule
to the function U.

4.4. Final step

Clearly, U(0,w) = 0, so V(0) = 0. The function U is differentiable in ¢ for all
w and

Ui(t,w) = (Y(w) - EY]) f'(Vi(w)) — (X (w) — B[X]) f'(X¢(w)). (7)

Applying the Leibniz Rule we obtain

V'(0) = /Ut(O,w) w(dw) = 0.
Q
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In virtue of Property 2.6, the convexity of the derivative of a 3-convex functions
implies that f”(esssupX) < f/(essinfY’) (f denotes here the right and left
derivatives of f’). Let A be an arbitrary number from the interval [f” (esssup X),

[ (essinf Y)].
We have
Ut(U,w) - Ut(v,w) _ (Y(w) _ E[Y])f/(yu(w» _ fl(Yv(w))
~ (X (w) — B[x)) K@) = F(Xo @)

o [ (Yu(w)) — f'(Yo(w))
) = B, ) = Vo)
o ['(Xu(w)) — f(Xo(w))
Xu(w) - Xv(w)
Yu(w)) — (Yo (w))
Yu(w) — Yy (w)
['(Xu(w)) — f/(Xv(w))}
Xy(w) — Xp(w)
+A[(Y () - E[Y))* - (X (w) - E[X])?].

- (X(w) - E[X])

— (v(w) - Bly) [ - 4]

+ (X(w) — B[X])?[4 -

Property 2.3 applied to f’ shows that the expressions in square brackets in (8) are
nonnegative a.e., so

Ut (u,w) — Up(v,w)

u—v

> Al(Y(w) - B[Y])* - (X(w) - E[X])’] ae.

Integrating and applying once more the Leibniz Rule one get
V' (u) — V'(v)

u—v

> A(VarY — Var X) = 0. (9)

This means V' is increasing, and we conclude that V is nonnegative and convex
in the unit interval. In particular V' (0) < V(1), which is the Levinson inequality.

5. Further results

Let us take a closer look at the proof of Theorem 1.4. We have some freedom in
selection of A: this can be any number from the gap between f”(X) and f”(Y).
The critical inequality (9) holds not only if VarY = Var X but also in case
when A(VarY — Var X) > 0. This means that if the gap between X’s and Y’s
is in the area where the function f is strictly convex/concave (i.e. A > (<)0),
then the assumption V3) of Theorem 1.4 can be replaced by a weaker condition
VarY > (<) Var X.

If f changes convexity between X’s and Y’s, then we can choose A = 0 and
the assumption V3) becomes obsolete. In fact, in this case the Levinson inequality
follows immediately from the Jensen inequality, because the left-hand side of (4) is
nonpositive, while its right-hand side is nonnegative. Thus we obtain the following
version of Theorem 1.4.
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THEOREM 5.1
Let I be an open subinterval of R (bounded or unbounded), f: I — R be a 3-convez
function and X,Y : (Q, u) = I be two random variables satisfying
(1) E[X?], E[Y?], E[f(X)], E[f(Y)], E[/'(X)], E[f'(Y)], E[X f"(X)], E[Y f'(Y)]
are finite,

(2) esssup X < essinf Y,

(3) f{(esssupX) >0 and Var X < VarY, or f”(essinfY) < 0 and Var X >
VarY, or f{(esssup X) < 0 < f”(essinfY),
then
E[f(X)] - f(E[X]) <E[f(Y)] - f(E[Y])

If X and Y are discrete random variables, then we obtain the following corol-
lary.

COROLLARY 5.2

Let f: I — R be a 3-convex function, p1,...,pm and qi,...,q, be positive real
numbers such thatp1+...+pm=q+...+qo=1. Forxy,...,Tm,Y1,---,Yn € I
such that

max x; < min y;, (10)
1<ig<m 1<i<n

letT =" pixi andy=> ., qy;. If

Y(maxz;) >0 and sz‘(ﬂfi —-7)2 < Z ai(yi —9)%,
i=1 ;

i=1
or
m n
f/(minx;) <0 and Zpi(xi -7 > Z(h‘(yi -7)%
i=1 i=1
or
1" N<o< . )
+(121%)§1 ;) <0< f_(lglilgn Yi),
then

m

Zpifm) — f(@) < Zqif<yi) — (@)

The function V' used in the proof of Theorem 1.4 is convex, so we can apply
the Hermite-Hadamard inequality.

COROLLARY 5.3
If the assumptions of Theorem 1.4 or 5.1 are satisfied and F(xz) = [ f(x)dx, then

o< B[r(“E2N)]) - sy - m[r (2] 4 remix))

<l - s
< %(E[f(Y)] - [(E[Y]) - E[f(X)] + f(E[X])).
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Its discrete version reads as follows

COROLLARY 5.4
Under the assumptions of Corollary 5.2 the following inequalities are valid:

\; lf(yz"‘y) sz (x1+:c)+f(f)
< i%ﬁ;_y - f(®) ;pzf;;f_lt+f(x)
5[ as ) 1@ - Lt + 1)

i=1
Note that the rightmost inequality can be rewritten in a nice symmetric form

T f@) 4+ f@ R0 O f) + fm) @)t
;pi( 5 - = )<ZCI¢( 5 E— >a (11)

Ty —7T ;
i = Y

while the leftmost inequality is

S (EL00p(zrm)) o5 (B2

i=1

6. Applications

As an application we provide generalization and refinement of the famous Ky-
Fan inequality: if 0 < z; < % and y; = 1 — x;, then

Ay, -, Y:) Gty Yi)
Alzr,o30) S Clon, )

Levinson in [3] noticed, that this inequality (in weighted version) follows from
his inequality by taking f(x) = loga. The logarithmic function is concave, so if
S pi(r —7)* > 300 qi(yi — ¥)? and (10) holds, then Corollary 5.4 yields

i1y i A"(wiy) I I (i) i, G (v ) _ T, o
S s S T AP -*) I, (o) T, Gl ) S T1, 20

where A(z,y) = 3¢, I(z,y) = e_l(%) 7 and G(z,y) = \/zy are the arithmetic,
identric and geometric means.

Consider the function f(z) = —1 for z > 0.

If 2’s and y’s are the same as in the previous example, then, by (11)

m

Zpl( T Lz, ) qu( H(y; _L(yli,?))’

Z?
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2zy

where H(z,y) = 77 and L(z,y) = ﬁ denote the harmonic and the loga-

rithmic means. In this case Corollary 5.4 gives

1 1 P _ zn: qi
Ty & L,7) % L(yy)
In particular, setting y1 = ... =y, > maxx; we obtain the inequality
1 i _pi
z~ 4~ L(x;,T)
i=1

valid for all positive x’s.
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