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Approximation by some combinations of the Poisson

integrals for Hermite and Laguerre expansions

Abstract. The aim of this paper is the study of a rate of convergence of some
combinations of the Poisson integrals for Hermite and Laguerre expansions.
We are able to achieve faster convergence for our modified operators over the
Poisson integrals. We prove also the Voronovskaya type theorem for these
new operators.

1. Introduction

In recent years, several classical positive linear operators, for instance the
Szász-Mirakyan, Baskakov-Durrmeyer operators, have been investigated inten-
sively. There have been proposed some modifications of these operators, which
have a better rate of convergence than the classical operators (see [1, 8]).

This work presents a new modification of the Poisson integrals for Hermite
and Laguerre expansions. We obtain certain positive linear operators, which have
better error estimation than the Poisson integrals studied in [2, 4]. Moreover, this
modification makes it possible to state the Voronovskaya type formula for these
Poisson integrals.

For the function f ∈ Lp(e−z2), p ≥ 1 (f is defined on R), the Poisson integral
for Hermite polynomial expansion is defined by

F (f)(x, y) = F (f ;x, y) =

1∫
0

T (x, r)A(f ; r, y) dr, x > 0, y ∈ R, (1)

where

T (x, r) =
x exp( x2

2 ln r )

(2π)
1
2 r(− ln r)

3
2

,

A(f ; r, x) =

∞∫
−∞

P (r, x, z)f(z)e−z
2

dz, 0 < r < 1, x > 0,

P (r, x, z) =

∞∑
n=0

rnHn(x)Hn(z)√
π2nn!

=
1√

π(1− r2)
exp

(−r2x2 + 2rxz − r2z2

1− r2
)
,
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and Hn is the n-th Hermite polynomial, n = 0, 1, 2, . . . (see, for instance, [6]). We
note that

H0(z) = 1, H1(z) = 2z, H2(z) = 4z2 − 2,

H3(z) = 8z3 − 12z, H4(z) = 16z4 − 48z2 + 12.

The Poisson integral of a function f ∈ Lp(zαe−z), p ≥ 1, α > −1 (f is defined
on R+ = [0,∞)) for Laguerre polynomial expansion is defined by

G(f)(x, y) = G(f ;x, y) =

1∫
0

T
( x√

2
, r
)
B(f ; r, y) dr, x > 0, y ∈ R+, (2)

where

B(f ; r, x) =

∞∫
0

K(r, x, z)f(z)zαe−z dz, 0 < r < 1, x > 0,

K(r, x, z) =

∞∑
n=0

rnn!

Γ(n+ α+ 1)
Lαn(x)Lαn(z)

=
(rxz)−

α
2

1− r
exp

(−r(x+ z)

1− r

)
Iα

(2(rxz)
1
2

1− r

)
,

Iα is the modified Bessel function given by

Iα(s) =

∞∑
n=0

sα+2n

2α+2nn!Γ(α+ n+ 1)

(see [3]), and Lαn is the n-th Laguerre polynomial, n = 0, 1, 2, . . . (see, for instance,
[6]). We note that

Lα0 (s) = 1,

Lα1 (s) = 1 + α− s,

Lα2 (s) =
1

2
[(α+ 1)(α+ 2)− 2(α+ 2)s+ s2],

Lα3 (s) =
1

6
[(α+ 1)(α+ 2)(α+ 3)− 3(α+ 2)(α+ 3)s+ 3(α+ 3)s2 − s3],

Lα4 (s) =
1

24
[(α+ 1)(α+ 2)(α+ 3)(α+ 4)− 4(α+ 2)(α+ 3)(α+ 4)s

+ 6(α+ 3)(α+ 4)s2 − 4(α+ 4)s3 + s4].

Muckenhoupt obtained the following results.

Theorem 1.1 ([4])
If f ∈ Lp(e−z2), then F (f ;x, ·) ∈ Lp(e−z2) for x > 0 and

(a) ‖F (f ;x, ·)‖p ≤ ‖f‖p, 1 ≤ p ≤ ∞,

(b) ‖F (f ;x, ·)− f‖p → 0 as x→ 0+ for 1 ≤ p <∞,
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(c) limx→0+ F (f ;x, y) = f(y) almost everywhere, 1 ≤ p ≤ ∞,

(d) ∂2F
∂x2 + ∂2F

∂y2 − 2y ∂F∂y = 0 in Ω = {(x, y) : x > 0, y ∈ R},

where ‖f‖p denotes the norm in Lp(e−z
2

) of a function f defined on R.

Theorem 1.2 ([4])
If f ∈ Lp(zαe−z), then G(f ;x, ·) ∈ Lp(zαe−z) and

(a) ‖G(f ;x, ·)‖p ≤ ‖f‖p, 1 ≤ p ≤ ∞,

(b) ‖G(f ;x, ·)− f‖p → 0 as x→ 0+ for 1 ≤ p <∞,

(c) limx→0+ G(f ;x, y) = f(y) almost everywhere in [0,∞), 1 ≤ p ≤ ∞,

(d) ∂2G
∂x2 + y ∂

2G
∂y2 + (α+ 1− y)∂G∂y = 0 in Ω = {(x, y) : x > 0, y ≥ 0},

where ‖f‖p denotes the norm in Lp(zαe−z) of a function f defined on R+.

In the paper [2] some estimations of the rate of convergence of the integrals F
and G were given. The following theorems were proved.

Theorem 1.3 ([2])
If f ∈ C(R) ∩ Lp(e−z2), then

|F (f ;x, y)− f(y)| ≤ 3ω(f, µx(y))

for x > 0 and y ∈ R, where

µx(y) =
(
y2
(
1− 2e−

√
2x + e−2x

)
+

1

2

(
1− e−2x

)) 1
2

and ω(f, δ) is the classical modulus of continuity of function f .

Theorem 1.4 ([2])
If f ∈ C(R+) ∩ Lp(zαe−z), then

|G(f ;x, y)− f(y)| ≤ 3ω(f, µα,x(y))

for x > 0 and y ≥ 0, where

µα,x(y)

=
(
y2 − 2y2e−x + y2e−

√
2x + 2(α+ 2)ye−x − 2(α+ 2)ye−

√
2x

− 2(α+ 1)y + 2(α+ 1)ye−x + (α+ 2)(α+ 1)
(
1− 2e−x + e−

√
2x
)) 1

2

.

Since

lim
x→0+

µ2
x(y)

x
= y2(2

√
2− 2) + 1,

lim
x→0+

µ2
α,x(y)

x
= (2−

√
2)(y2 + (α+ 1)(α+ 2) + 2y(α+ 2)(

√
2− 1)− 2y(α+ 1),
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we conclude that

|F (f ;x, y)− f(y)| ≤ K1(y)ω(f,
√
x)

and

|G(f ;x, y)− f(y)| ≤ K2(y, α)ω(f,
√
x),

where K1(y), K2(y, α) are positive constants.

2. The new integralsH andL

In the present section we will propose some combinations of the operators F
and G. Our new operators have a better rate of convergence than the Poisson
integrals given by (1) and (2).

We define the operator H(f) by

H(f)(x, y) = H(f ;x, y) = 2F (f ;x, y)− F (f ; 2x, y), x > 0, y ∈ R. (3)

It is easy to observe that operator H(f) is linear and positive.
Let ei(z) = zi, i = 1, 2, 3, 4, e0(z) ≡ 1 and ψy(z) = z − y. From

1∫
0

T (x, r)rn dr = exp
(
− (2n)

1
2x
)
, n = 0, 1, 2, . . .

(see [4]) and by (3) we get the following lemmas.

Lemma 2.1
Let x > 0. For each y ∈ R it follows

H(e0;x, y) = H0(y) = 1,

H(e1;x, y) =
1

2
H1(y)

(
2e−
√
2x − e−2

√
2x
)
,

H(e2;x, y) =
1

4
H2(y)

(
2e−2x − e−4x

)
+

1

2
,

H(e3;x, y) =
1

8
H3(y)

(
2e−
√
6x − e−2

√
6x
)

+
3

4
H1(y)

(
2e−
√
2x − e−2

√
2x
)
,

H(e4;x, y) =
1

16
H4(y)

(
2e−2

√
2x − e−4

√
2x
)

+
3

4
H2(y)

(
2e−2x − e−4x

)
+

3

4
.

Lemma 2.2
Let x > 0. For each y ∈ R we have

H(ψy;x, y) =
1

2
H1(y)

(
2e−
√
2x − e−2

√
2x − 1

)
,

H(ψ2
y;x, y) =

1

4
H2(y)

(
2e−2x − e−4x − 1

)
− yH1(y)

(
2e−
√
2x − e−2

√
2x − 1

)
,

H(ψ4
y;x, y) =

1

16
H4(y)

(
2e−2

√
2x − e−4

√
2x − 1

)
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− 1

2
yH3(y)

(
2e−
√
6x − e−2

√
6x − 1

)
+

3

4
H2(y)

(
1 + 2y2

)(
2e−2x − e−4x − 1

)
−H1(y)

(
3y + 2y3

)(
2e−
√
2x − e−2

√
2x − 1

)
.

Applying Lemma 2.2 and the L’Hospital’s Rule we obtain the result.

Lemma 2.3
For every fixed y ∈ R we have

lim
x→0+

H(ψy;x, y)

x2
= −4y, lim

x→0+

H(ψ2
y;x, y)

x2
= 4, lim

x→0+

H(ψ4
y;x, y)

x2
= 0.

According to the arguments of the paper [2], the results of Lemma 2.2 and
Lemma 2.3 we shall state the estimation of the rate of approximation of f by
H(f).

Theorem 2.4
If f ∈ C(R) ∩ Lp(e−z2), then

|H(f ;x, y)− f(y)| ≤ 3ω(f, µ∗x(y)) ≤ K(y)ω(f, x)

for x > 0 and y ∈ R, where µ∗x(y) = (H(ψ2
y;x, y))

1
2 and K(y) is a positive constant.

Remark 2.5
Drawing a comparison between Theorem 1.3 and Theorem 2.4 we notice that the
approximation order of the operator H(f) is essentially better than that of F (f).

We shall define the operator L(f) for the function f ∈ Lp(zαe−z):

L(f)(x, y) = L(f ;x, y) = 2G(f ;x, y)−G(f ; 2x, y), x > 0, y ∈ R+. (4)

The operator L(f) is linear and positive and by simple calculation we get the
following lemmas.

Lemma 2.6
Let x > 0 and α > −1. For each y ∈ R+ it follows

L(e0;x, y) = Lα0 (y) = 1,

L(e1;x, y) = Lα1 (y)
(
1 + e−2x − 2e−x

)
+ yLα0 (y),

L(e2;x, y) = −2Lα2 (y)
(
1 + e−2

√
2x + 2e−

√
2x
)

+ 2(α+ 2)Lα1 (y)
(
1 + e−2x − 2e−x

)
+ y2Lα0 (y),

L(e3;x, y) = 6Lα3 (y)
(
1 + e−2

√
3x − 2e−

√
3x
)

− 6(α+ 3)Lα2 (y)
(
1 + e−2

√
2x − 2e−

√
2x
)

+ 3(α+ 3)(α+ 2)Lα1 (y)
(
1 + e−2x − 2e−x

)
+ y3Lα0 (y),
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L(e4;x, y) = −24Lα4 (y)
(
1 + e−4x − 2e−2x

)
+ 24(α+ 4)Lα3 (y)

(
1 + e−2

√
3x − 2e−

√
3x
)

− 12(α+ 4)(α+ 3)Lα2 (y)
(
1 + e−2

√
2x − 2e−

√
2x
)

+ 4(α+ 4)(α+ 3)(α+ 2)Lα1 (y)
(
1 + e−2x − 2e−x

)
+ y4Lα0 (y).

Lemma 2.7
Let x > 0 and α > −1. For each y ∈ R+ we have

L(ψy;x, y) = Lα1 (y)
(
1 + e−2x − 2e−x

)
,

L(ψ2
y;x, y) = −2Lα2 (y)

(
1 + e−2

√
2x − 2e−

√
2x
)

+ 2(α+ 2− y)Lα1 (y)
(
1 + e−2x − 2e−x

)
,

L(ψ4
y;x, y) = −24Lα4 (y)

(
1 + e−4x − 2e−2x

)
+ 24(α+ 4− y)Lα3 (y)

(
1 + e−2

√
3x − 2e−

√
3x
)

− 12
(
(α+ 4)(α+ 3)− 2y(α+ 3) + y2

)
Lα2 (y)

(
1 + e−2

√
2x − 2e−

√
2x
)

+ 4
(
(α+ 4)(α+ 3)(α+ 2)− 3y(α+ 3)(α+ 2)

+ 3y2(α+ 2)− y3
)
Lα1 (y)

(
1 + e−2x − 2e−x

)
.

From Lemma 2.7 we obtain the result.

Lemma 2.8
For every fixed y ∈ R+,

lim
x→0+

L(ψy;x, y)

x2
= Lα1 (y), lim

x→0+

L(ψ2
y;x, y)

x2
= 2y, lim

x→0+

L(ψ4
y;x, y)

x2
= 0.

Using the arguments of the paper [2] and the above lemmas we can state the
following estimation.

Theorem 2.9
If f ∈ C(R+) ∩ Lp(zαe−z), then

|L(f ;x, y)− f(y)| ≤ 3ω(f, µ∗α,x(y)) ≤ K1(y)ω(f, x)

for x > 0 and y ∈ R+, where µ∗α,x(y) = (L(ψ2
y;x, y))

1
2 and K1(y) is a positive

constant.

Remark 2.10
Drawing a comparison between Theorem 2.9 and Theorem 1.4 we notice, similarly
to the results for H(f), that the approximation order of L(f) is essentially better
than that of G(f).
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3. The Voronovskaya type theorem

The Voronovskaya theorem for some Poisson integrals for Hermite and Laguerre
expansions was established by Toczek and Wachnicki in [7] and also studied by
Özarslan and Duman in [5]. In this section we present the Voronovskaya type
theorem for the operators H(f) and L(f).

Theorem 3.1
Let y ∈ R. If f ∈ L∞(R) and f is a continuous, differentiable function in the
neighbourhood of the point y ∈ R and f ′′(y) exists, then

lim
x→0+

H(f ;x, y)− f(y)

x2
= −4yf ′(y) + 2f ′′(y).

Proof. We remark that

f(t) = f(y) + (t− y)f ′(y) +
1

2
(t− y)2f ′′(y) + φ(t, y)(t− y)2

and φ is a bounded and continuous function of the variable t and

lim
t→y

φ(t, y) = 0.

In the sequel

H(f ;x, y) = f(y) + f ′(y)H(ψy;x, y) +
1

2
f ′′(y)H(ψ2

y;x, y) +H(φ(t, y)ψ2
y;x, y).

By Lemma 2.3 we have

lim
x→0+

H(f ;x, y)− f(y)

x2
= −4yf ′(y) + 2f ′′(y) + lim

x→0+

H(φ(t, y)ψ2
y;x, y)

x2
.

We prove that

lim
x→0+

H(φ(t, y)ψ2
y;x, y)

x2
= 0. (5)

Let ε > 0. There exists a number δ > 0 such that |φ(t, y)| < ε
2 for |t − y| < δ.

Moreover, there is a number M > 0 such that |φ(t, y)| < M for t ∈ R. Hence

H(φ(t, y)ψ2
y;x, y)

=

∫
|z−y|<δ

1∫
0

(2T (x, r)− T (2x, r))P (r, y, z)φ(z, y)ψ2
y(z)e−z

2

dr dz

+

∫
|z−y|≥δ

1∫
0

(2T (x, r)− T (2x, r))P (r, y, z)φ(z, y)ψ2
y(z)e−z

2

dr dz

= I1 + I2
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and

|I1| ≤ ε

∫
|z−y|<δ

1∫
0

(2T (x, r)− T (2x, r))P (r, y, z)ψ2
y(z)e−z

2

dr dz

≤ εH(ψ2
y;x, y).

If |z − y| ≥ δ, then (z−y)2
δ2 ≥ 1 and

|I2| ≤
M

δ2

∫
|z−y|≥δ

1∫
0

(2T (x, r)− T (2x, r))P (r, y, z)ψ4
y(z)e−z

2

dr dz

≤ M

δ2
H(ψ4

y;x, y).

It follows that

|H(φ(t, y)ψ2
y;x, y)|

x2
≤ ε

H(ψ2
y;x, y)

x2
+
M

δ2
H(ψ4

y;x, y)

x2
.

By Lemma 2.3 we have (5) and the proof is completed.

Corollary 3.2
If the function f verifies the assumptions of Theorem 3.1, then

H(f ;x, y)− f(y) = O(x2) as x→ 0+.

Using the same method we obtain the following result.

Theorem 3.3
Let y ∈ R+. If f ∈ L∞(R+) and f is a continuous, differentiable function in the
certain neighbourhood of the point y ∈ R+, and f ′′(y) exists, then

lim
x→0+

L(f ;x, y)− f(y)

x2
= (α+ 1− y)f ′(y) + yf ′′(y)

and
L(f ;x, y)− f(y) = O(x2) as x→ 0+.
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