
FOLIA 122Annales Universitatis Paedagogi
ae Cra
oviensisStudia Mathemati
a XI (2012)
Jan Górowski, Adam �omni
kiCongruen
es 
hara
terizing twin primes

Abstra
t. Inspired by P.A. Clement’s results in [2], we give new necessary
and sufficient conditions for two prime numbers to be twin primes.

Let n be a positive integer. A pair (n, n+ 2) is called a twin primes pair (or
twin primes for short) if n and n+ 2 are prime numbers.

In this paper we give four congruence relations which characterize twin primes.
Some basic facts and properties of congruence relations used here can be found
in [8]. The set of all prime numbers will be denoted P.

In 1946 as stated in [2] or 1949 as it is related in [8] P.A. Clement proved the
following characterization.

Theorem 1
Let n ≥ 2. A pair (n, n+ 2) is a twin primes pair if and only if

4((n− 1)! + 1) + n ≡ 0modn(n+ 2).

The proof of this theorem can be found in [2] or [6]. Other characterizations
of twin primes may be found in [1], [3] and [4]. The next results come from [5].

Theorem 2
If n ∈ N and n > 1 then

2n+ 1 ∈ P ⇐⇒ (n!)2 + (−1)n ≡ 0mod(2n+ 1).

Theorem 3
A positive integer n > 1 is a prime number if and only if

((n− 2)!!)2 + (−1)[
n

2
] ≡ 0modn.

Let us recall that 0!! = 1, 1!! = 1 and n!! = n(n− 2)!! for any integer n ≥ 2. In

the sequel instead of (n!)2 we will write n!2, similarly (n)!!
2

will denote ((n)!!)2.
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Theorem 4
A positive integer n > 1 is a prime number if and only if

(n− 1)!!2 + (−1)
[n
2
]
≡ 0modn.

The following theorem is called the Leibniz’s theorem.

Theorem 5 ([7], p.214)
A positive integer n > 1 is a prime number if and only if (n− 2)!− 1 ≡ 0modn.

We start by proving the following

Theorem 6
Let n > 0 be an integer, then (2n+ 1, 2n+ 3) is a twin primes pair if and only if

2(n!2 + (−1)
n

) + 5(−1)
n

(2n+ 1) ≡ 0mod(2n+ 1)(2n+ 3). (1)

Proof. Let n > 0 be an integer such that (1) holds true. Then

2(n!2 + (−1)
n

) ≡ 0mod(2n+ 1) and n!2 + (−1)
n

≡ 0mod(2n+ 1).

This and Theorem 2 imply that 2n+ 1 ∈ P. Moreover,

2(n!2 + (−1)
n

) + 5(−1)
n

(2n+ 1 + 2− 2) ≡ 0mod(2n+ 3),

thus
2(n!2 + (−1)

n

)− 10(−1)
n

≡ 0mod(2n+ 3). (2)

Since 1 = 2n+ 3 − 2(n + 1) we have gcd(n + 1, 2n+ 3) = 1 for n ∈ N, therefore
(2) is equivalent to

2((n+ 1)!2 + (−1)n(n+ 1)2)− 10(−1)n(n+ 1)2 ≡ 0mod(2n+ 3),

2((n+ 1)!
2
+ (−1)

n+1
)− 2(−1)

n+1

+ 2(−1)
n

(n+ 1)
2
− 10(−1)

n

(n+ 1)
2
≡ 0mod(2n+ 3),

2((n+ 1)!
2
+ (−1)

n+1
) ≡ 0mod(2n+ 3)

and finally to
(n+ 1)!

2
+ (−1)

n+1
≡ 0mod(2n+ 3). (3)

Condition (3) and Theorem 2 now yield 2n+ 3 ∈ P.
Conversely, assume that 2n + 1, 2n + 3 ∈ P, where n > 0 is an integer. By

Theorem 2 we obtain (3) which is equivalent (see first part of this proof) to (2).
Hence in view of −2 ≡ 2n+ 1mod(2n+ 3) we get

2(n!2 + (−1)
n

) + 5(−1)
n

(2n+ 1) ≡ 0mod(2n+ 3),

which in virtue of Theorem 2 and the fact that gcd(2n+ 1, 2n+ 3) = 1 for n ∈ N
gives

2(n!2 + (−1)
n

) + 5(−1)
n

(2n+ 1) ≡ 0mod(2n+ 1)(2n+ 3).

This completes the proof.
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Let us mention that condition (1) was obtained through a different method by

J.B. Dence, T.P. Dence in [3]. Now we prove

Theorem 7
Let n > 0 be an integer, then (2n+ 1, 2n+ 3) is a twin primes pair if and only if

8((2n− 1)!!
2
+ (−1)

n

) + 5(−1)
n

(2n+ 1) ≡ 0mod(2n+ 1)(2n+ 3). (4)

Proof. Fix n > 0 and let (4) be fulfilled. Then

8((2n− 1)!!
2
+(−1)

n

) ≡ 0mod(2n+1) and (2n− 1)!!
2
+(−1)

n

≡ 0mod(2n+1),

which in view of Theorem 3 yields 2n+ 1 ∈ P. Furthermore, by (4) we have

8((2n− 1)!!2 + (−1)n) + 5(−1)n(2n+ 1) ≡ 0mod(2n+ 3)

and hence
8((2n− 1)!!

2
+ (−1)

n

)− 10(−1)
n

≡ 0mod(2n+ 3). (5)

As gcd(2n+ 1, 2n+ 3) = 1 congruence (5) is equivalent to

(2n+ 1)!!
2
+ (−1)

n+1
≡ 0mod(2n+ 3). (6)

Indeed, condition (5) is equivalent to each of the following:

8((2n+ 1)!!2 + (−1)n(2n+ 1)2)− 10(−1)n(2n+ 1)2 ≡ 0mod(2n+ 3),

8((2n+ 1)!!
2
+ (−1)

n+1
)

+ 8(−1)
n

(2n+ 1)
2
− 10(−1)

n

(2n+ 1)
2
− 8(−1)

n+1
≡ 0mod(2n+ 3),

8((2n+ 1)!!
2
+ (−1)

n+1
) ≡ 0mod(2n+ 3),

which is equivalent to (6). Now congruence (6) and Theorem 3 imply that 2n+3 ∈
P. Conversely, suppose that 2n + 1, 2n + 3 ∈ P. By Theorem 3 we get (6) or
equivalently (5). This and the condition −2 ≡ 2n+ 1mod(2n+ 3) give

8((2n− 1)!!2 + (−1)n) + 5(−1)n(2n+ 1) ≡ 0mod(2n+ 3).

Now using Theorem 3 and the fact that gcd(2n+ 1, 2n+ 3) = 1 for n ∈ N we get

8((2n− 1)!!
2
+ (−1)

n

) + 5(−1)
n

(2n+ 1) ≡ 0mod(2n+ 1)(2n+ 3),

which ends the proof.

We may use Theorem 4 to prove in the similar way the following result.

Theorem 8
Let n > 0 be an integer, then (2n+ 1, 2n+ 3) is a twin primes pair if and only if

(2n)!!
2
+ (−1)

n

(2n+ 1) ≡ 0mod(2n+ 1)(2n+ 3).
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Lemma 1
If n ∈ N, n > 1 and

12((2n− 1)!− 1)− 5(2n+ 1) ≡ 0mod(2n+ 1)(2n+ 3),

then 3 ∤ (2n+ 1) and 3 ∤ (2n+ 3).

Proof. Suppose that 3 | (2n + 1) or 3 | (2n + 3) for some integer n ≥ 2. If
3 | (2n+ 1) then 2n+ 1 = 3k for some k > 1 such that k /∈ 2N. Therefore

12((3k − 2)!− 1)− 5 · 3k ≡ 0mod3k(3k + 2).

Hence
12((3k − 2)!− 1) ≡ 0mod 3k

and in consequence
(3k − 2)!− 1 ≡ 0modk.

However, k | (3k − 2)!, thus k | 1, a contradiction, so 3 ∤ (2n+ 1).
If 3 | (2n+ 3), then 2n = 3l for some l ≥ 1 such that l ∈ 2N. It follows that

12((3l− 1)!− 1)− 5 · (3l + 1) ≡ 0mod(3l + 1)(3l+ 3).

Thus
12((3l− 1)!− 1)− 5(3l+ 1) ≡ 0mod 3,

which gives
−5 ≡ 0mod3.

This contradiction shows that 3 ∤ (2n+ 3).

Using Lemma 1 we may proof the following

Theorem 9
Let n ≥ 1 be an integer, then (2n+ 1, 2n+ 3) is a twin primes pair if and only if

12((2n− 1)!− 1)− 5(2n+ 1) ≡ 0mod(2n+ 1)(2n+ 3). (7)

Proof. Notice that for n = 1 congruence (7) becomes −5 · 3 ≡ 0mod3 · 5 thus
for n = 1 the assertion follows. Assume now that n ≥ 2 is arbitrarily fixed and
(7) holds true. In view of Lemma 1 we get

12((2n− 1)!− 1)− 5(2n+ 1) ≡ 0mod(2n+ 1),

thus
12((2n− 1)!− 1) ≡ 0mod(2n+ 1)

and hence
(2n− 1)!− 1 ≡ 0mod(2n+ 1),

as gcd(12, 2n+1) = 1. Now using Theorem 5 we obtain 2n+1 ∈ P. Moreover, we
know that

12((2n− 1)!− 1)− 5(2n+ 3− 2) ≡ 0mod(2n+ 3)
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is equivalent to

12((2n− 1)!− 1) + 10 ≡ 0mod(2n+ 3). (8)

Since 1·(2n+3)−2n= 3 and 3 ∤ 2n+3, we get gcd(2n, 2n+3) = gcd(2n+1, 2n+3) =
1. Thus condition (8) is equivalent to:

12((2n+ 1)!− 2n(2n+ 1)) + 10 · 2n(2n+ 1) ≡ 0mod(2n+ 3),

12((2n+ 1)!− 1)− 4(2n+ 3)(n− 1) ≡ 0mod(2n+ 3),

12((2n+ 1)!− 1) ≡ 0mod(2n+ 3)

and finally to
((2n+ 1)!− 1) ≡ 0mod(2n+ 3). (9)

By Theorem 5 we get 2n + 3 ∈ P. Conversely, suppose that n ≥ 2 is such that
2n + 1 ∈ P and 2n + 3 ∈ P. In virtue of Theorem 5 and Lemma 1 from (9) we
obtain (8), which is equivalent to

12((2n− 1)!− 1)− 5(2n+ 1) ≡ 0mod(2n+ 3).

Using again Theorem 5 and the fact that gcd(2k+1, 2k+3) = 1 for k ∈ N we get
(7), this completes the proof.

A simple consequence of Theorems 6 and 7, it is enough to subtract (1) from
(4), is

Theorem 10
If 2n+ 1, 2n+ 3 are twin primes then

4(2n− 1)!!
2
− n!2 + 3(−1)

n

≡ 0mod(2n+ 1)(2n+ 3).Referen
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