Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XI (2012)

Jan Górowski, Adam Łomnicki Congruences characterizing twin primes

Abstract

Inspired by P.A. Clement's results in [2], we give new necessary and sufficient conditions for two prime numbers to be twin primes.

Let n be a positive integer. A pair $(n, n+2)$ is called a twin primes pair (or twin primes for short) if n and $n+2$ are prime numbers.

In this paper we give four congruence relations which characterize twin primes. Some basic facts and properties of congruence relations used here can be found in [8]. The set of all prime numbers will be denoted \mathbb{P}.

In 1946 as stated in [2] or 1949 as it is related in [8] P.A. Clement proved the following characterization.

Theorem 1

Let $n \geq 2$. A pair $(n, n+2)$ is a twin primes pair if and only if

$$
4((n-1)!+1)+n \equiv 0 \bmod n(n+2)
$$

The proof of this theorem can be found in [2] or [6]. Other characterizations of twin primes may be found in [1], [3] and [4]. The next results come from [5].

Theorem 2

If $n \in \mathbb{N}$ and $n>1$ then

$$
2 n+1 \in \mathbb{P} \Longleftrightarrow(n!)^{2}+(-1)^{n} \equiv 0 \bmod (2 n+1)
$$

Theorem 3

A positive integer $n>1$ is a prime number if and only if

$$
((n-2)!!)^{2}+(-1)^{\left[\frac{n}{2}\right]} \equiv 0 \bmod n
$$

Let us recall that $0!!=1,1!!=1$ and $n!!=n(n-2)!!$ for any integer $n \geq 2$. In the sequel instead of $(n!)^{2}$ we will write $n!^{2}$, similarly $(n)!!^{2}$ will denote $((n)!!)^{2}$.

Theorem 4

A positive integer $n>1$ is a prime number if and only if

$$
(n-1)!!^{2}+(-1)^{\left[\frac{n}{2}\right]} \equiv 0 \bmod n .
$$

The following theorem is called the Leibniz's theorem.
Theorem 5 ([7], p.214)
A positive integer $n>1$ is a prime number if and only if $(n-2)!-1 \equiv 0 \bmod n$.
We start by proving the following

Theorem 6

Let $n>0$ be an integer, then $(2 n+1,2 n+3)$ is a twin primes pair if and only if

$$
\begin{equation*}
2\left(n!^{2}+(-1)^{n}\right)+5(-1)^{n}(2 n+1) \equiv 0 \bmod (2 n+1)(2 n+3) \tag{1}
\end{equation*}
$$

Proof. Let $n>0$ be an integer such that (1) holds true. Then

$$
2\left(n!^{2}+(-1)^{n}\right) \equiv 0 \bmod (2 n+1) \quad \text { and } \quad n!^{2}+(-1)^{n} \equiv 0 \bmod (2 n+1)
$$

This and Theorem 2 imply that $2 n+1 \in \mathbb{P}$. Moreover,

$$
2\left(n!^{2}+(-1)^{n}\right)+5(-1)^{n}(2 n+1+2-2) \equiv 0 \bmod (2 n+3)
$$

thus

$$
\begin{equation*}
2\left(n!^{2}+(-1)^{n}\right)-10(-1)^{n} \equiv 0 \bmod (2 n+3) \tag{2}
\end{equation*}
$$

Since $1=2 n+3-2(n+1)$ we have $\operatorname{gcd}(n+1,2 n+3)=1$ for $n \in \mathbb{N}$, therefore (2) is equivalent to

$$
\begin{aligned}
& 2\left((n+1)!^{2}+(-1)^{n}(n+1)^{2}\right)-10(-1)^{n}(n+1)^{2} \equiv 0 \bmod (2 n+3) \\
& 2\left((n+1)!^{2}+(-1)^{n+1}\right)-2(-1)^{n+1} \\
&+2(-1)^{n}(n+1)^{2}-10(-1)^{n}(n+1)^{2} \equiv 0 \bmod (2 n+3) \\
& 2\left((n+1)!^{2}+(-1)^{n+1}\right) \equiv 0 \bmod (2 n+3)
\end{aligned}
$$

and finally to

$$
\begin{equation*}
(n+1)!^{2}+(-1)^{n+1} \equiv 0 \bmod (2 n+3) \tag{3}
\end{equation*}
$$

Condition (3) and Theorem 2 now yield $2 n+3 \in \mathbb{P}$.
Conversely, assume that $2 n+1,2 n+3 \in \mathbb{P}$, where $n>0$ is an integer. By Theorem 2 we obtain (3) which is equivalent (see first part of this proof) to (2). Hence in view of $-2 \equiv 2 n+1 \bmod (2 n+3)$ we get

$$
2\left(n!^{2}+(-1)^{n}\right)+5(-1)^{n}(2 n+1) \equiv 0 \bmod (2 n+3)
$$

which in virtue of Theorem 2 and the fact that $\operatorname{gcd}(2 n+1,2 n+3)=1$ for $n \in \mathbb{N}$ gives

$$
2\left(n!^{2}+(-1)^{n}\right)+5(-1)^{n}(2 n+1) \equiv 0 \bmod (2 n+1)(2 n+3)
$$

This completes the proof.

Let us mention that condition (1) was obtained through a different method by J.B. Dence, T.P. Dence in [3]. Now we prove

Theorem 7

Let $n>0$ be an integer, then $(2 n+1,2 n+3)$ is a twin primes pair if and only if

$$
\begin{equation*}
8\left((2 n-1)!!^{2}+(-1)^{n}\right)+5(-1)^{n}(2 n+1) \equiv 0 \bmod (2 n+1)(2 n+3) . \tag{4}
\end{equation*}
$$

Proof. Fix $n>0$ and let (4) be fulfilled. Then
$8\left((2 n-1)!!^{2}+(-1)^{n}\right) \equiv 0 \bmod (2 n+1) \quad$ and $\quad(2 n-1)!!^{2}+(-1)^{n} \equiv 0 \bmod (2 n+1)$,
which in view of Theorem 3 yields $2 n+1 \in \mathbb{P}$. Furthermore, by (4) we have

$$
8\left((2 n-1)!!^{2}+(-1)^{n}\right)+5(-1)^{n}(2 n+1) \equiv 0 \bmod (2 n+3)
$$

and hence

$$
\begin{equation*}
8\left((2 n-1)!!^{2}+(-1)^{n}\right)-10(-1)^{n} \equiv 0 \bmod (2 n+3) . \tag{5}
\end{equation*}
$$

As $\operatorname{gcd}(2 n+1,2 n+3)=1$ congruence (5) is equivalent to

$$
\begin{equation*}
(2 n+1)!!^{2}+(-1)^{n+1} \equiv 0 \bmod (2 n+3) . \tag{6}
\end{equation*}
$$

Indeed, condition (5) is equivalent to each of the following:

$$
\begin{aligned}
& 8\left((2 n+1)!!^{2}+(-1)^{n}(2 n+1)^{2}\right)-10(-1)^{n}(2 n+1)^{2} \equiv 0 \bmod (2 n+3), \\
& 8\left((2 n+1)!!^{2}+(-1)^{n+1}\right) \\
&+8(-1)^{n}(2 n+1)^{2}-10(-1)^{n}(2 n+1)^{2}-8(-1)^{n+1} \equiv 0 \bmod (2 n+3), \\
& 8\left((2 n+1)!!^{2}+(-1)^{n+1}\right) \equiv 0 \bmod (2 n+3),
\end{aligned}
$$

which is equivalent to (6). Now congruence (6) and Theorem 3 imply that $2 n+3 \in$ \mathbb{P}. Conversely, suppose that $2 n+1,2 n+3 \in \mathbb{P}$. By Theorem 3 we get (6) or equivalently (5). This and the condition $-2 \equiv 2 n+1 \bmod (2 n+3)$ give

$$
8\left((2 n-1)!!^{2}+(-1)^{n}\right)+5(-1)^{n}(2 n+1) \equiv 0 \bmod (2 n+3) .
$$

Now using Theorem 3 and the fact that $\operatorname{gcd}(2 n+1,2 n+3)=1$ for $n \in \mathbb{N}$ we get

$$
8\left((2 n-1)!!^{2}+(-1)^{n}\right)+5(-1)^{n}(2 n+1) \equiv 0 \bmod (2 n+1)(2 n+3)
$$

which ends the proof.
We may use Theorem 4 to prove in the similar way the following result.

Theorem 8

Let $n>0$ be an integer, then $(2 n+1,2 n+3)$ is a twin primes pair if and only if

$$
(2 n)!!^{2}+(-1)^{n}(2 n+1) \equiv 0 \bmod (2 n+1)(2 n+3) .
$$

Lemma 1
If $n \in \mathbb{N}, n>1$ and

$$
12((2 n-1)!-1)-5(2 n+1) \equiv 0 \bmod (2 n+1)(2 n+3),
$$

then $3 \nmid(2 n+1)$ and $3 \nmid(2 n+3)$.
Proof. Suppose that $3 \mid(2 n+1)$ or $3 \mid(2 n+3)$ for some integer $n \geq 2$. If $3 \mid(2 n+1)$ then $2 n+1=3 k$ for some $k>1$ such that $k \notin 2 \mathbb{N}$. Therefore

$$
12((3 k-2)!-1)-5 \cdot 3 k \equiv 0 \bmod 3 k(3 k+2)
$$

Hence

$$
12((3 k-2)!-1) \equiv 0 \bmod 3 k
$$

and in consequence

$$
(3 k-2)!-1 \equiv 0 \bmod k
$$

However, $k \mid(3 k-2)$!, thus $k \mid 1$, a contradiction, so $3 \nmid(2 n+1)$.
If $3 \mid(2 n+3)$, then $2 n=3 l$ for some $l \geq 1$ such that $l \in 2 \mathbb{N}$. It follows that

$$
12((3 l-1)!-1)-5 \cdot(3 l+1) \equiv 0 \bmod (3 l+1)(3 l+3)
$$

Thus

$$
12((3 l-1)!-1)-5(3 l+1) \equiv 0 \bmod 3
$$

which gives

$$
-5 \equiv 0 \bmod 3
$$

This contradiction shows that $3 \nmid(2 n+3)$.
Using Lemma 1 we may proof the following

Theorem 9

Let $n \geq 1$ be an integer, then $(2 n+1,2 n+3)$ is a twin primes pair if and only if

$$
\begin{equation*}
12((2 n-1)!-1)-5(2 n+1) \equiv 0 \bmod (2 n+1)(2 n+3) \tag{7}
\end{equation*}
$$

Proof. Notice that for $n=1$ congruence (7) becomes $-5 \cdot 3 \equiv 0 \bmod 3 \cdot 5$ thus for $n=1$ the assertion follows. Assume now that $n \geq 2$ is arbitrarily fixed and (7) holds true. In view of Lemma 1 we get

$$
12((2 n-1)!-1)-5(2 n+1) \equiv 0 \bmod (2 n+1)
$$

thus

$$
12((2 n-1)!-1) \equiv 0 \bmod (2 n+1)
$$

and hence

$$
(2 n-1)!-1 \equiv 0 \bmod (2 n+1)
$$

as $\operatorname{gcd}(12,2 n+1)=1$. Now using Theorem 5 we obtain $2 n+1 \in \mathbb{P}$. Moreover, we know that

$$
12((2 n-1)!-1)-5(2 n+3-2) \equiv 0 \bmod (2 n+3)
$$

is equivalent to

$$
\begin{equation*}
12((2 n-1)!-1)+10 \equiv 0 \bmod (2 n+3) \tag{8}
\end{equation*}
$$

Since $1 \cdot(2 n+3)-2 n=3$ and $3 \nmid 2 n+3$, we get $\operatorname{gcd}(2 n, 2 n+3)=\operatorname{gcd}(2 n+1,2 n+3)=$ 1. Thus condition (8) is equivalent to:

$$
\begin{aligned}
12((2 n+1)!-2 n(2 n+1))+10 \cdot 2 n(2 n+1) & \equiv 0 \bmod (2 n+3), \\
12((2 n+1)!-1)-4(2 n+3)(n-1) & \equiv 0 \bmod (2 n+3), \\
12((2 n+1)!-1) & \equiv 0 \bmod (2 n+3)
\end{aligned}
$$

and finally to

$$
\begin{equation*}
((2 n+1)!-1) \equiv 0 \bmod (2 n+3) . \tag{9}
\end{equation*}
$$

By Theorem 5 we get $2 n+3 \in \mathbb{P}$. Conversely, suppose that $n \geq 2$ is such that $2 n+1 \in \mathbb{P}$ and $2 n+3 \in \mathbb{P}$. In virtue of Theorem 5 and Lemma 1 from (9) we obtain (8), which is equivalent to

$$
12((2 n-1)!-1)-5(2 n+1) \equiv 0 \bmod (2 n+3)
$$

Using again Theorem 5 and the fact that $\operatorname{gcd}(2 k+1,2 k+3)=1$ for $k \in \mathbb{N}$ we get (7), this completes the proof.

A simple consequence of Theorems 6 and 7, it is enough to subtract (1) from (4), is

Theorem 10
If $2 n+1,2 n+3$ are twin primes then

$$
4(2 n-1)!!^{2}-n!^{2}+3(-1)^{n} \equiv 0 \bmod (2 n+1)(2 n+3) .
$$

References

[1] Ch. Aebi, G. Cairns, Catalan numbers, primes, and twin primes, Elem. Math. 63 (2008), 153-164.
[2] P.A. Clement, Congruences for sets primes, Amer. Math. Monthly 56 (1949), 23-25.
[3] J.B. Dence, T.P. Dence, A necessary and sufficient conditions for twin primes, Missouri J. Math. Sci. 7 (1995), 129-131.
[4] J.F. Gold, D.H. Tucker, A characterization of twin prime pairs, Proceedings NCUR V. (1991) vol. 1, 362-366.
[5] J. Górowski, A. Łomnicki, Around the Wilson's theorem, Ann. Univ. Paedagog. Crac. Stud. Did. Math. Pert. (to appear).
[6] P. Ribenboim, The little book of big primes, Springer Verlag, New York, 1991.
[7] W. Sierpiński, Elementary theory of numbers, Second edition, North-Holland Mathematical Library, 31, North-Holland Publishing Co., Amsterdam; PWNPolish Scientific Publishers, Warsaw, 1988.
[8] S.Y. Yan, Number Theory for Computing, Second edition, Springer Verlag, Berlin, 2002.

Pedagogical University Institute of Mathematics Podchorażych 2 PL-30-084 Kraków Poland
E-mail: jangorowski@interia.pl, alomnicki@poczta.fm

Received: 8 July 2012; final version: 25 August 2012; available online: 26 September 2012.

