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Dedicated to the Memory of Bogdan Choczewski, my ColleagueAbstra
t. Some remarks about the coherence of the stability of several func-

tional equations with topology of their target spaces are given. The equa-
tions in question are: homogeneity (first of all) and quadratic ones, as well
as those of Drygas, Jensen and Schröder. Moreover, we prove, by method
different than those used in earlier papers, the superstability of the following
equations: Dhombres’, Lobachevski’s and Mikusiński’s and those of cosine,
sine and of homomorphisms.1. Stability and 
omleteness1.1. Introdu
tion

The coherence of the stability of functional equations with the completeness
of pertinent target spaces was first discussed in the paper by G.L. Forti and
J. Schwaiger [7] and by W. Jabłoński and J. Schwaiger [10].

We start with reminding the following Forti-Schwaiger theorem [7]:
Let A be an abelian group containing an element of infinite order, let Y be

a normed space and assume that for all function f :A → Y such that f(x + y) −
f(x)−f(y) is bounded there exists an additive function h:A→ Y for which f(x)−
h(x) is bounded (i.e., the b-stability of Cauchy equation). Then Y is complete.

The stability of the Cauchy equation of this kind has been called b-stability in
my paper [11], in which there is also proved that all assumptions of this theorem
are essential and some further remarks are collected.1.2. The homogeneity equation

In the first section of the present paper we are concerned with the homogeneity
equation

h(αx) = φ(α)h(x) for α ∈ A, x ∈ X, (1)

where A is a group, φ:A → R \ {0} is a given homomorphism, the operation
(α, x) → αx:A ×X → X is an action of A on a set X and h maps a set X into
a normed space Y .
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W. Jabłoński and J. Schwaiger proved in [10] (Theorem 6) the following the-

orem.

Theorem 1.2.1

Assume that

(a) A is a group isomorphic to H ×A′ with some subgroup H of K ∈ {R,C},

(b) H contains an element z0 of modulus different from 1,

(c) the operation (α, x) → αx:A×X → X is an action of A on a set X,

(d) there exists an x0 ∈ X such that the stabilizer A(x0) = {α ∈ A : αx0 = x0}
is trivial,

(e) Y is a normed space,

(f) for any homomorphism φ:A → R \ {0} the homogeneity equation (1) is
stable in the following sense: for every function f :X → Y such that for
some positive ε and δ

|f(αx) − φ(α)f(x)| ≤ ε|φ(α)| + δ for α ∈ A, x ∈ X (2)

there exists a solution h:X → Y of (1) such that f − h is bounded.

Then Y is a Banach space, i.e., a complete normed space.

The first remark contains some corrections to the paper [10].

Remark 1.2.2

1) On p.1292−1 in place of “f |Ax = 0 if X ∋ x 6= x0” read “f |Ax = 0 if
Ax 6= Ax0” (the condition x 6= x0 in [10] is not sufficient for the correct
definition of f as it may happen that Ax = Ax0 for some x 6= x0, e.g., if
x = αx0 for α 6= 1).

2) On p.1306 instead “φ into R \ {0}” there should be “φ into K \ {0}” (in the
proof of Theorem 1 one has φ((z, α′)) = z and if K = C there might be
z ∈ C).

3) On p.1301 in place of yp read ym.

4) The estimation in the case 3(b), on p.1316 in the proof of Theorem 6, is not
true since f(x) = f((z, α′)x0) = 0 for |z| < 1. However

|f((z1, α′
1)x)− φ((z1, α

′
1))f(x)| = |zz1||yn| ≤ |z1||yn| ≤M |z1|

and the estimation holds with ε := max{M, r}.

In Remarks 1.2.3–1.2.5, 1.2.7–1.2.8 we formulate comments to Theorem 1.2.1.
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Remark 1.2.3

The assumption (b) is essential. In fact, if H = {1} and A = {1}, then for
arbitrary set X and for every normed (not necessarily complete) space Y the
assumptions (a)–(e) are evidently satisfied. We shall show that the supposition (f)
is also satisfied. Indeed, if φ ≡ 1, then every function from X to Y is a solution
of (1) and if there exists α0 such that φ(α0) 6= 1, then every function f fulfilling
(2) is bounded:

|f(x)| ≤ |1− φ(α0)|−1(ε|φ(α0)|+ δ) for x ∈ X,

whence f(x)− 0 is also bounded.

Remark 1.2.4

The supposition (d) is essential. In fact, for every normed space Y (not necessarily
complete) if αx = x for all α ∈ A, x ∈ X , then we have the same situation as we
had in Remark 1.2.3.

Remark 1.2.5

Theorem 1.2.1 fails to be true if the stability in the supposition (f) is replaced by
the Ulam-Hyers stability, i.e., by the condition: for every ε > 0 there exists δ > 0
such that for every function f satisfying

|f(αx)− φ(α)f(x)| ≤ δ for α ∈ A, x ∈ X (3)

there exists a solution h of (1) for which

|f(x)− h(x)| ≤ ε for α ∈ A, x ∈ X. (4)

Namely, if X is a real vector space and the operation αx: (R \ {0}) ×X → X is
the multiplication by scalars, then equation (1) is stable in the Ulam-Hyers sense
for every normed space Y .

To see this, take a selector S of the family of orbits of the operation αx. The
function h(x) = φ(α)f(x1) for x = αx1, α ∈ R \ {0} and for x1 ∈ S, is then
a solution of (1) satisfying (4) for the function f as in (3) with δ = ε.

This argument proves also that Theorem 1.2.1 became false if one would accept
ε = 0.

Conclusion 1.2.6

The stability in Theorem 1.2.1 (see (f)) of the equation (1) is not equivalent to the
Ulam-Hyers stability of this equation.

Remark 1.2.7

Theorem 1.2.1 would become false if in (f) one replaced the universal quantifier
“for any homomorphism φ . . . ” by the existential quantifier “there exists a homo-
morphism φ . . . ”. Indeed, for φ(x) ≡ 1 every function h:X → Y constant on
the orbits Ax for x ∈ X is a solution of equation (1): h(αx) = h(x). Let S
be a selector of the family of orbits of the action αx. Put h(αx1) = f(x1) for
x1 ∈ S, α ∈ A and f :X → Y the function satisfying |f(αx)− f(x)| ≤ ε+ δ. Then
|f(αx1)− f(x1)| ≤ ε+ δ, thus |f(αx1)− h(αx1)| ≤ ε+ δ, and the function f − h
is bounded, no matter whether the normed space Y is complete or not.
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The universal quantifier “for any homomorphism φ . . . ” in the supposition (f)

of Theorem 1.2.1 suggests the following

Question

For which groups A the supposition (f) of Theorem 1.2.1 is satisfied?

Remark 1.2.8

Theorem 1.2.1 need not be true if Y is a metric space. Indeed, if A = (R \ {0}, ·),
X = Y = R, the operation αx in (c) is the ordinary multiplication and the metric
on Y is defined by ρ(x, y) = | arctanx− arctan y|, then equation (1) is stable (the
space Y is bounded) and Y is not complete.

We are going to present a theorem that works in the case of metric spaces
and is a generalization of Theorem 1.2.1. To this end we introduce the notion of
a G-space.

Definition

Let (G, ·) be a semigroup and let Z be a nonempty set with a fixed element θ.
Assume that we are given a semigroup action on Z, that is we have a function
·:G× Z → Z which satisfies the following conditions:

(g1g2)z = g1(g2z) for g1, g2 ∈ G, z ∈ Z and 1z = z for z ∈ Z,

if there exists neutral element 1 in G. Let moreover gθ = θ for g ∈ G and 0z = θ
for z ∈ Z if there exists the absorbing element 0 in G. Then the pair (Z, (G, ·))
satisfying these conditions we will call a G-space.

We have however the following generalization of Theorem 1.2.1.

Theorem 1.2.9

Assume that

1) the operation αx:A ×X → X is an action of a group A on some set X,

2) (Y, (K, ·)) is a K-space with a metric ρ on Y such that

ρ(λa, λb) ≤ |λ|ρ(a, b) for λ ∈ K, a, b ∈ Y, (5)

3) there exists a homomorphism φ:A → K⋆ := K \ {0}, such that, for some
x0 ∈ X, a stabilizer A(x0) of the operation αx is contained in the kernel
K(|φ|) = {x ∈ A : |φ(x)| = 1} of the homomorphism |φ(x)|:A → K⋆,
K(|φ|) 6= A and for which equation (1) postulated for x ∈ Ax0, α ∈ A is
max-stable, i.e., for every function f :X → Y such that

ρ[f(αx), φ(α)f(x)] ≤ max(|φ(α)|, 1) for α ∈ A, x ∈ Ax0 (6)

there exists some solution h:Ax0 → Y of (1) for which ρ[f(x), h(x)] is
bounded for x in Ax0.

Then Y is complete.
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Remark 1.2.10

By (5) we have for 0 6= λ ∈ K and a, b ∈ Y

|λ|ρ(a, b) = |λ|ρ(λ−1λa, λ−1λb) ≤ |λ||λ|−1ρ(λa, λb) = ρ(λa, λb) ≤ |λ|ρ(a, b),

whence ρ(λa, λb) = |λ|ρ(a, b) (the equality being valid for λ = 0 too).

The proof of Theorem 1.2.9 is analogous to that of Theorem 6 in [10]. It
is given here for the convenience of readers and because of the comments that
conclude this section.

Proof of Theorem 1.2.9. Since K(|φ|) 6= A, there exists an α0 ∈ A such that
r := |φ(α0)| 6= 1. One can assume without loss of generality that r > 1. Let yn be
a Cauchy sequence of elements of Y . We may assume that ρ(yn+m, yn) ≤ r−n for
n,m ∈ N. We put

g(αx0) =

{ |φ(α)|yn if rn ≤ |φ(α)| < rn+1,

0 if |φ(α)| < 1.

The function g is well defined since αx0 = βx0 implies β−1αx0 = x0, in turn
β−1α ∈ A(x0) ⊂ K(|φ|), whence |φ(β−1α)| = 1 and |φ(α)| = |φ(β)|. Fix an
x ∈ Ax0 and put L := ρ[g(αx), φ(α)g(x)]. Furthermore, let M := supk∈N ρ(yk, 0).

Hence x = α′x0. Denote z = |φ(α)| and z′ = |φ(α′)| and consider four cases
possible.

(1) If z ≥ 1 and z′ ≥ 1, then rn ≤ z < rn+1 and rm ≤ z′ < rm+1 for some
n,m ∈ N. Thus rn+m ≤ zz′ < rn+m+2. Thus, in view of Remark 1.2.10, we get

L = ρ[g(αα′x0), φ(α)g(α
′x0)] = ρ(zz′yn+m+σ, zz

′ym)

with some σ ∈ {0, 1}. Thus

L = zz′ρ(yn+m+σ, ym) ≤ rm+1zr−m = rz.

(2) If z′ ≥ 1 and z < 1, then rn ≤ z′ < rn+1 for some integer n and we
consider two subcases. If zz′ < 1 we have g(αx) = 0 and g(x) = z′yn for some
n ∈ N, thus L = zz′ρ(0, yn) ≤ M . If zz′ ≥ 1, then we take an rm ≤ zz′ < rm+1

for some integer m with 0 ≤ m ≤ n, thus L = zz′ρ(ym, yn) ≤ rm+1r−m = r.
(3) If z′ < 1 and z ≥ 1, then g(x) = 0 and we have two subcases. If zz′ < 1,

then L = ρ(0, φ(α) · 0) = 0. If zz′ ≥ 1 let m ∈ N0 be such that rm ≤ zz′ < rm+1.
Thus L = zz′ρ(ym, 0) ≤Mz.

(4) In the case z < 1 and z′ < 1 we have zz′ < 1 and L = ρ(0, 0) = 0.
Thus is proved that L ≤ max{r,M}max{|φ(α)|, 1}. Hence a function f =

ε−1g, where ε = max{r,M}, satisfies (6). Hence by 3) there exists a β > 0 and
a function h:Ax0 → Y such that h(αx) = φ(α)h(x) for x ∈ Ax0, α ∈ K and
ρ[f(x), h(x)] ≤ β for x ∈ Ax0. Therefore

rnρ[yn, εh(x0)] = |φ(αn
0 )|ρ[yn, εh(x0)] = ρ[φ(αn

0 )yn, φ(α
n
0 )εh(x0)]

= ρ[g(αn
0x0), εh(α

n
0x0)] = ρ[εf(αn

0x0), εh(α
n
0x0)]

≤ εβ,

thus yn → εh(x0).
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Remark 1.2.11

Theorem 1.2.9 is a generalization of Theorem 1.2.1. In fact, the assumption (a)
(with not very clear structure of A′) implies that

(a’) there exists an homomorphism ψ:A → K. Indeed, if i = (i1, i2) is an iso-
morphism from A onto H × A′, then i1 is an homomorphism from A onto
H .

Therefore the assumption (b) has the form

(b’) there exists a α0 ∈ A such that |ψ(α0)| =: r 6= 1.

If the function f :Ax0 → Y satisfies (6) with φ = ψ, then the function f⋆:X →
Y defined by

f⋆(x) =

{

f(x) for x ∈ Ax0,

0 for x ∈/ Ax0
fulfils (2) with φ = ψ and ε = δ = 1. Thus the assumption 3) of Theorem 1.2.9 is
satisfied for φ = ψ.

Remark 1.2.12

Assume that A is a group, αx:A×X → X is an action of A on a set X and Y is
a space with metric ρ. Then the ρ-stability of (1), i.e., the condition

for every function f :X → Y such that for some positive ε, δ

ρ[f(αx), φ(α)f(x)] ≤ ε|φ(α)| + δ for α ∈ A, x ∈ X (7)

there exists some solution h:X → Y of (1) such that ρ[f(x), h(x)] is bounded,

evidently implies the max-stability of this equation.

Conversely, the assumptions 1) and 2) in the Theorem 1.2.9 are satisfied and
if the homomorphism φ and the operation · in the equation (1) are such that there
exists a stabilizer A(x0) ⊂ K(|φ|) and K(|φ|) 6= A, then the max-stability of (1)
implies the stability of this equation in virtue of the below Theorem 1.2.13, since
if our equation is max-stable, then the space Y is complete by Theorem 1.2.9.

The following theorem is to some extend inverse to Theorem 1.2.9.

Theorem 1.2.13

Assume the suppositions 1) and 2) of Theorem 1.2.9.

A) If the kernel K(|φ|) 6= A for the homomorphism φ:A→ K⋆ occurring in the
equation (1) and the space Y is complete, then the equation (1) is ρ-stable.

B) Equation (1) is ρ-stable also if K(|φ|) = A provided the metric in Y is such
that

ρ[(1− λ)a, 0] ≤ ρ(a, λa) for a ∈ Y, λ ∈ K and |λ| = 1. (8)
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Proof. A) Assume that there exists an α0 ∈ A such that r = |φ(α0)| > 1. By

(2) we have ρ[f(α0x), φ(α0)f(x)] ≤ εr + δ =: β and by induction

ρ[f(αn
0x), φ(α

n
0 )f(x)] ≤ β(r − 1)−1(rn − 1).

Then there exists limn→∞ φ(αn
0 )

−1f(αn
0x) =: h(x) by the classical Hyers argument

– usually called the “direct method”. Since

ρ[f(αn
0αx), φ(α)f(α

n
0 x)] ≤ ε|φ(α)| + δ for α ∈ K, x ∈ X

the function h is a solution of (1). Moreover, in view of (1), we get

ρ[f(αn
0x), φ(α

n
0 )f(x)] ≤ rnε+ δ

what implies ρ[f(x), h(x)] ≤ ε. The proof of A) is finished.

B) Assume that the function f :X → Y satisfies (7) with |φ| = 1 and put
µ := ε + δ. Notice that the two stabilizers A(x1) and A(x2) of some orbit O of
action αx are conjugate since

x2 = γx1 =⇒ A(x2) = γ−1A(x1)γ.

We have thus for an orbit O two cases:

a) there exists an stabilizer A(x0) of the orbit O contained in K(φ),

b) any stabilizer of O is not contained in K(φ).

Ad a) The function h⋆(x) = h(αx0) = φ(α)f(x0) for x = αx0 is well defined
and it is a solution of (1) for (α, x) ∈ A×O. Moreover we have

ρ[f(x), h⋆(x)] = ρ[f(αx0), h
⋆(αx0)] = ρ[f(αx0), φ(α)f(x0)] ≤ µ for x = αx0.

Ad b) Let x be in O. The stabilizer A(x) is not contained in K(φ). Thus there
exists α0 such that α0x = x and φ(α0) 6= 1. Since {φ(α0)

k}k∈Z is a multiplicative
group on the unit circle with at least two elements, there exists an n ∈ N such
that |1− φ(αn

0 )| ≥ 1. Therefore

ρ[f(x), 0] ≤ |1− φ(αn
0 )|ρ[f(x), 0] = ρ[{1− φ(αn

0 )}f(x), 0]
≤ ρ[f(x), φ(αn

0 )f(x)] = ρ[f(αn
0x), φ(α

n
0 )f(x)]

≤ µ.

Consequently, for every f there exists a solution h of (1) on A×X (h = h⋆ in the
case a) and h = 0 in the case b)) such that ρ[f(x), h(x)] ≤ µ for x ∈ X .

Remark 1.2.14

If K = R, then applying (8) with λ = −1, we get

ρ(2a, 0) ≤ ρ(a,−a) for a ∈ Y.

Thus, if ρ satisfies (5), then (see Remark 1.2.10)

ρ(a,−a) ≤ ρ(a, 0) + ρ(0,−a) = 2ρ(a, 0) = ρ(2a, 0),

and we obtain ρ(2a, 0) = ρ(a,−a) for a ∈ Y .
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Remark 1.2.15

If the equation (1) is max-stable, then the constant, which bounds ρ[f(x), h(x)] on
Ax0, may depend “a priori” on f . If for the homomorphism φ in (1) there exists
α0 ∈ A such that r := |φ(α0)| 6= 1, then this function ρ[f(x), h(x)] is bounded
by 1 on Ax0. Really, let be the equation (1) max-stable, f :X → Y the function
satisfying (6) and h:X → Y the solution of (1) such that ρ[f(x), h(x)] ≤ β for
some β > 0. We have for n ∈ N

rnρ[f(x), h(x)] = |φ(αn
0 )|ρ[f(x), h(x)] = ρ[φ(αn

0 )f(x), φ(α
n
0 )h(x)]

≤ ρ[φ(αn
0 )f(x), f(α

n
0x)] + ρ[f(αn

0x), h(α
n
0x)] ≤ max(rn, 1) + β

≤ rn + β.

We may suppose, without loss of generality, that r > 1. Thus for n → ∞ we
obtain ρ[f(x), h(x)] ≤ 1 for x ∈ Ax0. This means that there exist the homogeneity
equations for which the bound of ρ[f(x), h(x)] not depend on f .

By analogous argument we obtain the inequality ρ[f(x), h(x)] ≤ ε for the
ρ-stability.

Finally, the function h spoken in Theorem 1.2.13 is unique. For, let h1 and
h2 be solutions of (1) such that ρ[f(x), h1(x)] ≤ ε and ρ[f(x), h2(x)] ≤ ε. Then
ρ[h1(x), h2(x)] ≤ 2ε and

rnρ[h1(x), h2(x)] = ρ[φ(αn
0 )h1(x), φ(α

n
0 )h2(x)] = ρ[h1(α

n
0x), h2(α

n
0x)] ≤ 2ε

for n ∈ N. This implies ρ[h1(x), h2(x)] = 0, whence h1(x) = h2(x).

Remark 1.2.16

Let h:X → Y be a solution of (1). For every function f :X → Y , if ρ[f(x), h(x)] ≤
ε for x ∈ X , then ρ[φ(α)f(x), φ(α)h(x)] ≤ ε|φ(α)| and ρ[f(αx), h(αx)] ≤ ε. Thus

ρ[f(αx), φ(α)f(x)] ≤ ε|φ(α)| + ε for x ∈ X, α ∈ A. (9)

Conclusion 1.2.17

If the equation (1) is ρ-stable and the function f satisfies (7), then f fulfils (9).

The following result is a particular case of Theorem 1.2.1.

Corollary 1.2.18

Assume that A = (R\{0}, ·), X = R, the operation · is the ordinary multiplication,
φ(α) = α and conditions (e) and (f) are satisfied. Then Y is a Banach space.

Remark 1.2.19

The assumptions of Theorem 1.2.1 are seemingly more general than those of Corol-
lary 1.2.18. However, in virtue of Theorem 1.2.1 its assumptions imply however
the stability of the equation

h(αx) = αh(x) for α ∈ R \ {0}, x ∈ R,

where αx is the ordinary multiplication, because of the following
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Conclusion 1.2.20

Assume that A = (R\ {0}, ·) (A = (C\ {0}, ·)), X = R (X = C), the operation αx
is the ordinary multiplication, φ(α) = α and (e) is satisfied. Then the statements:
“condition (f) is satisfied” and “Y is a real (complex) Banach space” are equivalent.1.2.1. Appli
ations

Theorem 1.2.1 does not suit direct for applications because of the requirement
“for all homomorphism” in its assumption (f). In order to get completeness of
a normed space it is thus more convenient to apply Corollary 1.2.18 or Theo-
rem 1.2.13.

Example 1.2.21

Let V be a Banach space. The normed space (V S), where S is an arbitrary set,
of the functions f :S → V , such that sups∈S |f |s < ∞ (where fs = f(s)), with
the usual addition and multiplication by scalars and with |f | = sups∈S |fs|, is
complete, since the equation of homogeneity from R to (V S) is stable.

Indeed, if f :R → (V S) and |f(αx) − αf(x)| = sups∈S |fs(αx) − αfs(x)| ≤
ε|α| + δ for x ∈ R, α ∈ R \ {0} with some positive ε and δ, then |fs(αx) −
αfs(x)| ≤ ε|α| + δ for x ∈ R, α ∈ R \ {0} and s ∈ S. By Theorem 1.2.13,
there exists a homogeneous function hs:G → V such that |fs(x) − hs(x)| ≤ ε for
x ∈ R and s ∈ S. The function h = (hs):R → V is a homogeneous function and
|f(x)− h(x)| = sups∈S |fs(x) − gs(x)| ≤ ε for x ∈ G.

The following lemma will be helpful in the next example

Lemma 1.2.22

Assume that (G,+) is a groupoid, Y is a normed space and f :G→ Y is a function
such that |f(2x)−2f(x)| ≤ β for x ∈ G and for some β > 0. Then either |f(x)| ≤ β
for x ∈ G or the function f is unbounded.

Proof. Assume that |f(x)| > β for some x ∈ G. Then there exists a γ > 0
such that |f(x)| = β + γ. This equality, when combined with the inequality

β ≥ |f(2x)− 2f(x)| ≥ |2f(x)| − |f(2x)|
gives

|f(2x)|+ β ≥ |2f(x)| = 2|f(x)| = 2β + 2γ.

Consequently, |f(2x)| ≥ β+2γ. By induction, we deduce that |f(2nx)| ≥ β+2nγ
for every n ∈ N. Thus the function f is unbounded.

Example 1.2.23

Let V be a Banach space. The space (V N) of the sequences x = (xn)n∈N such that
|x1|+

∑∞
n=1 |xn − xn+1| <∞ with the norm

|x| = |x1|+
∞
∑

n=1

|xn − xn+1|

and with the ordinary addition and multiplication by scalars is a complete normed
space, since the equation of homogeneity (1), postulated on R× (V N), is stable.
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Indeed, if f :R → (V N) and

|f(αx) − αf(x)|

= |f1(αx)− αf1(x)|+
∞
∑

n=1

|fn(αx) − αfn(x) − fn+1(αx) + αfn+1(x)|

≤ ε|α|+ δ

for x, α ∈ R, where f = (fn) and fn:R → V , then |f1(αx) − αf1(x)| ≤ ε|α| + δ
and by Theorem 1.2.13 there exists a solution g1:R → V of the equation

g(αx)− αg(x) = 0 (10)

such that |f1(x) − g1(x)| ≤ ε for x ∈ R. Since

|fn(αx) − αfn(x) − fn+1(αx) + αfn+1(x)| ≤ ε|α|+ δ,

thus by Theorem 1.2.13 there exists a solution gn+1 of (10) such that |fn+1(x) −
fn(x) − gn+1(x)| ≤ ε for x ∈ R and n = 1, 2, . . . . Applying the latter inequality
for n = 1, we obtain

|f2(x) − (g1(x) + g2(x))| ≤ |f1(x) − g1(x)|+ |f2(x) − f1(x) − g2(x)| ≤ 2ε

and by induction |fn(x)−(g1(x)+. . .+gn(x))| ≤ nε. The function hn(x) = g1(x)+
. . .+ gn(x) being a solution of (10), thus the function h = (hn) is a solution of the
equation k(αx) = αk(x) for k:R → (V N) and for p = (pn) = f − h = (fn − hn) we
have |pn(x)| ≤ nε. Therefore |f(2x)−2f(x)| ≤ 2ε+δ, and |p(2x)−2p(x)| ≤ 2α+δ.

Fix an m ∈ N and consider the normed space V m of all sequences x =
(x1, . . . , xm), where xn ∈ V for n = 1, . . . ,m, equipped with the standard ad-
dition and multiplication by scalars and with the norm given by

|x|m = |x1|+
m−1
∑

n=1

|xn − xn+1|.

We have for the function P (x) = (p1(x), . . . , pm(x))

|P (x)|m = |p1(x)| +
m−1
∑

n=1

|pn(x)− pn+1(x)|.

Thus this function is bounded and |P (2x)− 2P (x)|m ≤ 2α+ δ. In view of Lemma
1.2.22 there is |P (x)|m ≤ 2α+ δ for every m ∈ N. This inequality yields

|p1(x)| +
∞
∑

n=1

|pn(x)− pn+1(x)| ≤ 2α+ δ,

whence |f(x) − h(x)| ≤ 2α+ δ for x ∈ R. Therefore the equation of homogeneity
from R to (V N) is stable.

We continue with examples showing the coherence of stability with complete-
ness of the target space for other functional equations.
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hröder's equation
From Theorem 1.2.9 we get

Corollary 1.3.1

Let X = R (X = C), λ ∈ R (λ ∈ C) and 0 6= |λ| 6= 1. Assume that the
supposition 2) in Theorem 1.2.9 is satisfied. The Schröder’s equation

h(λ ∗ x) = λh(x), (11)

where ∗ is the ordinary multiplication, is b-stable (i.e., for every function f :X → Y
there exists a solution h of (11) such that ρ[f(x), h(x)] is bounded provided so is
ρ[f(λ ∗ x), λf(x)]) if and only if Y is complete.

Proof. Let A = (Z,+), φ(α) = λα, αx = λα ∗ x and let ρ[f(αx), φ(α)f(x)] =
ρ[f(λα∗x), λαf(x)] be bounded for x ∈ X , α ∈ A. Then for α = 1 ρ[f(λ∗x), λf(x)]
is bounded too, and by assumption that (11) is b-stable, there exists a solution
h of (11) such that ρ[f(x), h(x)] is bounded. This h satisfies (1) since h(λx) =
h(λα ∗ x) = λαh(x) = φ(α)h(x). Since all assumptions of Theorem 1.2.9 are
satisfied, thus Y is complete.

The converse implication is true in virtue of Theorem 1.2.13 since the stability
of equation h(λα ∗ x) = λαh(x) for x ∈ X , α ∈ A = Z implies the b-stability of
equation (11) (see the beginning of the proof of Theorem 1.2.13).1.4. The quadrati
 equation
Theorem 1.4.1

The quadratic functional equation

h(k + p) + h(k − p) = 2h(k) + 2h(p), (12)

where h:Z → Y and Y is a normed space, is b-stable (i.e., for every function
f :Z → Y for which |f(k + p) + f(k − p) − 2f(k)− 2f(p)| is bounded there exists
a solution h of (12) such that |f(k)−h(k)| is bounded) if and only if Y is complete.

Proof. Sufficiency follows via the “direct method” (see [11]).
Necessity. Let yn be a Cauchy sequence of elements of Y and assume that

|yn+m − yn| ≤ 4−n for n,m ∈ N0. We show that for the function f given by
f(k) = k2y|k| for k ∈ Z the expression

L = L(k, p) = f(k + p) + f(k − p)− 2f(k)− 2f(p)

= (k + p)2y|k+p| + (k − p)2y|k−p| − 2k2y|k| − 2p2y|p| for k, p ∈ Z

is bounded. Assume without loss of generality that k ≥ p. The following four
cases are possible:
1) k, p ≥ 0. We have

|L| = |2k2(yk+p − yk) + 2p2(yk+p − yp)− (k − p)2(yk+p − yk−p)|
≤ 2k24−k + 2p24−p + (k − p)24−k+p

≤ 5.
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2) k, k + p ≤ 0; p < 0. We have

|L| = |2k2(yk−p − yk) + 2p2(yk−p − y−p) + (k + p)2(yk+p − yk−p)|
≤ 2k24−k + 2p24p + (k + p)24k+p

≤ 5.

3) k ≥ 0; p, k + p < 0. We have

|L| = |(k + p)2(y−k−p − yk−p) + 2k2(yk−p − yk) + 2p2(yk−p − y−p)|
≤ (k + p)24k+p + 2k24−k + 2p24p

≤ 5.

4) k, p < 0. We have

|L| = |2k2(y−k−p − y−k) + 2p2(y−k−p − y−p) + (k − p)2(yk−p − y−k−p)|
≤ 2k24k + 2p24p + (k − p)24p−k

≤ 5.

Since equation (12) is b-stable, there exists a solution h of (12) and some positive
M such that |f(k)− h(k)| ≤M for k ∈ Z. For n ∈ N0 we have h(n) = n2h(1) (see
[6] p.89, Theorem 10.1) and |n2yn − n2h(1)| ≤M , thus yn → h(1) if n→ ∞.1.5. The Drygas' equation

A theorem analogous to Theorem 1.4.1 is true for the Drygas’ equation

h(k + p) + h(k − p) = 2h(k) + h(p) + h(−p)

for the function h from Z to normed space Y . Its proof is practically the same
as that of Theorem 1.4.1 since the general solution of Drygas’ equation is of the
form q+a, where q is a solution of the equation (12) and a is an additive function,
whence q(n) + a(n) = n2q(1) + na(1) for n ∈ N0. Moreover, the Drygas’ equation
is b-stable if h is the function from the abelian group to the Banach space (see
[13]) and

f(k + p) + f(k − p)− 2f(k)− f(p)− f(−p)
= (k + p)2y|k+p| + (k − p)2y|k−p| − 2k2y|k| − 2p2y|p|

= L(k, p)

for the function f(k) = k2y|k| for k ∈ Z and the function L(k, p) as in the proof of
Theorem 1.4.1.1.6. The Jensen's equation

We have an analogous theorem for Jensen’s equation

h
(x+ y

2

)

=
h(x) + h(y)

2
, (13)

where h:R → Y and Y is a normed space.
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If Y is complete, the “direct method” is applied for the proof that equation

(13) is b-stable.
We proceed as follows. Let yn be a Cauchy sequence of elements of Y and

assume that |yn+m − yn| ≤ 2−n for n,m ∈ N0. For the function f :R → Y

f(x) := ([x] + 1− x)f([x]) + (x − [x])f([x] + 1),

where [x] is the entire part of x, f(n) := nyn for n ∈ N0, f(n) := −f(−n) for
n ∈ Z \N0, the function f(x+ y)− f(x)− f(y) is bounded (see [7]). This implies
that the expression f(x+y

2 ) − f(x2 ) − f(y2 ) is bounded. Thus, taking y = x, we
conclude that the difference f(x)−2f(x2 ) is bounded. Consequently, the difference

f
(x+ y

2

)

− f(x) + f(y)

2

=
[

f
(x+ y

2

)

− f
(x

2

)

− f
(y

2

)]

+
1

2

[

2f
(x

2

)

− f(x)
]

+
1

2

[

2f
(y

2

)

− f(y)
]

is bounded too. If the equation (13) is b-stable, then there exists a solution h of
this equation such that |f(x)− h(x)| ≤ M for x ∈ R and some positive M . Since
h(x) = a(x) + b, where a:R → Y is an additive function and b ∈ Y (see e.g. [6],
p.11), we obtain

|f(n)− h(n)| = |nyn − na(1)− b| ≤M for n ∈ N,

thus yn → a(1) for n→ ∞. Thus Y actually is a complete space.

Remark 1.6.1

We have the same result for the equation

h(x+ y) + h(x− y) = 2h(x)

for h:N → Y since

f(x+ y) + f(x− y)− 2f(x) = [f(x+ y) + f(x− y)− f(2x)] + [f(2x)− 2f(x)].

Here the property of 2-divisibility in the domains of the functions under consider-
ation is not necessary.

Remark 1.6.2

The stability (adequately defined) of the equation considered above and of the
Cauchy equation (see [9]) for a complete target space is proved by the “direct
method” and vice versa for these equations this stability implies completeness of
target space. However the equation (1) is b-stable for an arbitrary target space
(even not complete) if every stabilizer of the action αx is trivial (this can be proved
without use of the “direct method” – see the end of Remark 1.2.5). In addition, if
K(|φ|) 6= A, then b-stability, when the target space is complete, can be proved by
the “direct method” too (see the proof of Theorem 1.2.13).
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P.W. Cholewa proved in [5] that the sine functional equation

f(x+ y)f(x− y) = f2(x) − f2(y), (14)

where f is a function from an abelian group G uniquely divisible by 2 into C, is
superstable, i.e., every unbounded function f :G→ C such that

|f(x+ y)f(x− y)− f2(x) + f2(y)| ≤ δ for x, y ∈ G, δ > 0, (15)

is a solution of (14). In this proof is essential that C forms a field. In fact, it is
proved in [5] that every unbounded function f from G to A (where A is a normed,
commutative algebra A with the multiplicative norm and a unity), satisfying (15)
and which has at least one invertible value, is a solution of (14). Note that ac-
cording to a generalization of Mazur-Gelfand theorem [14] , an algebra A over C,
which is a field (i.e., every element not equal to zero has an inverse), is isomorphic
with C whenever there exists a non-trivial linear functional defined on A.

We present the following result in this spirit.

Theorem 2.1.1

Let G be a commutative group, uniquely 2-divisible and let A be a finite-dimensional
normed commutative algebra without the zero divisors. Then equation (14) for
f :G→ A is superstable, i.e., every unbounded function satisfying (15) is a solution
of (14).

Proof. This is a modification of the proof in [5].
Since f is unbounded, then there exists a sequence xn ∈ G such that

limn→∞ |f(xn)| = ∞ and µn := f(xn) 6= 0. The sequence |µn|−1µn is bounded
and A has finite dimension. Thus we can assume that limn→∞ |µn|−1µn = ε for
some ε ∈ A, |ε| = 1. Putting x = y = 1

2xn in (15) we obtain |µnf(0)| ≤ δ, thus

∣

∣|µn|−1µnf(0)
∣

∣ = |µn|−1|µnf(0)| ≤ δ|µn|−1.

Letting n → ∞ we obtain |εf(0)| = 0. This yields εf(0) = 0, in turn f(0) = 0
since A has no zero divisors.

By (15) we have

|f(x+ y)µn + f(x− y)µn − f(x)[f(y + xn)− f(y − xn)]|

≤
∣

∣

∣
f(x+ y)µn − f2

(x+ y + xn
2

)

+ f2
(x+ y − xn

2

)∣

∣

∣

+
∣

∣

∣
f(x− y)µn − f2

(x− y + xn
2

)

+ f2
(x− y − xn

2

)∣

∣

∣

+
∣

∣

∣
f2

(x+ y + xn
2

)

− f2
(x− y − xn

2

)

− f(x)f(y + xn)
∣

∣

∣

+
∣

∣

∣
f(x)f(y − xn) + f2

(x− y + xn
2

)

− f2
(x+ y − xn

2

)∣

∣

∣

≤ 4 δ
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for x, y ∈ G, thus

|µn|−1|f(x+ y)µn + f(x− y)µn − f(x)[f(y + xn)− f(y − xn)]| ≤ 4δ|µn|−1.

On letting n→ ∞ we obtain

g(x, y) := lim
n→∞

|µn|−1f(x)[f(y + xn)− f(y − xn)] = [f(x+ y) + f(x− y)]ε. (16)

Therefore taking in (16) x = u+v
2 and y = u−v

2 , we get

f(u)ε+ f(v)ε = g
(u+ v

2
,
u− v

2

)

for u, v ∈ G.

Put x = 0 in (16). Then f(y) = −f(−y) for y ∈ G. Thus we obtain

εf(x+ y) = εf(x+ y) + εf(0) = g
(x+ y

2
,
x+ y

2

)

,

εf(x− y) = εf(x− y) + εf(0) = g
(x− y

2
,
x− y

2

)

,

εf(x)− εf(y) = εf(x) + εf(−y) = g
(x− y

2
,
x+ y

2

)

.

Hence by the definition (16) of the function g

ε2f(x+ y)f(x− y) = g
(x+ y

2
,
x+ y

2

)

g
(x− y

2
,
x− y

2

)

= g
(x+ y

2
,
x− y

2

)

g
(x− y

2
,
x+ y

2

)

= ε[f(x) + f(y)]ε[f(x)− f(y)]

= ε2[f2(x)− f2(y)]

and
ε2[f(x+ y)f(x− y)− f2(x) + f2(y)] = 0.

Since ε2 6= 0 and A has no zero divisors we have arrived at the equality

f(x+ y)f(x− y)− f2(x) + f2(y) = 0.

Therefore the function f is a solution of (14).

Remark 2.1.2

For a normed spaceX the supposition that it has a finite dimension is equivalent to
the assumption that every bounded subset of X is compact in X . The assumption
in Theorem 2.1.1 that A is of finite dimension is then of the topological nature.

It is essential in the above proof that for every function f :G → A satisfying
(15) if there exists a sequence xn ∈ G such that limn→∞ |f(xn)| = ∞ and f(xn) 6=
0, then there exists a convergent subsequence of the sequence |f(xn)|−1f(xn). This
condition is not true for each infinite-dimensional commutative algebra A, if G is
the additive group of A. Indeed, if A has infinite dimension, then there exists
a sequence an ∈ A such that |an| = 1 and there does not exists any convergent
subsequence of an ([1], p.127–128). The function f(x) = x satisfies (15) for every
δ > 0, for xn = nan we have 0 6= |f(xn)| → ∞ for n → ∞ and there is no
a convergent subsequence of |f(xn)|−1f(xn) = an.
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Remark 2.1.3

The assumption that A has no zero divisors is essential in Theorem 2.1.1. For, let
M be the algebra of diagonal 2× 2-matrices with ordinary addition and multipli-
cation of matrices and with the norm

∣

∣

∣

∣

[

a 0

0 b

]∣

∣

∣

∣

:= max{|a|, |b|} for a, b ∈ R.

If G = (R,+), δ > 0 and the function f :G→M is given by

f(x) =

[

x 0

0
√
δ

]

,

then f is unbounded and satisfies (15) abut it is not a solution of (14).2.2. The equation of homomorphisms
J.A. Baker proved in [2] (Theorem 1) that if S is a semigroup then for every

function f :S → C such that |f(xy) − f(x)f(y)| ≤ δ for x, y ∈ S and for some
positive δ we have

|f(x)| ≤ 1 +
√
1 + 4δ

2
for x ∈ S or f(xy) = f(x)f(y) for x, y ∈ S.

His proof also works when C is replaced by an arbitrary normed algebra with the
multiplicative norm in place of C.

We have here the case of so called uniform superstability, since the constant
which bounds the bounded solution of the inequality |f(xy)− f(x)f(y)| ≤ δ does
not depend on f .

Remark 2.2.1

The superstability of the sine equation (14) is not uniform. Indeed, the bounded
function fn:R → R

fn(x) = n sinx+
1

n
for n ∈ N

satisfies inequality (15) with δ = 3, it is not a solution of (14) and the family of
functions {fn(x)}n∈N is not commonly bounded.

By the method used in the proof of Theorem 2.1.1 we obtain also the following
theorem.

Theorem 2.2.2

Let (G, ·) be a commutative semigroup and let (A, ·) be a groupoid equipped with

– the multiplication (λ, a) → λa:R+ ×A→ A such that

λ(ab) = (λa)b = a(λb) for a, b ∈ A, λ ∈ R+,

– (H) an element 0 ∈ A such that λ0 = 0 for λ ∈ R+ and a2 6= 0 for every
a ∈ A, a 6= 0,
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– a metric ρ satisfying the condition

ρ(λa, λb) ≤ λρ(a, b) for a, b ∈ A, λ > 0. (17)

Moreover, assume that A is cancellable on the left (on the right) by the ele-
ment 6= 0, the groupoid operation · in A is continuous and that the unit sphere
S(0; 1) is compact in A. Then for every unbounded function f :G → A such that
ρ[f(xy), f(x)f(y)] is bounded we have f(xy) = f(x)f(y).

Proof. Assume that f is an unbounded function such that ρ(f(xy), f(x)f(y))
is bounded. Then there exists a sequence xn ∈ G such that limn→∞ ρ[f(xn), 0] =
∞ and f(xn) 6= 0 for n ∈ N. Put λn := {ρ[f(xn), 0]}−1 for n ∈ N. Since

ρ[λnf(xn), 0] = ρ[λnf(xn), λn0] ≤ λnρ[f(xn), 0] = 1 for n ∈ N

we have λnf(xn) ∈ S. Thus we can assume that limn→∞ λnf(xn) = ε 6= 0 for some
ε ∈ S. Hence ε2 6= 0, too. Assume that an unbounded function f :G→ A satisfies
ρ[f(xy), f(x)f(y)] ≤ δ for some positive δ and x, y ∈ G. From the inequality

ρ[f(x)f(y), f(y)f(x)] ≤ ρ[f(x)f(y), f(xy)]+ ρ[f(yx), f(y)f(x)] ≤ 2δ, x, y ∈ G

we have

ρ[f(xy), f(y)f(x)] ≤ ρ[f(xy), f(x)f(y)]+ρ[f(x)f(y), f(y)f(x)] ≤ 3δ, x, y ∈ G.

Since ρ[f(xnx), f(xn)f(x)] ≤ δ the inequality

ρ[λnf(xnx), λnf(xn)f(x)] ≤ λnρ[f(xnx), f(xn)f(x)] ≤ δλn

follows from (17). Letting n → ∞ we get εf(x) = limn→∞ λnf(xnx) for x ∈ G.
Analogously we obtain f(x)ε = limn→∞ λnf(xnx) (because ρ[f(xnx), f(x)f(xn)] ≤
3δ). So, we have proved that εf(x) = f(x)ε for x ∈ G.

Multiplying by λ2n the inequality

ρ[f(xnxy)f(xn), f(xnx)f(xny)]

≤ ρ[f(xnxy)f(xn), f(x
2
nxy)] + ρ[f(x2nxy), f(xnx)f(xny)]

≤ 2δ

we obtain in virtue of (17), when n → ∞, that ρ[εf(xy)ε, εf(x)εf(y)] = 0. Thus
f(xy) = f(x)f(y).

Remark 2.2.3

If A has the absorbing element 0, i.e., 0a = a0 = 0 for a ∈ A, then λ0 = λ(0 · 0) =
(λ0)0 = 0. Furthermore, if a2 = 0 for some a ∈ A, then aa = 0 = a0, so by the
cancellation law, we get a = 0. Hence a2 6= 0 for a 6= 0. Thus the assumption (H)
of Theorem 2.2.2 is satisfied.

If λ(µa) = (λµ)a and 1a = a for a ∈ A and λ, µ ∈ R+, then we get by (17), as
in Remark 1.2.10, the inequality λρ(a, b) ≤ ρ(λa, λb). Thus (17) is equivalent to
ρ(λa, λb) = λρ(a, b).

All suppositions of Theorem 2.2.2 are satisfied if A is a finite-dimensional
normed algebra without the zero divisors.
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Remark 2.2.4

The assumption that A is cancellable is essential in Theorem 2.2.2. Indeed, if
G = (R, ·), δ > 0, ε > 0, |ε− ε2| = δ and the function f :G→M is given by

f(x) =

[

x 0

0 ε

]

,

then the function f is unbounded, satisfies |f(xy) − f(x)f(y)| ≤ δ and it is not
a solution of f(xy) = f(x)f(y).

Remark 2.2.5

Explanation of the role of the compactness of S(0; 1), given in Remark 2.1.2 on
Theorem 2.1.1, remains valid for Theorem 2.2.2.2.3. The Loba
hevski's equation

P. Găvruta proved in [8] that the Lobachevski’s equation

g2
(x+ y

2

)

= g(x)g(y) (18)

for g:G→ C, where G is an abelian group uniquely 2-divisible, is superstable, i.e.,
for every function f :G→ C such that

∣

∣

∣
f2

(x+ y

2

)

− f(x)f(y)
∣

∣

∣
≤ δ for x, y ∈ G, δ > 0 (19)

we have either

|f(x)| ≤ |f(0)|+
√

|f(0)|2 + 4δ

2
for x ∈ G (20)

or the function f is a solution of (18).

Remark 2.3.1

The constant which bounds the function f in (20) depends on f . For g:R → C

and natural metric in C the superstable equation of Lobachevski is not uniformly
superstable. Indeed, for δ > 0 and a ≥ 0 the function

fa(x) =

{√
a2 + δ for x ∈ R \ {0},

a for x = 0

satisfies (19), it is not a solution of the Lobachevski’s equation and the family of
functions {fa}a≥0 is not commonly bounded.

We have the following result on the superstability of equation (18).

Theorem 2.3.2

Let G be a commutative semigroup, uniquely 2-divisible and with the neutral ele-
ment 0 and let A be a finite-dimensional commutative normed algebra without the
zero divisors. Then all unbounded function f :G→ A satisfying (19) is a solution
of (18).
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Proof. This is a modification of the proof of Theorem 2 in [8].
Assume that f :G→ A is an unbounded function satisfying (19). If f(0) = 0,

then |f2(x)| ≤ δ. If f is unbounded, then there exists a sequence xn of ele-
ment of G such that |f(xn)| → ∞ and µn := f(xn) 6= 0. Since the sequence
|µn|−1µn is bounded and the dimension of A is finite, then we can assume that
limn→∞ |µn|−1µn = ε for some ε ∈ A, ε 6= 0. We have

|µn|−2µ2
n = |µn|−1µn|µn|−1µn → ε2 for n→ ∞

and ||µn|−2µ2
n| ≤ δ|µn|−2, so that |µn|−2µ2

n → 0 for n → ∞. We obtain ε2 = 0,
thus A has a zero divisor ε – a contradiction. Therefore the function f is bounded.

Assume now that f(0) 6= 0 and put F (x) := |f(0)|−1f(x) and γ := δ|f(0)|−2.
Then |F (0)| = 1 and

∣

∣

∣
F 2

(x+ y

2

)

− F (x)F (y)
∣

∣

∣
≤ γ for x, y ∈ G. (21)

If f is unbounded, then so is F . Therefore there exists a sequence xn of elements
of G such that

lim
n→∞

|F (xn)| = ∞ and Λn := F (xn) 6= 0.

Since A is finite-dimensional and the sequence |Λn|−1Λn is bounded, there exists
a convergent subsequence of this sequence. Without loss of generality we may
assume that the sequence |Λn|−1Λn is convergent to an ε ∈ A, ε 6= 0. By (21)

∣

∣

∣
|Λn|−1ΛnF (x) − |Λn|−1F 2

(x+ xn
2

)∣

∣

∣
≤ |Λn|−1γ

whence

εF (x) = lim
n→∞

|Λn|−1F 2
(x+ xn

2

)

for x ∈ G. (22)

There exists a function K:G→ R such that
∣

∣

∣
|Λn|−1F 2

(x+ xn
2

)∣

∣

∣
≤ K(x) for n ∈ N, x ∈ G.

Because of
∣

∣

∣
F
(x+ xn

2

)

F
(y + xn

2

)

− F 2
(x+ y + 2xn

4

)∣

∣

∣
≤ γ

we have
∣

∣

∣
F 2

(x+ xn
2

)

F 2
(y + xn

2

)

− F 4
(x+ y + 2xn

4

)∣

∣

∣

≤
∣

∣

∣
F
(x+ xn

2

)

F
(y + xn

2

)

− F 2
(x+ y + 2xn

4

)∣

∣

∣

×
∣

∣

∣
F
(x+ xn

2

)

F
(y + xn

2

)

+ F 2
(x+ y + 2xn

4

)∣

∣

∣

≤ γ
[

γ + 2K
(x+ y

2

)

|Λn|
]

.

Dividing this inequality by |Λn|2 and letting n → ∞, in view of (22), we obtain
that the function ε2F is a solution of (18). Since A has no zero divisors, F and so
f = |f(0)|F satisfy (18).
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Remark 2.3.3

The assumption that A has no zero divisors is essential in Theorem 2.3.2. For, if
G = (R,+), δ > 0 and the function f :G→M is given by

f(x) =

[

ex 0

0 h(x)

]

,

where h(0) = 0, h(x) =
√
δ for x 6= 0, then this function is unbounded and satisfies

(19) but it is not a solution of (18).

Remark 2.3.4

Theorem 2.3.2 and its proof bring no information on the value of the constant
which may bound the bounded solution of (19). The superstability in this case we
propose to call undetermined superstability. When A = C, the constant in (20) is
given by P. Găvruta in [8].

It is possible to put K(f) = supx∈G |f(x)| for the function f in the class C of
bounded solutions of the inequality occurring in the definition of superstability. If
L := supf∈C K(f) < ∞, then we have uniform superstability, otherwise we have
only the superstability. Note that L = ∞ for the sine equation (see Remark 2.2.1)
and for the Lobachevski’s equation (see Remark 2.3.1).2.4. The 
osine equation

For the cosine D’Alembert equation

g(x+ y) + g(x− y) = 2g(x)g(y) (23)

for g from an abelian group G to C, we have L <∞, thus the uniform superstabil-
ity. Namely, J.A. Baker proved in [2] (and P. Găvruta in [8]) that for any function
f :G→ C satisfying

|f(x+ y) + f(x− y)− 2f(x)f(y)| ≤ δ for x, y ∈ G, δ > 0 (24)

we either

|f(x)| ≤ 1 +
√
1 + 2δ

2
for x ∈ G

or f is a solution of (23).
We supply the following result, together with the proof which is a modification

of that of Theorem 1 from [8].

Theorem 2.4.1

Let G be an abelian group and let A be a finite-dimensional normed algebra with
the unity e and without the zero divisors. Then any unbounded function f :G→ A
satisfying (24) is a solution of (23).

Proof. If the function f is unbounded, then there exists a sequence xn ∈ G
such that |f(xn)| → ∞ and µn := f(xn) 6= 0. The sequence |µn|−1µn is bounded
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and A is finite-dimensional, thus we can assume that |µn|−1µn → ε for some ε ∈ A.
We have |ε| = 1, thus ε 6= 0. It results from (24) that

|2µnf(x)− f(xn + x)− f(xn − x)| ≤ δ for n ∈ N,

what implies

εf(x) = lim
n→∞

1

2
|µn|−1[f(xn + x) + f(xn − x)]. (25)

Putting y = 0, x = xn in (24) we have |2µn − 2µnf(0)| ≤ δ, thus |µn|−1|2µn −
2µnf(0)| ≤ δ|µn|−1. On letting n → ∞ one sees that ε[e− f(0)] = ε− εf(0) = 0.
Therefore f(0) = e because A has no zero divisors. Putting x = 0 in (24) we
obtain

|f(−y)− f(y)| = |f(y) + f(−y)− 2f(0)f(y)| ≤ δ

whence, for y = xn − x

|µn|−1|f(x− xn)− f(xn − x)| ≤ δ|µn|−1

and therefore
lim
n→∞

|µn|−1|f(x− xn)− f(xn − x)| = 0.

We have as above

f(x)ε = lim
n→∞

1

2
|µn|−1[f(xn + x) + f(x− xn)]

and, in virtue of (25),

εf(x) = lim
n→∞

1

2
|µn|−1[f(xn + x) + f(xn − x) + f(x− xn)− f(xn − x)] = f(x)ε

for x ∈ G. Putting

An = [f(x+ xn) + f(x− xn)][f(y + xn) + f(y − xn)],

Bn = [f(x+ y + xn) + f(x+ y − xn) + f(x− y + xn) + f(x− y − xn)]f(xn)

we calculate the limits

2ε2f(x)f(y) = lim
n→∞

1

2
|µn|−2An

ε2[f(x+ y) + f(x− y)] = lim
n→∞

1

2
|µn|−2Bn.

(26)

From (24) we have the series of inequalities

|2f(x+ xn)f(y + xn)− f(x+ y + 2xn)− f(x− y)| ≤ δ,

|2f(x− xn)f(y + xn)− f(x− y − 2xn)− f(x+ y)| ≤ δ,

|2f(x+ xn)f(y − xn)− f(x− y + 2xn)− f(x+ y)| ≤ δ,

|2f(x− xn)f(y − xn)− f(x+ y − 2xn)− f(x− y)| ≤ δ,

|2f(x+ y + xn)f(xn)− f(x+ y + 2xn)− f(x+ y)| ≤ δ,

|2f(x+ y − xn)f(xn)− f(x+ y − 2xn)− f(x+ y)| ≤ δ,

|2f(x− y + xn)f(xn)− f(x− y + 2xn)− f(x− y)| ≤ δ,

|2f(x− y − xn)f(xn)− f(x− y − 2xn)− f(x− y)| ≤ δ
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which yield |An − Bn| ≤ 4δ. Thus we obtain the inequality 1

2 |µn|−2|An − Bn| ≤
|µn|−22δ. The conditions (25) imply that ε2[f(x+ y)+ f(x− y)− 2f(x)f(y)] = 0.
Since ε is not a zero divisor we have ε2 6= 0, thus f is a solution of (23).

Remark 2.4.2

Comments regarding Theorem 2.3.2 made in Remark 2.3.4 apply to Theorem 2.4.1
as well.

Remark 2.4.3

The assumption in Theorem 2.4.1 that A has no zero divisors is essential. Indeed,
if G = (C,+), δ > 0 and the function f :G→M is given by

f(x) =





ex + e−x

2
0

0 ε



 for x ∈ C,

where |ε2 − ε| = δ, then the function f is unbounded and satisfies (23) but it is
not a solution of (23).

Remark 2.4.4

An inspection of the proofs of our Theorems 2.1.1, 2.3.2 and 2.4.1 shows that on
can replace in these theorems the assumption that A has no zero divisors by the
condition:

for every ε ∈ A and ε 6= 0 there is ε2 6= 0 and ε2 is not a zero divisor.

Remark 2.4.5

The first lines of the proofs of our Theorems 2.1.1, 2.3.2 and 2.4.1 lead to the
conclusion that instead of the condition “A has a finite dimension” we might accept
the condition “there exist: a sequence xn ∈ G such that limn→∞ |f(xn)| = ∞ and
a convergent subsequence of |f(xn)|−1f(xn)”. However the latter condition implies,
in particular, that ifG = (Q,+), then the dimension ofA is finite. Indeed, if A were
of infinite dimension, then there would exist a sequence an ∈ A such that |an| = 1,
having no convergent subsequence ([1], p.127–128). Let φ:Q → N be a bijection
and f(x) := |x|aφ(x) for x ∈ Q. Suppose that there exists a sequence xn ∈ Q with
a convergent subsequence of |f(xn)|−1f(xn) = aφ(xn) (|f(x)| = |x| for x ∈ Q!)
such that limn→∞ |f(xn)| = limn→∞ |xn| = ∞. Without loss of generality we may
assume that sequence aφ(xn) itself is convergent and that xn 6= xm for n 6= m. In
this way we found a convergent subsequence of an, which is impossible.

Remark 2.4.6

In the following two cases the algebra A is isometrically isomorphic with C, so
that we have the situation already dealt with in the papers [2], [5] and [8]:

(a) A is a Banach algebra with unity and without topological zero divisors (see
[1], p.467),

(b) A is a normed algebra of finite dimension, with unity and with multiplicative
norm (since the condition (b) implies the condition (a)).
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B. Batko in [3] proved that the Dhombres equation

[f(x) + f(y)][f(x+ y)− f(x)− f(y)] = 0 (27)

for f from an abelian group G to C, is superstable. More precisely, if for some
δ ≥ 0

|[f(x) + f(y)][f(x+ y)− f(x)− f(y)]| ≤ δ for x, y ∈ G,

then f is either additive or |f(x)| ≤
√

δ
2 for x ∈ G. It is possible to prove a more

general result. To this end we need a lemma.

Lemma 2.5.1

Let A be a finite-dimensional normed algebra without the zero divisors. Then for
all an, bn ∈ A the conditions: anbn → 0 and an → a 6= 0 imply bn → 0.

Proof. First of all, the sequence bn is bounded. Really, in the contrary case
there exists a subsequence bkn

of bn such that |bkn
| → ∞ and bkn

6= 0. Since the
sequence |bkn

|−1bkn
is bounded, a certain its subsequence, which we denote by

|bn|−1bn, converges to a b 6= 0. We have ab = limn→∞ |bn|−1anbn = 0. This is
impossible, because A has no zero divisors.

Since the sequence |bn| is also bounded, there exists its convergent subsequence,
say |bkn

|. If it approached a nonzero limit, then, as the sequence bkn
is also

bounded, there would exist a subsequence of bkn
convergent to a b 6= 0. This leads

to the same contradiction as above.
We have proved that the limit of every convergent subsequence of |bn| equals

zero. Thus |bn| → 0 and in consequence bn → 0, too.

Theorem 2.5.2

Let G be a groupoid and let A be a finite-dimensional normed algebra without the
zero divisors. Then the Dhombres equation for f :G→ A is superstable.

Proof. If the function f is unbounded, then there exists a sequence xn ∈ G
such that |f(xn)| → ∞ and f(xn) 6= 0. The sequence |f(xn)|−1f(xn) is bounded
and A is finite-dimensional, thus we can assume that |f(xn)|−1f(xn) → ε for some
ε ∈ A. We have |ε| = 1, whence ε 6= 0. Assume that

|[f(x) + f(y)][f(x+ y)− f(x)− f(y)]| ≤ δ for some δ > 0 and x, y ∈ G. (28)

Taking here y = xn and dividing the resulting inequality by |f(xn)| we obtain

lim
n→∞

[|f(xn)|−1f(x) + |f(xn)|−1f(xn)][f(x+ xn)− f(x)− f(xn)] = 0.

Thus by Lemma 2.5.1

f(x) = lim
n→∞

[f(x+ xn)− f(xn)], f(y + x) = lim
n→∞

[f(y + x+ xn)− f(xn)].
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Moreover, dividing by |f(xn)|2 the inequality obtained from (28) for y = xn and
passing to the limit as n→ ∞, we get

lim
n→∞

|f(xn)|−1f(x+ xn) = ε.

Dividing by |f(xn)| the inequality

|[f(y) + f(x+ xn)][f(y + x+ xn)− f(y)− f(x+ xn)]| ≤ δ

we have f(y) = limn→∞[f(y+ x+ xn)− f(x+ xn)]. Thus f(y+ x) = f(y) + f(x).
Since the additive function are a solution of equation (27), the proof is finished.

Remark 2.5.3

The function f :R →M , given by

f(x) =

[

x 0

0
√

1
2δ

]

shows that the supposition in Theorem 2.5.2 that A has no zero divisors is essential.2.6. The Mikusi«ski's equation.
Theorem 2.6.1

Let G be a group and let A be a finite-dimensional normed algebra without the zero
divisors. Then the Mikusiński’s equation

f(x+ y)[f(x+ y)− f(x)− f(y)] = 0

for f :G→ A is superstable.

The proof is analogous to that of Theorem 2.5.2. We use the inequality

|f(x+ y)[f(x+ y)− f(x)− f(y)]| ≤ δ

written in the form

|f(u)[f(u)− f(x)− f(−x+ u)]| ≤ δ,

taking u = xn such that |f(xn)|−1f(xn) → ε for some ε ∈ A, provided the function
f is unbounded.

Remark 2.6.2

Consult Remark 2.1.3 to see that the assumption “A has no zero divisors” is
essential also in Theorem 2.6.1.

Remark 2.6.3

A normed algebra with multiplicative norm has no zero divisors. The real Banach
algebra with multiplicative norm is isomorphic with R or C or with the field of
quaternions (see [15] p.30).
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Remark 2.6.4

B. Batko in [4] has proved the superstability of Mikusiński’s equation after the
first redaction of this paper and by the different method.

Problem

Let f be the function from an abelian semigroup to a finite-dimensional normed
algebra without the zero divisors. Is the equation

[f(x+y)]2 = [f(x)+f(y)]2 ([f(x+y)+f(x)+f(y)][f(x+y)−f(x)−f(y)] = 0)

superstable?A
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