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Joaquim RoéBlowup and speialization methods for the study oflinear systemsAbstrat. The computation of the dimension of linear systems of curves with

imposed base multiple points on surfaces is a difficult problem, with open
conjectures that are being approached only with partial success. Among oth-
ers, blowup-based techniques and degenerations show some promise of lead-
ing to satisfactory answers. We present an overview of such blowup-based
techniques at an introductory level, with emphasis on clusters of infinitely
near points and Ciliberto–Miranda’s blowup and twist.1. Introdution1.1. An overwiew

Recent years have seen significant advances in the understanding of linear
systems with imposed multiple points. The case of points in general position de-
serves special mention, with several relevant contributions to the open conjectures
of Nagata–Biran–Szemberg and Segre–Harbourne–Gimigliano–Hirschowitz. Most
of these rely to some extent on semicontinuity and degeneration methods, which
often allow setting up induction arguments on the multiplicity or the number of
points.

The formalism of blowups has become an essential tool in the study of linear
systems with multiple points, especially when using degeneration methods: the
geometry of the variety blown up at the imposed points is important; induction
arguments often lead to consider points that are not in general position, but “in-
finitely near”, i.e., on blowups; useful degenerations are often built by blowing up
the total space of some family (sometimes trivial); etc.

These notes aim to overview the set of blowup-based tools that are being
used for specializing and degenerating linear systems. We have taken a rather
elementary approach, which should serve as a friendly introduction and guide to
the original research articles. Sometimes full proofs are not given or the exposition
restricts to particular cases for the sake of simplicity; in that case we include
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references to the existing bibliography. In particular, we deal only with linear
systems of curves on smooth surfaces defined over the field of complex numbers.1.2. Two motivating onjetures

In 1959 M. Nagata, motivated by his solution to Hilbert’s fourteenth problem,
proposed the following conjecture.

Conjecture A.1 (Nagata, [36])
If d, m, n are positive integers with n > 9 and d ≤ m

√
n, and p1, . . . , pn ∈ P2 are

general points, there is no plane curve of degree d with multiplicity ≥ m at the n
points.

If n is a square, Nagata proved the result to be true; as of today, there is no
nonsquare n for which the result is known. Nagata’s Conjecture turns out to be
related to problems of sphere packings in symplectic geometry [33], and results
known in the symplectic setting suggest the following generalization:

Conjecture A.2 (Nagata, Biran, Szemberg, Lazarsfeld, [31, 5.1])
Let S be a smooth projective surface and H an ample divisor on S. Suppose k is

a positive integer such that there is a curve C ∈ |kH | with g(C) > 0. Then, if d,

m, n are positive integers with n ≥ k2H2 and d < m
√
nH2, and p1, . . . , pn ∈ S

are general points, there is no curve D ⊂ S with D ·H ≤ d and multiplicity ≥ m
at the n points.

Rather than just asking whether certain curves exist of a given degree and
multiplicities, one is often interested in the dimension of such a system. To be
precise, denote Ld(p

m1
1 , . . . , pmn

n ) the linear system of all plane curves of degree
d with multiplicity at least mi at n distinct points p1, . . . , pn ∈ P2. In principle,

each point of multiplicity m imposes up to m(m+1)
2 linear conditions, which may

or may not be independent, so the dimension of the linear system is at least

vdim(d;m1, . . . ,mn) = max
{
− 1,

d(d + 3)

2
−

n∑

i=1

mi(mi + 1)

2

}
,

and one expects dimLd(p
m1
1 , . . . , pmn

n ) = vdim(d;m1, . . . ,mn) in many cases:

Conjecture B.1 (Segre, [46])
Let p1, . . . , pn ∈ P2 be general points, and let d,m1, . . . ,mn be nonnegative inte-

gers. If dimLd(p
m1
1 , . . . , pmn

n ) is greater than vdim(d;m1, . . . ,mn), then general

members of Ld(p
m1
1 , . . . , pmn

n ) are nonreduced.

Of course, if general members of a linear system are nonreduced they must
have a common multiple base curve; although Segre’s Conjecture is still open,
much more is known today about such multiple base curves and Segre’s Conjecture
can be equivalently formulated as follows (see [23], [28], [11]):
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Conjecture B.2 (Segre–Harbourne–Gimigliano–Hirschowitz)
Let p1, . . . , pn ∈ P2 be general points, and let d,m1, . . . ,mn be nonnegative inte-

gers. If dimLd(p
m1
1 , . . . , pmn

n ) is greater than vdim(d;m1, . . . ,mn), then there is

an irreducible, reduced, rational curve C ⊂ P2 with
∑

(multpi
(C))2 = (degC)2+1

and
∑

(mi ·multpi
(C)) > d · degC which is a multiple component of all curves in

Ld(p
m1
1 , . . . , pmn

n ).

If the number of points is nine or less, then the conjecture is known to be
true [22], [21], and this is in fact one of the original motivations for posing the
conjecture. Blowing up the plane at the nine given points one gets a rational
surface in which the opposite of the canonical divisor is effective, which allows, in
fact, to compute the dimensions of the linear systems (if r < 8, it is possible to do
the computation even for points in special positions [20]).

It is not hard to see that the Segre–Harbourne–Gimigliano–Hirschowitz Con-
jecture implies Nagata’s Conjecture. Both conjectures turn out to be formidable
challenges, and only particular cases have been solved so far. The methods re-
viewed in these notes have all had some relevance in the partial results that are
known, and some of them show promise of leading to a general proof.1.3. Preliminaries

We start by fixing notations and reviewing a few facts from the geometry of
surfaces, which we shall assume are familiar to the reader, and will be used freely.
Refer to [3], [5] or [26, V] for complete expositions and proofs.1.3.1. Surfaes, urves and germs

A suface S denotes a connected two-dimensional complex analytic manifold.
A curve in S is an effective Cartier divisor C, i.e., it is given by local equations
fi = 0 on suitable open sets Ui covering S, with fi nonzero holomorphic func-
tions agreeing up to units in the intersections Ui ∩ Uj . Thus C determines (or is
determined by) a line bundle OS(C) and a nonzero section f ∈ H0(S,OS(C)).

We use additive notation for curves, so if C and D are curves locally defined
by equations f = 0, g = 0, then C + D is the curve locally defined by fg = 0.
C is irreducible if it can not be written as a nontrivial sum of curves C +D. In
general, a Cartier divisor is an element in the free abelian group DivS generated
by irreducible curves C ⊂ S. If φ is a nonzero rational (meromorphic) function,
then the divisor defined by φ, div(φ), is a Cartier divisor Z−P (the “zeros” minus
the “poles”) so that, if φ is given locally by f/g, with f , g holomorphic, Z is given
locally by f = 0, P by g = 0. Two divisors C,D are linearly equivalent if the
difference C − D is the divisor of a rational function. Similarly, a meromorphic
2-form ω defines a divisor K, called a canonical divisor, and two canonical divisors
are always linearly equivalent.

If ϕ : S′ → S is a holomorphic map, and C is a curve on S not containing ϕ(S′),
then ϕ∗C is a curve on S′ defined by lifting the local equations f = 0 to f ◦ϕ = 0.
This definition extends immediately to divisors, and when ϕ is dominant (i.e., its
image is not contained in a curve) ϕ∗ is a group homomorphism Div S → DivS′

respecting linear equivalence.
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The Picard group of S, denoted PicS, is the group of isomorphism classes of

line bundles on S. The definition of OS(D) is extended to arbitrary divisors D by
linearity; the map D 7→ OS(D) identifies PicS with the group of linear equivalence
classes in Div S.

Given a point O ∈ S, the germs of functions holomorphic in a neighborhood
of O describe a local ring, denoted OO. A germ of function f ∈ OO determines
a germ of curve C : f = 0. OO is a unique factorization domain, so every germ f
decomposes as a product of irreducible germs (uniquely up to an invertible factor).
The germs of curve determined by the irreducible factors of f are called branches

of the germ C : f = 0.
By fixing local coordinates x, y near O (so that O has coordinates (0, 0))

one gets an isomorphism OO
∼= C{x, y} with the ring of convergent power series;

(x, y) is then the maximal ideal. The multiplicity of a germ of curve C : f = 0
at O, denoted multO C, is the minimal order of a term in the power series f , or
equivalently, the maximal n such that f ∈ (x, y)n. It is independent of the choice
of coordinates.

Theorem 1.3.1 (Newton–Puiseux, [6, Chapter 1])
Fix a point O ∈ S and local coordinates x, y in a neighborhood of O. Let f ∈ OO

be an irreducible germ, and let C : f = 0 be the (unibranch) curve it determines.

Then:

1. There is a minimal (germ of ) analytic parametrization of C of the form

(x, y) = η(t) := (tn, s(t)), s ∈ C{t}.
I.e. there are a positive integer n and a convergent power series s such that

f(tn, s(t)) ≡ 0 and every other parametrization η′ factors uniquely through η.

2. If C is not tangent to the y-axis, then n is the multiplicity of C at O, and s
has order at least n. Otherwise, the order of s is the multiplicity of C and n
is strictly greater.

3. n is uniquely determined, and s is uniquely determined up to conjugation

t 7→ ζkt in C{t}, where ζ ∈ C is a primitive n-th root of unity.1.3.2. Intersetion numbers and linear systems
Among other uses, the Newton–Puiseux Theorem serves to define (and com-

pute) intersection multiplicities of curves. Namely, if C, D are germs of curves
at O, with C irreducible, η is a minimal parametrization of C as given by Theo-
rem 1.3.1, and D is given by g = 0, then the intersection multiplicity of C and D at
O is given by [C,D]O = ordt(g(η(t))). This definition can be extended by additiv-
ity to the case that C is reducible; it is symmetric and bilinear, and semicontinuous
in linear families (see [48, IV.5], [6, 2.5]). It coincides with dimC O/(f, g), where
f and g are equations of the curves, [18, 3.3], [6, 3.11.10].

If C, D are curves on a surface S without common components, with C com-
pact, then they meet in a finite set, and the sum of intersection multiplicities

C ·D :=
∑

O∈S

[C,D]O (1)
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is finite. In particular, this is the case for every pair of curves without common
components on a projective surface.

The set of all curves linearly equivalent to a given C ⊂ S is denoted |C|, and
when S is projective one has |C| = P(H0(S,OS(C))), because two sections of
OS(C) determine the same curve if and only if they are scalar multiples of each
other.

Two curves C,D ⊂ S are algebraically equivalent if there exist a third curve
E ⊂ S, a connected curve (not necessarily irreducible) T and a flat family of curves
on S parametrized by T (i.e., a 2-dimensional complex subspace X ⊂ T × S, flat
over T ) such that C + E and D + E are two fibers of X → T . They are homo-

logically equivalent if their classes in H2(S,Z) are the same. They are numerically

equivalent if, for every other curve E on S, C · E = D · E. Since all curves lin-
early equivalent to C are parametrized by a projective space |C|, linear equivalence
implies algebraic equivalence. On the other hand, algebraic equivalence implies ho-
mological equivalence and homological equivalence implies numerical equivalence
[3], [19]. The group of divisors on S modulo linear equivalence is identified with
the Picard group Pic(S); the group of divisors modulo algebraic equivalence is
called the Néron–Severi group NS(S).

Theorem 1.3.2
On a projective surface S, the intersection number defines a symmetric bilinear

form PicS × PicS → Z, given by (OS(C),OS(D)) 7→ C ·D on curves.

Proof. See [5, I.4].

Theorem 1.3.2 allows to define intersection numbers C ·D for arbitrary divisors,
including C2 = C · C. It is worth noting that given two divisors C1, C2, there
are always curves A1, A2, B1, B2, pairwise without common components, such
that Ci is linearly equivalent to Ai −Bi. Hence the intersection number C ·D can
always be computed by means of (1), in principle.

A linear system is defined as the family of curves determined by a linear
subspace L ⊂ |C| for some C. |C| is called a complete linear system. The base

locus of a linear system is the intersection of all curves in it; it is a Zariski closed
subset of S, so it decomposes as a union of irreducible curves (fixed components of
the system) and isolated points (base points). The components of the base locus
may also appear with multiplicities in the system.

For two curves C, D, if C ·D < 0, then by (1) they share at least an irreducible
component, and if C is irreducible, then it is a fixed component of the complete
linear system |D|. A divisor D is said to be nef if C ·D ≥ 0 for all curves C.

The dimension of complete linear systems (equivalently, the dimension of H0

groups) can not be determined from their numerical properties (intersection num-
bers) but on the other hand, if some vanishing theorem helps (for instance if
H2 = 0, as happens for effective divisors on rational surfaces), then the dimension
of complete linear systems can at least be bounded using their Euler characteristics,
which are determined by intersection numbers:
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Theorem 1.3.3 (Riemann–Roch)
Let S be a projective surface. For every divisor D on X,

χ(OS(D)) = χ(OS) +
D2 −D ·K

2
,

where K is a canonical divisor.

Given a linear system L ⊂ |D| of finite dimension n (this is automatic if S is
projective) and a point p not in the base locus of L, the set of all divisors in L
going through p is again a linear system L − p ⊂ L of dimension n − 1. Thus L
determines a rational map ϕL : S 99K L∨ ∼= Pn mapping each p to L − p. See [5,
II.6] for details and for the use of blowups to extend ϕL to the whole of S. The
divisor D is called very ample if there exists a linear system L ⊂ |D| such that ϕL

is an immersion, and ample if there exist a positive integer n and a linear system
L ⊂ |nD| such that ϕL is an immersion.

It is quite remarkable that ampleness can be detected numerically:

Theorem 1.3.4 (Nakai–Moishezon criterion)
Let S be a projective surface. A divisor D on X is ample if and only if D2 > 0
and D · C > 0 for all irreducible curves C in X.

A similar result holds in higher dimensions, see [30], [31, 1.2.23]. The proof of
the Nakai–Moishezon criterion relies on the Riemann–Roch Theorem and, more
precisely, on one of its consequences: the fact that if D, H are divisors with H
ample and D2 > 0, D ·H > 0, then a multiple nD of D is linearly equivalent to
an effective divisor. A less significant (but often useful) consequence is that a nef
divisor always has nonnegative self intersection.

It is sometimes useful to consider “Q-divisors”, i.e., elements in Q⊗DivS. The
intersection form extends to Q⊗DivS, and thus the notion of nef Q-divisor makes
sense; similarly, a Q-divisor is called ample if it has an integer multiple which is
very ample (or simply ample). See [31] for a complete exposition.2. Complete ideals and unloading

The first two sections deal with local properties of complete ideals; the main
reference is Casas-Alvero [6]. Subsequent sections use complete ideals and their
properties in global settings.2.1. Infinitely near points

Let S be a surface, and O ∈ S a point. The blowup of S at O can be defined as
follows (see [6, 3.1], [5, II.1], [26, I.4]). Let U be a neighborhood of O, where x, y
are well defined analytic coordinate functions (and O has coordinates (0, 0)). Fix
projective coordinates (u : v) in a projective line P1, and consider the subvariety
Ũ of U × P1 given by xv − yu = 0. It is a (smooth, connected) surface projecting
onto U , and the restriction of the projection π : Ũ → U to Ũ \ π−1(O) is an
isomorphism onto U \ {O}. Thus Ũ can be glued with the rest of S giving a new
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surface S̃ which is isomorphic to S except that O has been replaced by a curve
E ∼= P1 whose points correspond to the tangent directions at O. E is called the
exceptional divisor or exceptional curve of the blowup. This construction (modulo
isomorphism) does not depend on the coordinates chosen.

If C : f = 0 is a germ of curve with multiplicity n at O, then its pullback
π∗C ⊂ S̃ consists of the exceptional curve E, with multiplicity n, and the strict

transform C̃ of C. C̃ intersects E in at most n points; if fn denotes the form of
order n in the power series expansion of f , the intersection points of C̃ and E
(with multiplicities!) are the zeroes (in E ∼= P1) of fn(u, v). This set of points,
with their multiplicities, is called the tangent cone of C at O. It is independent
on the choice of coordinates as well.

Note that each branch of curve C at O has a unique tangent, the corresponding
point of E appearing in the tangent cone with multiplicity equal to the multiplicity
that the branch has at O.

Points on the exceptional curve E = π−1(O) of the blowup π : S̃ → S of
a point O are said to belong to the first infinitesimal neigborhood of the point
O. Inductively, a point p belongs to the k-th infinitesimal neigborhood of O if
it belongs to the first infinitesimal neighborhood of a point in the (k − 1)-th
infinitesimal neigborhood of O. Note that in this case, the point in the (k − 1)-th
neigborhood is uniquely determined; it is called the immediate predecessor of p.
A point infinitely near to O is a point in some infinitesimal neigborhood of O.

Thus, a point p infinitely near O is a point on a surface S′ with a birational
morphism, composition of blowups, π : S′ → S such that π(p) = O. It is not
restrictive to assume that the restriction of π to π−1(S \ {O}) is an isomorphism.
If C is a curve through O, the strict transform of C at a point p infinitely near to
O is defined inductively as the strict transform of the strict transform of C at the
predecessor point of p. Set theoretically, it is also the closure of π−1(C∩(S\{O})).

If C is a curve through O and p is a point infinitely near to O, the multiplicity
of C at p is defined to be the multiplicity at p of the strict transform of C, and
we say p belongs to C if it belongs to its strict transform.

For every point p (possibly infinitely near), denote Ep its first infinitesimal
neigborhood. Points infinitely near to p that belong to Ep (or to its strict transform
after suitable blowups, see the preceding paragraph) are called points proximate

to p. Sometimes q ≻ p is written to mean that q is proximate to p.

Each infinitely near point p is proximate to its immediate predecessor q. If it
is not proximate to any other point, then it is called a free point. If it is proximate
to some other point q′, then it is the intersection point of the two corresponding
exceptional components: p = Ẽq′ ∩ Eq, and thus it is proximate to exactly two
points (it is easy to see that the blowup process never produces three exceptional
components Eq, Ẽq′ , Ẽq′′ meeting at a point). Such points are called satellite.

A curve C is singular at an infinitely near point p if either it has multiplicity
at least 2 at p, or it goes through a satellite point equal or infinitely near to p.

Theorem 2.1.1 (Noether’s formula, [6, 3.3.1])
Let C and D be curves defined in a neighborhood of O. C and D have no common

branch through O if and only if C and D share finitely many points infinitely near
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to O. In such a case [C,D]O =

∑
(multp C)(multp D), the summation running

over all points p equal or infinitely near to O.

Proof. If C and D have a common branch through O, then they share in-
finitely many points infinitely near to O. So assume they have no common branch.
In that case the intersection multiplicity is finite, and the finiteness of the set of
common points will follow from the equality to be proved.

Both sides of the equality are additive in C, so it is not restrictive to assume
C is irreducible. Let P be the point of C in the first neighborhood of O. Denote
C̃, D̃ the strict transforms of C and D after blowing up O. We shall prove that
[C,D]O = (multO C)(multO D)+[C̃, D̃]P , and the result then follows by induction.

Assume that coordinates (x, y) have been chosen so that C is tangent to the
x-axis. Let η(t) = (tn, s(t)) be the minimal parametrization of C given by the
Newton–Puiseux Theorem, and note that n = multO C. C being tangent to the
x-axis implies that s(t) = amtm + am+1t

m+1 + . . . with m > n.
Let f = 0 be an equation of D, and denote e = multO D. We use x and z = y/x

as local coordinates in a neighborhood of P . The minimal parametrization of C̃
can be given as η̃(t) = (x(t), (y/x)(t)) = (tn, amtm−n + am+1t

m−n+1 + . . .), and
f̃ = x−ef(x, xz) is an equation of D̃. The claimed equality now follows from the
definition of the intersection multiplicity.2.2. Weighted lusters

The goal of this section is to define the complete ideals that are associated to
(multiple) infinitely near points. It is clear that the set of local equations of curves
with multiplicity at least m at the point O ∈ S is exactly the ideal (x, y)m ⊂ OO,
i.e., the m-th power of the maximal ideal at O. On the other hand, examples show
that the naive definition for infinitely near points does not work:

Example 2.2.1
Let p be a point in the first neighborhood of O, and take coordinates so that p lies
in the direction of y = 0. Then the set local equations of curves with multiplicity
at least 1 at O and p, which is exactly the set of local equations of curves through
O with y = 0 in the tangent cone, contains y and y + x2 but does not contain x2

(i.e., it is not an ideal!).

A cluster based at O is a finite set of points K infinitely near to O such that,
for every p ∈ K, if q is a point such that p is infinitely near to q, then q ∈ K. (In
forthcoming sections where a global setting is needed we drop the assumption that
all points be infinitely near to a fixed point O). A weighted cluster is a cluster
K with a map m : K → Z (we usually denote mp ∈ Z for the image of the point
p ∈ K, and call it the multiplicity of p in the weighted cluster).

It is a cornerstone of the singularity theory of curves that for every singular
(reduced) germ of curve C at O, the set of singular points of C equal and infinitely
near to O form a cluster K = SingC, so that if πK : SK → S is the composition
of the blowups of all points of K, then C̃ is nonsingular in SK and π∗

KC has only
nonsingular components intersecting transversely. Moreover, two germs C, C′ are
topologically equivalent if and only if there is a bijection between their clusters
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of singular points, preserving multiplicities and proximities (in other words, if the
Enriques diagrams – see Section 3 – of the weighted clusters (SingC,multC),
(SingC′,multC′) coincide) [6].

Now, given a multiplicity mp, and a germ of curve C with multiplicity at least
mp at some point p (equal or infinitely near to O), the virtual transform of C on

the blowup of p with respect to the multiplicity mp is defined as Ĉ = π∗C−mpE.
It is a curve (an effective divisor) and it coincides with the strict transform exactly
when multp C = mp.

This allows to inductively define what it means for a curve to go through

a weighted cluster (K,m). Let p1, . . . , pr be the points of K in the first neighbor-
hood of O. K \ {O} is the disjoint union of K1, . . . ,Kr, where Ki is the cluster
based at pi which consists of the points in K equal or infinitely near to pi. Then
we say that a germ of curve C goes through (K,m) if C has multiplicity at least
mO at O and for i = 1, . . . , r, (the germ at pi of) the virtual transform of C goes
through (Ki,m). The set of all local equations of curves going through (K,m) will
be denoted HK,m.

Proposition 2.2.2 ([6, 4.1.1])
For every weighted cluster (K,m), HK,m ⊂ OO is an ideal.

Exercise 2.2.3
For every weighted cluster (K,m), the ideal HK,m ⊂ OO is either the whole ring
OO or (x, y)-primary. If all multiplicities mp are non-negative and at least one is
positive, then the ideal HK,m is (x, y)-primary.

Given a weighted cluster (K,m), let π : SK → S be the composition of the
blowups of all points of K, and denote Ep the total transform on SK of the excep-
tional divisor above p. Using induction, it is not difficult to see that a germ of curve
C goes through (K,m) if and only if the virtual transform divisor π∗C −∑

mpEp

is effective on SK . Thus, the ideal associated to the cluster can be described as
a direct image: HK,m = π∗(OSK

(−∑
mpEp)). An interesting consequence of this

description is that HK,m can be alternatively defined using valuations of the local
ring O, i.e., that it is a complete, or integrally closed ideal (see [50, Appendix 4]).

Exercise 2.2.4 (Noether’s formula for clusters)
Let (K,m) be a weighted cluster, and C : f = 0 a germ of curve. For every germ
D : g = 0 going through (K,m), the intersection multiplicity [C,D]O is at least∑

mp(multp(C)), the summation running over all points p ∈ K.2.3. Loal Bertini Theorem
Definition 2.3.1
A weighted cluster (K,m) is called consistent if all weights mp are non-negative
and, for every p ∈ K, the proximity inequality at p

mp ≥
∑

q∈K,q≻p

mq

is satisfied.
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Theorem 2.3.2 ([6, 4.2.2])
Let (K,m) be a given weighted cluster. If there is a germ of curve C going through

(K,m) with multiplicities equal to the weights, then (K,m) is consistent. Con-

versely, assume a finite set T of points infinitely near to O and not in K is fixed;

if (K,m) is consistent, then there is a germ of curve going through it with multi-

plicities equal to the weights at all points of K and missing all points in T .

Proof. The first part of the statement is clear from the fact that the sum of
the multiplicities of a germ of curve at all points (on the germ) proximate to p is
exactly the intersection multiplicity of the strict transform of the germ with the
exceptional divisor of blowing up p, and this is exactly the multiplicity of the germ
at p.

For the converse statement, one uses induction on the number of points of K.
If K = {O} the statement is obvious, so assume K has more points than just O.
Blow up O, and let as before p1, . . . , pr be the points of K in the first neighborhood
of O, and Ki, i = 1, . . . , r the cluster which consists of the points in K equal or
infinitely near to pi. Define also

Ti = (T ∩Ki) ∪ {first point proximate to O inf. near pi not in K}.

By induction, there is a germ of curve C̃i at pi going through (Ki,m|Ki
) and

missing all points in Ti. Using Noether’s formula, this in particular implies

[C̃i, E]pi
= mi

def

=
∑

p∈Ki,p≻O

mp,

and thus E 6⊂ C̃i. Therefore there is a germ of curve Ci at O of multiplicity mi

whose strict transform at pi is C̃i. Pick moreover t = mO −∑r

i=1 mi ≥ 0 smooth
branches C′

1, . . . , C
′
t through O and missing all points p1, . . . , pr and all points in

T (observe that t ≥ 0 because of the proximity inequality at O). It is clear that
C = C1 + . . .+ Cr + C′

1 + . . .+ C′
t goes through (K,m) with multiplicities equal

to the weights.

Definition 2.3.3
A germ of curve C is said to go sharply through a weigted cluster (K,m) if it has
multiplicities equal to the weights and no singular point outside of K.

Corollary 2.3.4 (local Bertini Theorem)
If (K,m) is consistent, then general curves through (K,m) (i.e., defined by an

equation general in HK,m) go sharply through (K,m).

This form of Bertini’s Theorem is not found in most modern texts, even though
it has been known for a long time, see Zariski’s remark in [49, Chapter 2]. The
proof follows easily from 2.3.2; the interested reader will find details in [6, 4.2.7].2.4. Unloading

If a weighted cluster (K,m) does not satisfy the proximity inequality at a point
p ∈ K, that is, mp <

∑
q∈K,q≻p mq, then for every germ of curve C through
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(K,m), its virtual transform Ĉ in the blowup of p contains Ep as a component

(the intersection multiplicities [Ĉ, Ep]q at points proximate to p add up to more
than m by Noether’s formula 2.2.4, which means the virtual transform of C at
p has multiplicity strictly bigger than mp). Consider the weights m′ obtained
from m by the change m′

p = mp + 1. At each point q proximate to p, the virtual
transform of every germ of curve through (K,m), with respect to the new weights
m′, has multiplicity at least mq−1 (because the sum of this virtual transform plus
Ep is the virtual transform with respect to the weights m, which has multiplicity
at least mq). So consider m′′ obtained from m by the change m′′

q = mq − 1 at all
points q proximate to p. Then HK,m = HK,m′′ , and we have unloaded a unit of
multiplicity from the points proximate to p onto p itself.

Example 2.4.1
Given a point p in the first neighborhood of O, what is the set I of all germs whose
total transform at p has multiplicity at least a ≥ 0? Since the total transform
coincides with the virtual transform with respect to the multiplicity 0, I = HK,m,
where mO = 0, mp = a ≥ 1. By unloading a unit of multiplicity, HK,m = HK,m′′ ,
where m′′

O = 1, m′′
p = a − 1. If a > 2, this is still not consistent, and another

unit can be unloaded. Write a = 2k + r, with r ∈ {0, 1}. The reader may check,
after unloading k units of multiplicity, that I = HK,m = HK,n, where nO = k+ r,
np = k.

Exercise 2.4.2
For each weighted cluster (K,m), denote DK,m the divisor −∑

p∈K mpEp on SK ,

and let Ẽp denote the strict transform of Ep in SK . Show that:

1. The proximity inequality mp ≥ ∑
q∈K,q≻p mq is equivalent to DK,m · Ẽp ≥ 0.

2. Assume DK,m · Ẽp < 0 and let m′′ be the weights defined above. Then

DK,m′′ = DK,m − Ẽp.

Proposition 2.4.3
Given a non-consistent weighted cluster (K,m), a finite number of unloading steps

lead to a consistent weighted cluster (K,n) such that HK,m = HK,n.

Corollary 2.4.4
General members of HK,m have multiplicity np at each p ∈ K.

Proof of 2.4.3. Let C : f = 0 be a germ of curve through (K,m). It exists
because of 2.2.3. In SK , we have

π∗
KC = C̃ +

∑

p∈K

vpẼp

for some nonnegative integers vp. Let DK,m = −∑
p∈K mpEp =

∑
p∈K rpẼp.

By 2.4.2, each unloading step consists in adding 1 to a coefficient rp; so for ev-
ery weighted cluster (K,n) obtained from (K,m) by unloading, one has DK,n =

−∑
p∈K npEp = −∑

p∈K spẼp with sp ≥ rp for all p. On the other hand, since
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HK,m = HK,n, the germ C goes through (K,n), which means that π∗

KC +DK,n

is effective; thus sp ≤ vp. Therefore each coefficient sp is bounded, there is a finite
number of possible weights n and one of them must be consistent.3. Enriques diagrams3.1. Number of onditions
Proposition 3.1.1
Let (K,m) be a consistent weighted cluster. Then

dimC

OO

HK,m

=
∑

p∈K

mp(mp + 1)

2
.

This formula is sometimes attributed to Hoskin and Deligne, although it was
already known to Enriques [15]. Our proof is taken from Casas-Alvero [6].

Proof. We argue by induction on the number c =
∑

p∈K

mp(mp+1)
2 . Clearly,

if c = 0 the statement is correct (since on a consistent cluster c = 0 implies mp = 0
at all points).

So assume c > 0. Choose a point q ∈ K with no points proximate to it with
positive multiplicity, and define a new weighted cluster (Q,n) as follows:

• Q = K ∪ {q1, . . . , qmq−1}, where the mq − 1 points qi are arbitrarily chosen
free points on the first neighborhood of q,

• np = mp for all p ∈ K, p 6= q,

• nq = mq − 1,

• nqi = 1, i = 1, . . . ,mp − 1.

Clearly, (Q,n) is consistent, and since
∑

p∈Q

np(np+1)
2 = c − 1, by induction we

get dimC
OO

HQ,n
= c− 1.

Now let (Q′, n′) be obtained from (Q,n) by adding a further simple point qmq

on the first neigborhood of q. It is clear that HQ′,n′ ⊂ HQ,n and, since only
a point of multiplicity one was added, dimC

OO

HQ′,n′
≤ c. On the other hand, by

2.3.2, HQ′,n′ 6= HQ,n, so it follows that dimC
OO

HQ′,n′
= c. But (Q′, n′) is not

consistent; after unloading, we see that HQ′,n′ = HK,m.3.2. The Enriques diagram of a luster
A convenient way to graphically represent clusters is in the form of directed

trees; points of the cluster are represented by vertices, and an edge is drawn to
each point from its immediate predecessor. Enriques introduced a convention for
encoding proximities between points, and their free/satellite nature, which is most
easily described by giving the rules to draw the Enriques diagram of any cluster:
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• If q is in the first neighborhood of p, and free, draw a curved edge from p

to q, whose tangent at p coincides with the preceding one (unless p = O in
which case there is no preceding edge).

• Suppose there is an edge from p to q (which can be curved or straight). Then
all points proximate to p in successive neighborhoods of q are joined with
edges on a half-line orthogonal (at q) to the edge pq).

In order to avoid selfintersections, the half-lines in a succesion of satellite points
are chosen alternatively to the right and to the left.

O

p1
p3

p2

p4

p5

p6

p7

p8

Figure 1. Enriques diagram of a nine-point cluster.

Example 3.2.1
Figure 1 depicts a cluster K = (O, p1, . . . , p8) in which p4, p5 are satellites proxi-
mate to the origin O (in addition to each beigh proximate to its immediate pre-
decessor), p6 is a satellite proximate to p2 and p4, and the remaining vertices are
free. It will be helpful, for this first diagram, to include pictures corresponding to
the surfaces on which lie the points of K. This is done in Figures 2–4, where the
notation SQ denotes the surface obtained by blowing up at the cluster Q.

It is apparent here that the Enriques diagram provides a much more compact
representation of the cluster.

p1

p2

EO

Figure 2. S{O}

p3

p4

ẼO

E2

E1

Figure 3. S{O,p1,p2}

p6

p5

p7

p8

ẼO

E3

Ẽ2

Ẽ1

E4

Figure 4. S{O,p1,p2,p3,p4}
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Exercise 3.2.2
Draw a schematic picture of the surface SK obtaied after blowing up all points of
K in the preceding example. Denoting as customary EO (resp. Ei) the pullback to
SK of the exceptional divisor above O (resp. pi), write them as linear combinations
of the irreducible divisors ẼO, Ẽi. Check that in the example Ẽi = Ei−

∑
pj≻pi

Ej ,
and prove that this equality holds in general.3.3. Operations with omplete ideals

Given two clusters K and Q, the union K∪Q is obviously a cluster. Given two
weighted clusters (K,m) and (Q,n), their sum is defined to be (K,m) + (Q,n) =
(K ∪Q,m+n), where mq is taken to be zero for q ∈ Q \K and symmetrically, np

is taken to be zero for p ∈ K \ Q. Note that if (K,m) and (Q,n) are consistent,
then so is (K ∪Q,m+ n).

Proposition 3.3.1
Given two consistent weighted clusters (K,m) and (Q,n), the product HK,m ·HQ,n

coincides with the complete ideal HK∪Q,m+n of the sum of the clusters.

Proof. The inclusion HK,m · HQ,n ⊂ HK∪Q,m+n is clear, so let us prove the
converse. It is not restrictive – and it simplifies notations – to assume K = Q =
K ∪ Q. We argue by induction, as the case K = {O} is clear. So let, as before,
p1, . . . , pr be the points of K in the first neighborhood of O, and Ki the cluster
based at pi which consists of the points in K equal or infinitely near to pi.

It will be enough to show that a general member h of HK,m+n can be written
as a product fg, where f ∈ HK,m and g ∈ HK,n. Since (K,m+ n) is a consistent
cluster, by Bertini, a general member h of HK,m+n has multiplicity exactly m+n
at O, its virtual transform hi at each pi coincides with its strict transform, and
the germ C̃i : hi = 0 has no point on the exceptional divisor E outside of K. By
the induction hypothesis, hi = figi, where fi ∈ HK,m and gi ∈ HK,n. Since C̃i

does not contain E, and C̃i = F̃i + G̃i with F̃i : fi = 0 and G̃i : gi = 0, it follows
that F̃i is the strict transform of a germ Fi : f

◦
i = 0 of curve at O, and G̃i is the

strict transform of a germ Gi : g
◦
i = 0 of curve at O. Then it is not hard to check

that f =
∏

f◦
i ∈ HK,m, g =

∏
g◦i ∈ HK,n, and h differs from fg by a unit.

Definition 3.3.2
A complete ideal is called irreducible if it can not be written as the product of two
nontrivial complete ideals.

Definition 3.3.3
The excess multiplicity (or excess) at a given point p of a weighted cluster (K,m)
is ρp = mp −

∑
q∈K,q≻p mq. So the cluster is consistent if and only if the excess

is nonnegative at every point. Note that multiplicities determine and are in turn
determined by excesses in every weigthed cluster.
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Theorem 3.3.4 (Zariski)
Let (K,m) be a consistent weighted cluster.

1. HK,m is an irreducible complete ideal if and only if (K,m) has exactly one

point p with positive excess, and ρp = 1.

2. Every complete ideal decomposes uniquely as a product of irreducible complete

ideals.

Proof. Since every complete ideal can be defined by an essentially unique con-
sistent weighted cluster, we restrict in this proof to considering consistent clusters
only.

Note that the excess multiplicity at a point p of the weighted cluster HK∪Q,m+n

is the sum of the excesses at that point of HK,m and HQ,n. The irreducibility of
a weighted cluster with only one point with positive excess, which is equal to 1,
follows immediately from this remark.

On the other hand, for each point p in a cluster K, there is a unique set of

weights m(p) = {m(p)
q }q∈K such that the excesses ρ

(p)
q = m

(p)
q −∑

q′∈K,q′≻q m
(p)
q′

are ρ
(p)
q = δpq (Kronecker’s delta); namely the multiplicities are determined by

m
(p)
q = ρ

(p)
q +

∑
q′∈K,q′≻q m

(p)
q′ . The weighted cluster (K,m(p)) is consistent by

definition, and every consistent weighted cluster can be written uniquely as a sum
of such clusters: (K,m) =

∑
p∈K ρp(K,m(p)). By the previous proposition it

follows that every complete ideal decomposes uniquely as a product of complete
ideals with only one point with positive excess equal to 1, which we already proved
are irreducible. It also follows that this decomposition is trivial exactly when
(K,m) has only one point with positive excess equal to 1.

1515

217
219

722

542

158

165

042

345

Figure 5. Weighted Enriques diagram of Exercises 3.3.5 and 3.3.9. Each

point p is labeled twice, its multiplicity mp in boldface, its value v(m)p as

a subscript.

Exercise 3.3.5
Let (K,m) be the cluster of Example 3.2.1, weighted with the multiplicities indi-
cated in Figure 5. Compute (the Enriques diagrams of) the Zariski decomposition
of HK,m.
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Quotient ideals (I : J) of complete ideals can also be dealt with by cluster

computations:

Proposition 3.3.6
Given two consistent weighted clusters (K,m) and (Q,n), the quotient (HK,m :
HQ,n) coincides with the complete ideal HK∪Q,m+(−n). Given a consistent weigh-

ted cluster (K,m) and a curve germ C : f = 0, the quotient (HK,m : f) coincides

with the complete ideal HK∪Q,m−multC , where we take (m − mult f)p = mp −
multp(C).

Note that even though (K,m) and (Q,n) are assumed to be consistent, (Q,−n)
and hence HK∪Q,m+(−n) will in general not be consistent. Thus to know the
effective behavior of elements in the quotient it will be necessary to perform an
unloading computation. The proof of 3.3.6 is similar to that of 3.3.1.

Intersections of complete ideals are also complete, but their description is
better handled by expressing the divisor DK,m in terms of irreducible exceptional
divisors rather than multiplicities. Given a weighted cluster (K,m), its associated
divisor can be written as DK,m =

∑
p∈K∪Q −v(m)pẼp, where v(m)p = mp +∑

q∈K,p≻q v(m)q is the value at p associated to the multiplicities m. It is not hard
to compute the v(m)p from the mp and conversely.

Definition 3.3.7
Given two weighted clusters (K,m) and (Q,n), consider their associated divisors
on SK∪Q, written as combinations of the irreducible exceptional divisors: DK,m =∑

p∈K∪Q −v(m)pẼp and DQ,n =
∑

p∈K∪Q −v(n)pẼp. Their meet is defined to
be (K ∪ Q,m ∧ n), where m ∧ n is the unique system of multiplicities such that
v(m ∧ n)p = max(v(m)p, v(n)p) for all p ∈ K ∪Q.

Proposition 3.3.8
Given two weighted clusters (K,m) and (Q,n), HK,m ∩HQ,n = HK∪Q,m∧n.

We leave these proofs to the interested reader. Note that (K ∪ Q,m ∧ n)
need not be consistent even when (K,m) and (Q,n) are, and thus to know the
effective behavior of members of the intersection one often needs to do an unloading
computation.

Exercise 3.3.9
Check that the subscript values in Figure 5 correspond to the divisor DK,m asso-
ciated to the cluster of Exercise 3.3.5. Compute the intersection HK,m ∩m

16
O and

the quotient (HK,m : m16
O ).3.4. Clusters with many roots

So far we worked in the neighborhood of a point O ∈ S, but in the sequel we
shall work globally, i.e., it will become relevant to consider sets of points of S and
points infinitely near to points of S; with a slight abuse of language, we still call
them clusters: a cluster on S is a finite set of points K proper or infinitely near in
S, such that, for each point p ∈ K, K contains all points to which p is infinitely
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near. We denote SK the surface obtained by blowing up S at all points in K,
and πK : SK → S the composition of the blowups. The proper points of K (those
which are infinitely near to no other point) are the roots of K. Thus a set of n
distinct points is also considered to be a cluster, consisting of roots only.

The combinatorics of proximities between points of a cluster are still conve-
niently encoded in their Enriques diagrams, which now are finite unions of trees
(also called “forests”), a tree for each root, each drawn according to the rules
above. The “simplest” Enriques diagram consisting of n vertices with no edges
(corresponding to clusters with n roots only) will be denoted D0(n), or simply D0

if n is clear from the context.

A weighted cluster determines a divisor DK,m in SK and a sheaf of ideals
HK,m = (πK)∗(DK,m), supported at the roots of K, all whose stalks are complete
ideals in their local rings. Consistence and unloading of the weights works locally,
so all the preceding results apply to the global setting. Now however, linear equiv-
alence of curves and divisors comes into play, and we become interested in finite
dimensional linear systems of curves through clusters.

Given a divisor class H and a weighted cluster (K,m), we are interested in
the linear system of all curves in |H | going through (K,m). This will be denoted
LH(K,m), and can be identified with P(H0(S,HK,m(H))). Via the blowup πK , it
can also be identified with P(H0(SK ,OSK

(π∗
K(H) +DK,m))). The linear systems

with which Conjecture B.2 is concerned are obtained as particular cases, when K
is a cluster of n general points (in particular, with Enriques diagram D0(n)) in
S = P2.4. Varieties of lusters4.1. Blowup of a setion

The blowup construction introduced in the first section can be generalized
to higher dimensions as follows. Assume Y is a d-dimensional complex variety
and X ⊂ Y is a smooth closed subvariety of dimension r. For each p ∈ X ⊂ Y
take coordinates (y1, . . . , yd) in a neighborhood U of p such that X is defined by
y1 = . . . = yd−r = 0. The blowup of U along X ∩ U is the subset of U × Pd−r−1

defined by the equations yiuj = yjui for all 1 ≤ i < j ≤ d− r, and the map BlX∩U

is the projection onto the first factor. Since Y can be covered by such open sets
U , the blowup of Y along X can then be defined by glueing the local blowups.
Modulo isomorphism, it is independent of all choices made. Bl−1

X (X) is a divisor,
called the exceptional divisor as before, which is a Pd−r−1-bundle over X , i.e., it
is locally a product Bl−1

X∩U (X ∩ U) ∼= (X ∩ U)× Pd−r−1.

Further generalizations are possible, namely one can blow up an arbitrary
scheme (or complex space) Y along a closed subscheme X . The result is in general

a new scheme Ỹ with a proper morphism Ỹ
BlX−→ Y which is an isomorphism on

Bl−1
X (Y \ X) and such that Bl−1

X (X) is a divisor, satisfying a universal property
(see [26, II.8]). We don’t need this extra generality here.

The case of interest to us comes from a family f : X → B of smooth projective
surfaces with a section σ : B → X . The blowup of X centered at the image of σ
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X̃ X

B

Blσ

f

f̃
σ

is naturally a new family f̃ : X̃ → B, whose fiber X̃b is for each b ∈ B the blowup
of the fiber Xb of f at the point σ(b) ∈ Xb of the section. The exceptional divisor
Eσ of the blowup is the union of the exceptional P1’s at each fiber.

Xb

σ(b)

X

σ

B
b

Blσ

X̃b X̃

Eσ

B
b

To see it, again take analytic local coordinates (x, y, b1, . . . , br) near a point
of the section so that f is the projection to the b-coordinates (B is assumed to
have dimension r) and σ is the zero section. Then the blowup of S along σ(B) has
equation xv − yu = 0 in S × P1, so that fixing the values of b1, . . . , br we recover
the definition of the blowup of the point (0, 0) on a surface given in Section 2.1.4.2. Kleiman's iterated blowups

Given a smooth projective surface S, the set of all clusters with exactly one
point can be identified with the surface itself; we denote X1 = S this variety which
parametrizes the 1-point clusters. Consider the second projection p2 : X1 ×X1 →
X1 as a (trivial) family of surfaces, and let ∆: X1 → X1 × X1 be the diagonal
section. The construction of Section 4.1

X2 X1 ×X1

X1

Bl∆

p2

f1
∆

yields a new family of smooth projective surfaces, f1 : X2 → X1 whose fiber over
the point K = {p}, p ∈ S, is the surface S̃p obtained by blowing up p. (The

blowup map is the restriction to S̃p of g1 := p1 ◦ Bl∆, where p1 : X1 × X1 is the
projection on the first factor). Thus points in X2 can be naturally identified with
ordered clusters of two points. Outside of the exceptional divisor, X2 is isomorphic
to the complement of the diagonal in S×S, and corresponding points parametrize
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pairs of distinct points in S. Points on the exceptional divisor parametrize clusters
K = {q1, q2}, where q2 lies on the first neigborhood of q1.

Kleiman introduced in [29] varieties which naturally parametrize ordered n-
point clusters, for each n. The construction (which can be used in greater gen-
erality) works iteratively, as follows. Assume the varieties Xn−1 and Xn−2 have
been defined, with maps fn−2, gn−2 : Xn−1 → Xn−2 such that Xn−2 parametrizes
ordered clusters of n− 2 points of S, and the fiber SK = fn−2(K) over K ∈ Xn−2

is the surface obtained by blowing up all points in K, the blowup map being the
restriction of g1 ◦ . . . ◦ gn−2 to SK . Thus Xn−1 parametrizes ordered clusters of
n− 1 points, by identifying a cluster K ′ ∈ Xn−1 with its last point; this point lies
on the surface obtained by blowing up the first n−2 points of K ′, which constitute
the cluster K = fn−2(K

′) ∈ Xn−2. Consider the fibered product

Xn−1 ×Xn−2 Xn−1 = {(K1,K2) ∈ Xn−1 ×Xn−1 | fn−2(K1) = fn−2(K2)},

which is a projective smooth variety, and the projection p2 onto the second factor,
as a family of surfaces. Again, the construction of Section 4.1 applied to the diag-
onal section ∆n−1, yields a new family fn−1 : Xn → Xn−1 and Xn parametrizes
ordered clusters of n points, the blowup map being the restriction of g1 ◦ . . .◦gn−1,
where gn−1 := p1 ◦ Bl∆n−1 .

We call Xn the variety of the n-point clusters and, for each K ∈ Xn we identify
the surface SK obtained by blowing up all points of K with f−1

n+1(K) ⊂ Xn+1.
It is important to note that the exceptional divisors of the iterated blowups

in this construction are relative divisors. We denote by Ei ⊂ Xi+1 the exceptional
divisor of the i-th blowup and, by abuse of notation, also its pullback by gi+1 ◦
. . . ◦ gn+1 to Xn+1. Then, for each ordered cluster of n points K = {p1, . . . , pn} ∈
Xn, the (total transform, or pull-back, of) the exceptional divisor Ei above pi is
precisely Ei|SK

. Thus, it is possible to apply semicontinuity to families of clusters,
and in particular, any cluster of n points can be considered as a specialization of
a set of n distinct points:

Theorem 4.2.1
For each divisor class H on S, given multiplicities m1, . . . ,mn, the function K 7→
dimLH(K,m) is upper-semicontinuous for the Zariski topology of Xn (where K =
{p1, . . . , pn} ∈ Xn are ordered n-point clusters, all weighted with the same multi-

plicities mpi
= mi).

Proof. Apply the semicontinuity theorem [26, III.12.8] to OXn+1((g1 ◦ . . . ◦
gn)

∗H−∑
miEi), and note that dimH0(S,HK,m(H)) = dimH0(SK ,OSK

(π∗
K(H)

−∑
miEi)).4.3. Proximity strata

Fix now an Enriques diagram D of n points, with an ordering. How to describe
the set Cl(D) = {K ∈ Xn |K has diagram D}? The description of X2 given above
shows the way to go: the exceptional divisors Ei contain clusters with special
diagrams.
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Consider the proximity matrix PD = (mij)i,j=1,...,n, where

mij =





1 if i = j,

−1 if pi is proximate to pj ,

0 otherwise.

This is an invertible matrix, and in fact, given a cluster K, on SK one has



Ẽ1

...

Ẽn


 = PT

D



E1

...
En


 ⇐⇒ K has Enriques diagram D.

Based on this observation, we define virtual exceptional divisors ED

i on any SK

by the equality 

ED

1
...

ED

n


 = PT

D



E1

...
En




(so that they coincide with the irreducible exceptional divisors if and only if K
has diagram D). Now we can describe Cl(D) as a locally closed subset of Xn. For
this we consider

Eff(D) := {K ∈ Xn | ED

i effective for all i}
= {K ∈ Xn | PDP−1

K ≥ 0}

which is Zariski-closed in Xn by semicontinuity applied to OXr+1(ED

i ).

Proposition 4.3.1
Given an ordered Enriques diagram D of n points, let Σ be the set of all diagrams

D
′ such that PDP−1

D′ ≥ 0.

1. Cl(D) = Eff(D) \⋃
D′∈Σ Eff(D′) (in particular it is locally closed in Xn for

the Zariski topology).

2. Cl(D) is irreducible and its dimension equals twice the number of roots

(proper points) plus the number of free infinitely near points in the diagram.

The proof of the first claim is essentially contained in the previous discussion.
The second is proved by induction on the number of points, giving a construction
of Cl(D) as an iterated blowup, in [44].4.4. Appliations

Assume now S is irreducible, and let H be a divisor class on S. Since Cl(D)
is irreducible, it makes sense, given multiplicities m1, . . . ,mn, to ask about

h0(H,D,m) = h0(SK ,OSK
(H −DK,m)), where K is general inCl(D),
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and dimLH(D,m) = h0(H,D,m)−1, which is the dimension of the linear system
of curves in |H | going through a general cluster in Cl(D) weighted with multi-
plicities m. In this context, the following conjecture (which is a generalization of
Conjecture B.2) was posed by Greuel, Lossen and Shustin:

Conjecture 4.4.1
Let S = P2 and H = OP2(d). If the multiplicities m1, . . . ,mn are consistent for

some diagram D of n vertices, and d ≥ mi + mj + mk for every set of distinct

indices i, j, k ∈ {1, . . . , n}, then

h0(H,D,m) = max

{
0,

(
d+ 2

2

)
−
∑(

mi + 1

2

)}
.

Definition 4.4.2
Given two Enriques diagrams with the same number of vertices r, we say that D

specializes to D
′ and write D D

′ if Cl(D) ⊃ Cl(D′).

By using semicontinuity again, it is clear that D D
′ implies h0(H,D,m) ≤

h0(H,D′,m). This is of interest even in order to obtain upper bounds for the di-
mension of linear systems of curves with points in general position, as the diagram
consisting of n points in general position specializes to every other diagram of n
points.

p1
p2

p3

pr

pr+1

pr+2 pn−1

pn

Figure 6. The enriques diagram Dr of Example 4.4.3.

Example 4.4.3
Consider the Enriques diagram Dr of Figure 6. It has each point infinitely near to
the previous one, and r points (p2, . . . , pr+1) proximate to the root p1; p2 and the
points after pr+1 are free. It is not hard to see that Dr  Dr+1: each cluster K
with diagram Dr+1 is the limit for t 7→ 0 of a family of clusters Kt with diagram
Dr, whose (r + 2)-th point (lying on the exceptional divisor Er+1) varies with t,
so that for t = 0 it becomes the satellite point qr+2 = Er+1 ∩ Ẽ1. A complete
ad-hoc proof can be found in [43].

As an example of the usefulness of these diagrams, let us mention the main
result of [42], whose proof relies on unloading computations on them. Other ap-
plications can be found in [43], [41], [40], etc.
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Theorem 4.4.4
Let (K,m) be a consistent weighted cluster of n points in the plane, and let D

be the diagram of K. Assume all points have multiplicity 2 and K is general in

Cl(D). Then dimLd(K,m) = max{ d(d+3)
2 − 3n,−1} for all degrees d ≥ 1.

There is no criterion known that allows to decide, given two arbitrary dia-
grams D and D

′, whether D D
′ or not. It follows from Proposition 4.3.1 that

a necessary condition is PDP−1
D′ ≥ 0, and this condition is sufficient if and only if

∀ D
′ s.t. PDP−1

D′ ≥ 0, dimCl(D) > dimCl(D′). (2)

Diagrams D for which (2) is satisfied have Eff(D) irreducible, and are called
prime. At present there is no known geometric criterion characterizing prime En-
riques diagrams, although (2) can be checked for any given diagram (because there
are only finitely many Enriques diagrams with n points). A general exposition of
these matters, including proofs that a large class of diagrams are prime, can be
found in [44]. In particular, the diagrams Dr of Example 4.4.3 are prime, and thus
Dr  Dr+1 can also be proved by means of a matrix computation. For non-prime
diagrams, we have the following conjecture:

Conjecture 4.4.5
Let D, D′ be diagrams with PDP−1

D′ . Then Cl(D) ∩ ClD′ 6= ∅.

Other interesting irreducible subsets of Xn have been exploited in the literature
in order to bound dimensions of linear systems of points in general position. The
interested reader can find details in [25], [34].5. Degeneration to the normal one

In the two last sections we continue to assume that S is a projective surface,
and we are interested in linear systems of curves on S going through given weighted
clusters, with special interest in the case of general points, motivated by Conjec-
tures A.1 and B.2. We start by reviewing the definition and main properties of
the Hilbert scheme for projective surfaces; for a beautiful exposition of the subject
we refer the reader to [35]. The general theory of Hilbert schemes can be found in
[37] (for quasiprojective schemes) or [13] (for complex varieties).5.1. The Hilbert sheme

Given a projective surface S there exists a scheme HilbS, called the Hilbert
scheme of curves in S, and a flat family η : C → HilbS of curves,

C S ×HilbS

HilbS

p2
η
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such that every flat family of curves in S uniquely factors through η. In particular,
each closed fiber Cξ ⊂ S×{ξ} ∼= S of η is a curve of S and every curve appears as
one of these. Moreover, HilbS has countably many irreducible components, each
of them a projective variety, and for each divisor class D,

1. the intersection multiplicity Cξ ·D is constant on every connected component
F of HilbS (it is independent of ξ ∈ F): we denote it by F ·D;

2. assuming D ample, for each n ≥ 0, there are finitely many components F

with F ·D ≤ n;

3. for every irreducible component F of HilbS, and every integer m ≥ 0, the
m-th incidence locus Im(F) = {(p, ξ) ∈ S × F | multp(Cξ) ≥ m} is closed
in S × F. Moreover, for each F there is an integer mF such that the m-th
incidence locus is empty for m > mF.

The existence of the Hilbert scheme and its properties are deep facts in the theory
of projective varieties.

Two curves are algebraically equivalent if and only if they are parametrized
by points on the same connected component F of the Hilbert scheme, so the
first claim above is actually a restatement of the fact that algebraic equivalence
implies numerical equivalence. The third is a consequence of semicontinuity of
multiplicities in flat families, as proved in [32], and explains how singularities
behave in families:

Corollary 5.1.1
For each weighted Enriques diagram (D,m), and each component F of the Hilbert

scheme of curves on S, the weighted incidence locus

ID,m(F) = {(K, ξ) ∈ Cl(D) × F | Cξ goes through (K,m)}

is closed in Cl(D)× F.

Corollary 5.1.2
For each weighted Enriques diagram (D,m), and each component F of the Hilbert

scheme of curves on S, the equisingular stratum

ESD,m(F) = {ξ ∈ F | Sing(Cξ) has Enriques diagram (D,m)}

is locally closed in F.5.2. Seshadri onstants
Definition 5.2.1 ([12])
If S is a smooth projective surface and L is an ample divisor class (or line bundle)
on S, the Seshadri constant of L at n points p1, . . . , pn ∈ S is the real number

ǫ(L; p1, . . . , pn) = inf

{
L · C∑
multpi

C

}
,

where the infimum is taken over all curves C on S through at least one of the
points.
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Seshadri constants are a very active area of research; a nice exposition of our

state of knowledge on this subject, together with many relevant references, can be
found in [4]. The Seshadri constant depends semicontinously on the position of
the points and attains its maximum for very general points (i.e., for sets of points
– or clusters – in a countable intersection of Zariski-open subsets of the parameter
space); we denote this maximum ǫ(L, n):

Proposition 5.2.2 ([38],[31, 5.1.11])
Given a smooth projective surface S and an ample divisor class L, for every ε > 0,
the locus

Cl(D0(n), L, ε) = {K = (p1, . . . , pn) ∈ Cl(D0(n)) | ǫ(L; p1, . . . , pn) ≤ ε}
is Zariski-closed in Cl(D0(n)).

Note that an n-tuple of distinct points is the same as a cluster of n points with
the Enriques diagram D0(n) consisting of n roots.

Proof. Given a rational number t, consider the Q-divisor Lt = π∗L− t(E1 +
. . . + En) on the blowup S̃ of S along p1, . . . , pn. The definition of Seshadri con-
stants can be reformulated saying that Lt is nef if and only if t ≤ ǫ(L; p1, . . . , pn).
Since every nef divisor has non-negative selfintersection, ǫ(L; p1, . . . , pn) ≤

√
L2/n

for every set of n distinct points, and hence Cl(D0(n), L, ε) = Cl(D0(n)) for all
ε ≥

√
L2/n. Thus we assume in the rest of the proof that ε <

√
L2/n.

Remark 5.2.3
The upper bound ǫ(L; p1, . . . , pn) ≤

√
L2/n has a well-known generalization to

higher dimensions [31, 5.1.9]. The search for lower bounds, on the other hand,
turns out to be much more difficult. The techniques reviewed in this section have
been motivated (at least in part) by the challenge of obtaining such lower bounds,
and we will stress these applications.

For the n-tuples of points with ǫ(L; p1, . . . , pn) ≤ ε <
√
L2/n, there are ra-

tional values of t, ε ≤ t <
√
L2/n, such that Lt is not nef. Since L2

t > 0, there

is a multiple aLt which is linearly equivalent on S̃ to an effective divisor D, with
a ∈ N independent of the position of the points. Lt not being nef means that there
exist irreducible curves C with L · C < t

∑
multpi

C. The strict transform C̃ of

such a curve C satisfies C̃ · D < 0, and hence must be a component of D. In
particular, C · L ≤ D · π∗L = aL2.

Consider now the components F1, . . . ,Fk with Fi · L ≤ aL2 (which we recall
are finite in number), and for each i consider the (finite) set of multiplicities
Mi = {m = (m1, . . . ,mn) | 0 ≤ mj ≤ mFi

, Fi · L < ε
∑

mj}. Then

Cl(D0, L, ε) =

k⋃

i=1

( ⋃

m∈Mi

pCl(D0)(ID0,m(Fi))

)
, (3)

where pCl(D0) denotes in each case the projection of Cl(D0) × Fi onto the first
factor. Since the right hand side is a finite union of closed subsets, the result
follows.
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Further results along these lines can be found in [47], [38], [24], [45]. It turns

out that, except for (possibly) the upper bound
√
L2/n, the set of Seshadri con-

stants of L at varying n-tuples of points has no accumulation points. In addition,
every Seshadri constant strictly less than

√
L2/n is obtained as L·C∑

multpi C
for

an adequate curve C. In particular it is rational. It is not known at present
whether irrational Seshadri constants exist; if they do, they must therefore be of
the form

√
L2/n, and Nagata’s Conjecture predicts that this does happen.5.3. Blowup of a vertial enter

Fix a smooth projective surface S and let Y ⊂ S be an irreducible smooth
curve or a point. Take an open disk ∆ ⊂ C around 0 ∈ ∆ and blow up the trivial
family X = S ×∆ along Y × {0}.

X̃ X S ×∆ Y × {0}

∆

BlY ×{0}

p2

f

Since the blowup is an isomorphism outside of its center, all fibers of the new
family f : X̃ → ∆ except the central one coincide with the corresponding fiber
of the initial family X , and are thus isomorphic to S. On the other hand, the
central fiber X̃0 consists of two components: the exceptional divisor Z (which is
now a surface in the three-dimensional variety X̃) and the strict transform S̃ of
the original fiber S × {0}.

If Y ⊂ S is a curve, then the exceptional divisor is locally a product of Y
and P1, i.e., Z is a surface ruled over Y , the lines of the ruling being the fibers
of BlY×{0} |Z : Z → Y . Moreover, since Y is already a divisor on S in this case,

the blowup process does not affect S, which means the map BlY×{0} |S̃ : S̃ → S is

an isomorphism (and one often writes S instead of S̃). The intersection Z ∩ S is
a curve, which on S can be identified with the original curve Y and on Z is the
zero section of the ruling.

S0

p

X = S ×∆

∆
0

Blp×{0}

S̃

Z X̃

∆
0

Figure 7. When blowing up a point in a family of surfaces, only the fiber containing the

point (p ∈ S0 = S × {0} in this case) is affected, as a new component Z ∼= P2 appears.
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If Y = {p} ⊂ S is a point, then the exceptional divisor is Z ∼= P2, whereas

the strict transform S̃ is (isomorphic to) the blowup of S centered at p. The
intersection Z ∩ S̃ is again a curve; a line on Z ∼= P2, and the exceptional curve of
blowing up p on S̃.

It is often useful to blow up X along more than one point in the central fiber;
the degeneration obtained this way has X̃0 formed by as many components as
blown up points plus one (the exceptional divisors and S blown up). It is also
possible to modify an existing degeneration by blowing up its total space along
sections, or along a curve C contained in a component of the central fiber (in which
case a new central component is added – the exceptional divisor – and the central
components met by C are also blown up). All these possibilities have been used to
bound or compute dimensions of linear systems, and they will be illustrated here
and in the last section.5.4. Appliations to Seshadri onstants

The following result, which should be understood as a lower bound on the left
hand side of the inequality, is an illustrating example of what can be achieved by
applying semicontinuity to the families just described.

Theorem 5.4.1 ([39])
For every projective smooth surface S with an ample divisor class L, and every

partition n = n1 + n2 + . . .+ nr, the following inequality holds:

ǫ(L, n) ≥ ǫ(L, r)ǫ(OP2(1),max{ni}).

Our proof is taken from [45], where this result was extended to consider Se-
shadri constants on higher dimensional varieties (Hilbert schemes and degener-
ations can of course be considered in the more general setting, with only some
technicalities needed to deal with cycles of arbitrary codimension in the variety).

Proof. By the upper bound 5.2.3 applied to the two constants in the right
hand side, if ǫ(L;n) =

√
L2/n, we are done; so assume ε = ǫ(L;n) <

√
L2/n.

Since Cl(D0(n), L, ε) = Cl(D0(n)) by hypothesis, one of the closed sets on the right
in the decomposition (3) must be Cl(D0(n)) = pCl(D0(n))(ID0(n),m(F)), (because
Cl(D0(n)) is irreducible, and so can not be the union of finitely many proper closed
subsets).

Choose a set Y = {p1, . . . , pr} of r very general points of S. Take an open disk
∆ ⊂ C around 0 ∈ ∆ and blow up the trivial family X = S×∆ along Y ×{0}. As
in the one-point blowup described in the preceding section, all fibers of the family
f : X̃ → ∆ except X̃0 are isomorphic to S, and X̃0 consists of r + 1 components:
the exceptional divisor is made of r components Z = Z1∪ . . .∪Zr, each isomorphic
to P2, and the strict transform S̃ of S × {0} is the blowup of S at the r general
points.

Now choose ni very general points pi1, . . . , pini
of the plane Zi for each i =

1, . . . , r, and let σij be a section of f : X̃ → ∆ through the point pij . For t ∈ ∆ near
enough to 0, the n points σij(t) are distinct, so after possibly shrinking the disk we
get a map σ : ∆0 → Cl(D0(n)), σ(t) = (σ11(t), . . . , σrnr

(t)), where ∆0 = ∆ \ {0}.
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Form the fibered product Iσ,m(F) = ∆0 ×Cl(D0(n)) ID0(n),m(F), or pullback, with
the incidence variety:

Iσ,m(F) ID0(n),m(F)

∆0 Cl(D0(n))
σ

pCl(D0(n))

σF

p∆Ξ

and pick a section Ξ of p∆. Composed with the projection to F, Ξ determines a
1-dimensional flat family of curves parametrized by t ∈ ∆0 such that the fiber Ct
has multiplicity mij at σpij(t):

Ct ⊂ C∆0

S ×∆0

CF C

S ×HilbS

t ∈ ∆0
F HilbS

pF ◦ σF ◦ Ξ

ηF η

idS × (pF ◦ σF ◦ Ξ)

Let C∆ be the closure of C∆0 in X̃. C∆ ∩ X̃0 is called the flat limit of the family of
curves; it is an effective divisor on the central fiber of the degeneration, consisting
of an effective divisor on each of its components which agree on the intersections.
Denote Ci = C∆ ∩ Zi and CS̃ = C∆ ∩ S̃ the different pieces of the flat limit. By
semicontinuity of multiplicities [32], multpij

Ci ≥ mij , and by the genericity of the
points on Zi, we have a bound on the degree:

Ci · OP2(1) ≥ ǫ(OP2(1), ni)(mi1 + . . .+mini
).

This degree is the number of points (counted with multiplicities) in which the
central fiber meets the line Zi ∩ S̃, which on the other hand is the exceptional
divisor of blowing up pi on S. Therefore, CS̃ is the strict transform of a curve C
on S with multiplicity Ci · OP2(1) at pi, which again by genericity of the pi, must
have degree

C · L ≥ ǫ(L, r)

r∑

i=1

Ci · OP2(1) ≥ ǫ(L, r)

r∑

i=1

ǫ(OP2(1), ni)(mi1 + . . .+mini
).

It follows that F · L = Ct · L = C · L ≥ ǫ(L, r)ǫ(OP2(1),max{ni})
∑

mij .

To illustrate the applicability of Theorem 5.4.1, let us mention one connection
with M. Nagata’s Conjecture A.1, which can be reformulated as follows:

Conjecture 5.4.2 (Nagata)
For every integer n ≥ 9, ǫ(OP2(1), n) =

√
1/n.
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Corollary 5.4.3 (of 5.4.1)
ǫ(OP2(1), nm) ≥ ǫ(OP2(1), n)ǫ(OP2(1),m); therefore, if Nagata’s Conjecture is true

for n and for m points, then it is true for nm points.

More applications to Nagata’s Conjecture and its generalization A.2 can be
found in [39], [45].5.5. Limit linear systems

Specializing points to different components of a degeneration can be used not
only to study the existence of curves of given degree with multiple points in gen-
eral position, as in the proof of 5.4.1, but also to study the dimension of the
corresponding linear system.

Consider the situation at the end of Section 4: H is an effective, ample, divisor
class on S, and m = (m1, . . . ,mn) are positive multiplicities. One may fix in
addition an Enriques diagram D, and assume that the weighted diagram (D,m)
is consistent; in this section we consider general distinct points, so D = D0(n)
will be the diagram consisting of n roots without proximities. It is interesting and
often difficult to give upper bounds for the dimension dimH(D,m) of the linear
system of curves in |H | with multiplicities mi at the points of a general cluster
K ∈ Cl(D).

Ciliberto–Miranda in [7] established the framework for applying to this prob-
lem the degenerations of Section 5.3. The basic idea is as follows (further devel-
opments will be explained in the last section). Consider the family X̃ obtained
by blowing up S ×∆ (∆ a disk) at a general point p of the central fiber, and let
Z ∼= P2, S̃, be the two components of the new central fiber. Recall that E = Z ∩ S̃
is a line of Z and the special curve of blowing up S at p. The Picard group of this
central fiber is the fibered product of PicZ and Pic S̃ over PicE, that is, a line
bundle on the central fiber is a pair of line bundles HZ on Z and HS̃ on S̃ whose
restrictions to E agree. The Picard group of Z ∼= P2 is generated by OP2(1), while
the Picard group of S̃ is PicS ⊕ ZE. Hence in order that the restrictions to E
agree, one must have HZ = OP2(a) and HS̃ = HS − aE for some integer a and
some line bundle HS on S.

We are interested in line bundles that are possible limits of the given H on
S. Denote by π : X̃ → S the composition of the blowup with the projection
S ×∆ → S. Then H̃ = π∗(H) is a line bundle on X̃ whose restriction to general
fibers is H . Its restriction to S̃ is also the pullback of H , whereas its restriction to
Z is trivial. Consider, for each integer a, the line bundle H̃a = H̃ − aZ. Twisting
a line bundle on X̃ like H by a divisor supported on a fiber does not change its
restriction to general fibers. On the other hand, the restriction of H̃a to S̃ is
H − aE, and the restriction of H̃a to Z is OP2(a). So every such pair, H − aE,
OP2(a) is a possible limit of H for this degeneration, and it is not hard to see that
these are all.

Now pick r < n general points on S̃ plus n− r general points on Z, and create
n sections σ1, . . . , σn of the family f : X̃ → ∆ going through the n points, as in the
proof of 5.4.1. Thus for t 6= 0 near 0, LH(σ1(t)

m1 , . . . , σn(t)
mn) is a linear system

of curves in |H | with n general points of multiplicities m in general position. Now,
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for every a, there is a possible limit system in the central fiber, and the dimension
of each of these is (by semicontinuity) an upper bound on dimLH(m). The limit
linear system for a given value of a is the projectivization of the space of global
sections

H0(S̃, H − aE − pm1
1 − . . .− pmr

r )
⊕

H0(E,O
P1 (a))

H0(Z,OP 2(a)− p
mr+1

r+1 − . . .− pmn
n ),

(i.e., pairs of global sections whose restrictions to E coincide) so its dimension
essentially depends on the dimensions of two linear systems L(H−aE)(m1, . . . ,mr)
and La(mr+1, . . . ,mn) with less points. Using this degeneration it is then possible
to argue by induction on the number of points, and to prove, for instance:

Theorem 5.5.1 ([9])
Conjecture B.2 holds for m1 = . . . = mn ≤ 12.

This result has been improved by [14] to cover multiplicity up to 42.6. When everything fails6.1. Three fat points ome together
Blowing down Z to the point p in the degeneration just described turns the

sections σ1, . . . , σr into a family of r points approaching p. Thus, the computations
in the Ciliberto–Miranda method explained at the end of the previous section can
be understood as the computation of the limit of LH(m1, . . . ,mn), when r of
the points come together (this limit exists, because the Grassmannian of linear
subspaces of |H | of dimension dimLH(m1, . . . ,mn) is complete). Let us look at
a concrete example in detail.

What is the limit of three colliding double points? A first attempt at this
computation is to pick a double point with two double points infinitely near to
it. This is a nonconsistent cluster, which after unloading is equivalent to a triple
point with two simple points infinitely near to it. But the number of conditions
(Section 3.1) imposed by three double points is 3 · 3 = 9 whereas the number of
conditions imposed by a triple and two simple points is 6 + 2 = 8, so in general
(i.e., whenever H is positive enough) not all curves in |H | going through the cluster
with multiplicities 3, 1, 1 are limits of curves with three double points.

2

2

2

(2)3

(2)1

(2)1

un
loa

d

Figure 8. When two double points become infinitely near to a third, unloading

gives multiplicities 3, 1, 1.

The degeneration of the previous section does let us compute this limit. Con-
sider the family X̃ obtained by blowing up S ×∆ (∆ a disk) at a general point p
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of the central fiber, and let Z ∼= P2, S̃, be the two components of the new central
fiber. Pick three points on Z, and sections through them. The limit linear system
we are looking for lives in S̃.

E

Z

S̃

q1
q2

q3

p1

p3

p2

σ1

σ2

σ3

3
p 1

q3

1
q2

1
q1

Figure 9. The central fiber of the degeneration computing the limit of three double

points. LZ = L3(p21, p
2

2
, p2

3
) is a triangle, so the three points q1, q2, q3 must belong to

every limit curve in S̃, which means the (blown down) curve on S goes through the

cluster with depicted Enriques diagram.

We know that limit curves must have multiplicity at least 3; the degeneration
tells us that again: since there are three double points on Z ∼= P2, any effective
divisor containing them must have degree 3 at least. So take the limit linear system
whose components are LS̃ = LH−3E on S̃, LZ = L3(p

2
1, p

2
2, p

2
3) on Z. The only

curve of degree 3 in the plane Z with 3 double points is the triangle with vertices
p1, p2, p3. Since a divisor on the central fiber is made up of divisors on Z and S̃
which agree on E, and the three intersection points q1, q2, q3, of the sides of the
triangle with E belong to all (i.e., the only) effective divisors LZ , it follows that the
limit curves in S̃ of multiplicity 3 also go through these three fixed points. Thus
the limit of three approaching double points is a triple point with three infinitely
near points of multiplicity 1 (which impose the correct number of conditions).

Exercise 6.1.1
Compute the limit of three triple points coming together using the same idea.6.2. Everything fails if they are too fat

The method just explained is quite powerful, but it is not flexible enough to
cover all cases. Let us look at a concrete example again.

What is the limit of three colliding 4-ple points? The first attempt, picking
a 4-ple point with two 4-ple points infinitely near to it, gives a nonconsistent
cluster, which after unloading is equivalent to a 6-ple point with two double points
infinitely near to it. Again the number of conditions doesn’t match: three 4-ple
points impose 3 · 10 = 30 conditions, whereas the number of conditions imposed
by a 6-ple and two double points is 21 + 2 · 3 = 27, so in general not all curves
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going through the cluster with multiplicities 6, 2, 2 are limits of curves with three
4-ple points. We already expected that from the computation with double points.

Let us now try the degeneration, putting again the three 4-ple points on the
plane Z. Any effective divisor on the plane containing them must have degree 6 at
least . So take the limit linear system whose components are LS̃ = LH−6E on S̃,
LZ = L6(p

4
1, p

4
2, p

4
3) on Z. The only section of degree 6 in Z with 3 4-ple points is

the triangle with vertices p1, p2, p3, with each line counted twice. This intersects
E in the same three points as before, but with multiplicity 2. Therefore, the limit
curves of multiplicity 6 have to meet E at these three points, and have intersection
multiplicity 2 with E there (they have to be tangent to the exceptional divisor).
In terms of clusters, they must go through the three points and also through their
three satellites. This imposes 21 + 3 + 3 = 27 conditions again, so we still don’t
know the limit!

E

Z

S̃

p1

p3

p2

σ1

σ2

σ3

3
1

1

1

?! 1

1

1

Figure 10. The same degeneration fails to compute the limit of three quadruple points:

LZ = L3(p41, p
4

2
, p4

3
) is a triangle of double lines, so the three points q1, q2, q3 must be

tangency points with E for every limit curve in S̃, which means the (blown down) curve

on S goes through the cluster with depicted Enriques diagram; but this is not enough.

In fact, the linear system LZ is special: its virtual dimension is −1 and never-
theless it is effective. Thus the chosen degeneration is not optimal for this problem,
because the system in at least one component of the central fiber is not of the ex-
pected dimension.

This kind of problem arises in general, whenever a given degeneration is chosen
and used for systems of increasing multiplicity. Although it would be possible to
solve this particular limit by different means (e.g., using a different degeneration,
or computing algebraically [16]), to find a degeneration for each problem is in
general not feasible (usually cases with few points of high multiplicity are the
most difficult).6.3. Blow-up and twist

The lines appearing as fixed components in the linear system LZ of the previ-
ous example are instances of the curves appearing in the satement of the SHGH
Conjecture B.2, and actually LZ has dimension larger than expected because of
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them. Blowing up Z at the three points turns the lines into (−1)-curves, i.e.,
rational curves with selfintersection −1.

The last bit of technique that has been introduced to the study of degenerations
as applied to linear systems is designed to overcome this situation: a degeneration
has been found which “does not work” because the linear system on one of the
central components is special due to (−1)-curves. In that case, Ciliberto–Miranda
[10] propose to modify the degeneration by blowing up the total space along each
(−1) curve whose intersection with the linear system is negative, and modify the
linear system by twisting with some appropriate multiple of the new exceptional
divisor. Note that if the SHGH conjecture is true for the number of points on
that component (for instance, if there are 9 or less points there, as happens in the
previous example) then such (−1)-curves are the only possible source of special
central systems.

Z̃

S̃

E1

E2

E3

Figure 11. The previous degeneration after blowing up the sections; at this point

we still see the double lines (which now don’t intersect) but nothing new on S̃.

Let us apply this idea to the case of three 4-ple points coming together. First
we blow up the family already constructed along the three sections σ1, σ2, σ3; in
this way general members of the family are blowups of S at three general points.
Call Ei the exceptional divisor of the blowup along σi. The restriction of the line
bundle H − 4E1 − 4E2 − 4E3 to general surfaces determines the complete linear
system of (virtual transforms of) curves on S with three general 4-tuple points.
The central fiber surface consists of Z̃ (the plane blown up at three points) and
S̃, unchanged from the previous degeneration. In this way, the three offending
lines have become three disjoint (−1)-curves C1, C2, C3 in Z̃. Now blow up the
family again, this time along C1, C2, C3. The resulting degeneration g : Y → ∆
has a central fiber Y0 consisting of:

• Ŝ, the blowup of S̃ (which was the blowup of S at the point p) at the three
additional points q1 = C1 ∩ S̃, q2 = C2 ∩ S̃, q3 = C3 ∩ S̃, which are points of
Z̃ ∩ S̃ = E, i.e., infinitely near to p.

• Z̃, the blowup of a plane at three general points, (not affected by blowing
up curves on it).
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• W1, W2, W3, the three new exceptional divisors, ruled surfaces over P1. It

is not hard to show that they are isomorphic to F0 = P1 × P1.

In general, the exceptional divisor obtained by blowing up a (−1) curve meet-
ing the singular locus of the central fiber in τ points is isomorphic to Fτ−1. The
intersections between components are as follows:

× Ẽ = Ŝ ∩ Z̃ is the strict transform of E after blowing up q1, q2, q3 on Ŝ and
a line on Z̃.

× Fi := Ŝ ∩Wi is the exceptional divisor of blowing up qi on Ŝ and a line of
the ruling in the ruled surface Wi.

× C̃i = Z̃ ∩ Wi is the line Ci on Z̃ and the zero-section of the ruling in Wi.
(which via the identification of Wi with P1×P1 is a line of the other ruling).

For each i, Ŝ ∩ Z̃ ∩Wi is a point.

It is also useful to note that the preimage of Z̃ in Y (its total transform) is
Z̄ = Z̃ ∪ W1 ∪ W2 ∪ W3. Now consider line bundles on the degeneration of the
form Aa = H − 4E1 − 4E2 − 4E3 − a0Z̄ − a1W1 − a2W2 − a3W3. We already
know from the previous computation that a0 must be 6 at least in order to have
an effective system on Z̃. Now the restrictions to Wi of H , Ei, Ej and Ek (where
{i, j, k} = {1, 2, 3}) are linearly equivalent to 0, 0, Fi and Fi respectively, whereas
the restriction of Z̃, Wi, Wj and Wk are linearly equivalent to C̃i, −C̃i − Fi, 0
and 0 respectively (so that the restriction of Z̄ is −Fi). We conclude that the
restriction of Aa to Wi is (a0 + ai − 8)Fi + aiC̃i which, in order to be effective,
needs a0+ai ≥ 8. Taking the minimal ai that makes the limit line bundle effective
on all central components gives a0 = 6, a1 = a2 = a3 = 2, and this restricts to
Ŝ as a point of multiplicity 6 with tree double points infinitely near to it. Such
a cluster imposes 21 + 3 · 3 = 30 conditions, and we have proved that every curve
on S which arises as a limit of curves with three general points when the three
points collide goes through such a cluster. So that is the limit we were looking for.

The preceding computation is a particular case of a general result, which can
be applied whenever a limit line bundle intersects negatively a (−1)-curve:

Proposition 6.3.1 ([10])
Let f : X → ∆ be a degeneration of surfaces such that the central fiber is V ∪W with

V an irreducible surface, W a union of irreducible (possibly nonreduced) surfaces,

and let A be a line bundle on X. Assume there is a (−1)-curve C in V with

σ = A · L < 0 meeting W transversely in τ points (counted with multiplicity if

there are nonreduced components). Then global sections of A vanish along C with

multiplicity at least −σ/τ > 0.

Corollary 6.3.2
In the setting of Proposition 6.3.1, for every limit divisor of global sections of

At (the restriction of A to a general fiber Xt of the family) to the central fiber,

components of W have τ points of multiplicity −σ/τ (at the intersection points

C ∩W ).



[38℄ Joaquim Roé
Z̃

Ŝ

W3
W2

W1

6

2

2

2

Figure 12. The central fiber after blowing up the three lines appearing doubled on Z.

The minimal twist to have an effective system on the central fiber gives a trivial system on

Z̃, a system composed of 2 fibers ≡ Ci on each of the three new components Wi
∼= P1×P1,

and a system meeting each of the new exceptionals Fi in two points on Ŝ; for each curve

in the system these two points must agree with the fibers on Wi.

Thus, we have a general, algorithmic process to modify an existing degenera-
tion (blow up the (−1)-curve C; if EC is the new exceptional divisor, change the
line bundle to A′ = A+(σ/τ)EC ) to avoid limit linear systems of dimension bigger
than expected.

Remark 6.3.3
If τ > 1, the new line bundle A′ still intersects C′ = Ec ∩ V negatively.6.4. Perspetives

In the preceding sections we saw how to apply degenerations to bound the
dimensions of linear systems. It should be mentioned that there exists another
method to compute limits of linear systems to bound dimensions, algebraically
rather than by geometric degenerations, developed after the ‘Horace method’ of
[27], in [2], [1], [17], [40]. The limit systems computed in this way, just like
the linear systems in the components of the degenerations presented above, often
involve infinitely near points.

Both methods show the potential of eventually leading to a solution of the
conjectures stated in the introduction, and it is often the case that a partial re-
sult proved with one of them is soon replicated with the other. The remaining
paragraphs contain some speculations on possible future developments using the
degeneration + blowup + twist method.

When the components on the central fiber of the degeneration have few im-
posed multiple points (more generally, when the blown up components are an-

ticanonical) the linear systems on them behave as expected [22]; so either their
virtual dimension is the actual dimension (in which case the bound on the di-
mension of the general linear system is also the virtual dimension, and hence the
actual value is computed) or they have a multiple fixed component which is a ra-
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tional curve of negative selfintersection. In this second case, the strategy of the
last section tells us to blow up the offending curve and to obtain a new degenera-
tion, which after a suitable twist with the new component, must decrease strictly
the discrepancy between the virtual and the actual dimensions. One expects that
iteratively applying such blowups and twists, a degeneration would be found that
computes the actual dimension, for an arbitrary initial problem.

This approach has been able to tackle every particular problem so far, including
for instance the emptiness of L174(55

10) in the plane (“le cas inviolé” in [28]) proved
in [8], but two caveats are in order. First, some of the multiple fixed components
might be double curves of the central fiber (intersection of two components) which
have negative selfintersection “on both sides”. Blowing up these is technically
somewhat more complicated, as the resulting central fiber is no longer reduced.
However, this kind of difficulty does not seem to be insurmountable.

The second difficulty that we can see at this point is more serious in nature.
The process of iteratively blowing up curves converts the components of the central
fiber in blowups of P2 at ever more points, so that eventually non-anticanonical
components appear. Thus one can no longer invoke [22] to show that any possible
discrepancy from the virtual dimension comes from negative curves. Moreover,
the points blown up on these components are no longer completely general. So it
is not clear that an induction argument can be applied.

Thus the challenge posed by Conjectures A.1 and B.2 remains, as the path
toward a proof outlined in the previous paragraphs needs to break through the
non-anticanonical components that appear, with some argument unknown at this
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