Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XII (2013)

Besma Amri, Lakhdar T. Rachdi

The Littlewood-Paley g-function associated with the Riemann-Liouville operator

Abstract

First, we study the Gauss and Poisson semigroups connected with the Riemann-Liouville operator. Next, we define and study the LittlewoodPaley g-function associated with the Riemann-Liouville operator for which we prove the L^{p}-boundedness for $\left.\left.p \in\right] 1,2\right]$.

1. Introduction

The usual Littlewood-Paley g-function is defined in the Euclidian space [21] by

$$
\forall x \in \mathbb{R}^{n} ; g(f)(x)=\left(\int_{0}^{+\infty}\left|\nabla P^{t} f(x)\right|^{2} t d t\right)^{\frac{1}{2}}
$$

where $\left(P^{t}\right)_{t>0}$ is the usual Poisson semigroup defined by

$$
P^{t} f(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \int_{\mathbb{R}^{n}} \frac{t f(y)}{\left(t^{2}+|x-y|^{2}\right)^{\frac{n+1}{2}}} d y
$$

and ∇ is the gradient given by

$$
\nabla=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}, \frac{\partial}{\partial t}\right)
$$

It is well known (see for example [21]) that the mapping

$$
f \longmapsto g(f)
$$

is bounded from the Lebesgue space $\left.L^{p}\left(\mathbb{R}^{n}, d x\right), p \in\right] 1,+\infty[$ into itself. Moreover, the Littlewood-Paley theory plays an important role in the study of many function spaces as the Hardy space H^{p}. Many aspects of the Littlewood-Paley g-function connected with several hypergroups are studied [1, 2, 19, 23]. The authors have been especially interested by the boundedness of such operator when acting on the Lebesgue space $\left.L^{p} ; p \in\right] 1,+\infty[$.

[^0]In [3], the second author with the others define the so-called Riemann-Liouville operator $\mathscr{R}_{\alpha} ; \alpha \geqslant 0$ by setting

$$
\mathscr{R}_{\alpha}(f)(r, x)=\left\{\begin{aligned}
\frac{\alpha}{\pi} \int_{-1}^{1} \int_{-1}^{1} f\left(r s \sqrt{1-t^{2}}, x+r t\right)\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} & \\
\times\left(1-s^{2}\right)^{\alpha-1} d t d s, & \text { if } \alpha>0 \\
\frac{1}{\pi} \int_{-1}^{1} f\left(r \sqrt{1-t^{2}}, x+r t\right) \frac{d t}{\sqrt{\left(1-t^{2}\right)}}, & \text { if } \alpha=0
\end{aligned}\right.
$$

where f is a continuous function on \mathbb{R}^{2}, even with respect to the first variable.
The Fourier transform associated with the operators \mathscr{R}_{α} is defined by;

$$
\forall(\mu, \lambda) \in \Upsilon ; \mathscr{F}_{\alpha}(f)(\mu, \lambda)=\int_{0}^{+\infty} \int_{\mathbb{R}} f(r, x) j_{\alpha}\left(r \sqrt{\mu^{2}+\lambda^{2}}\right) e^{-i \lambda x} d \nu_{\alpha}(r, x)
$$

where

- $\Upsilon=\mathbb{R}^{2} \cup\left\{(i \mu, \lambda) ;(\mu, \lambda) \in \mathbb{R}^{2} ;|\mu| \leqslant|\lambda|\right\}$
- $d \nu_{\alpha}$ is the measure defined on $[0,+\infty[\times \mathbb{R}$ by

$$
d \nu_{\alpha}(r, x)=\frac{r^{2 \alpha+1} d r}{2^{\alpha} \Gamma(\alpha+1)} \otimes \frac{d x}{(2 \pi)^{\frac{1}{2}}}
$$

- j_{α} is a modified Bessel function that will be defined in the second section.

Many harmonic analysis results related to the Fourier transform \mathscr{F}_{α} have been established $[3,4,5,18]$. Also, the uncertainty principles play an important role in harmonic analysis $[6,7,8,12,13,15]$, for this reason, many of such principles are established for the Fourier transform $\mathscr{F}_{\alpha}[16,17]$.

The aim of this work is to define and study the g-function associated with the Riemann-Liouville operator \mathscr{R}_{α}. For this, we need first to define the Gauss and Poisson semigroups that will be denoted respectively by $\left(\mathscr{G}^{t}\right)_{t>0}$ and $\left(\mathscr{P}^{t}\right)_{t>0}$. The Poisson semigroup $\left(\mathscr{P}^{t}\right)_{t>0}$ allows us to define the Littlewood-Paley g-function by

$$
\forall(r, x) \in\left[0,+\infty\left[\times \mathbb{R} ; g(f)(r, x)=\left(\int_{0}^{+\infty}\left|\nabla \mathscr{P}^{t} f(r, x)\right|^{2} t d t\right)^{\frac{1}{2}}\right.\right.
$$

where

$$
\nabla=\left(\frac{\partial}{\partial r}, \frac{\partial}{\partial x}, \frac{\partial}{\partial t}\right)
$$

Then, we have established the main result of this paper. Namely, for every $f \in$ $\left.\left.L^{p}\left(d \nu_{\alpha}\right), p \in\right] 1,2\right]$, the function $g(f)$ belongs to the space $L^{p}\left(d \nu_{\alpha}\right)$ and we have

$$
\|g(f)\|_{p, \nu_{\alpha}} \leqslant 2 \frac{2^{\frac{2-p}{2}}}{p}\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\|f\|_{p, \nu_{\alpha}}
$$

where

$$
\|f\|_{p, \nu_{\alpha}}=\left(\int_{0}^{+\infty} \int_{\mathbb{R}}|f(r, x)|^{p} d \nu_{\alpha}(r, x)\right)^{\frac{1}{p}}
$$

This paper is arranged as follows.
In the second section, we recall some harmonic analysis results related to the Fourier transform \mathscr{F}_{α}. In the third section, we define and study the Gauss semigroup $\left(\mathscr{G}^{t}\right)_{t>0}$ and the Poisson semigroup $\left(\mathscr{P}^{t}\right)_{t>0}$ and we give their mutual connexion. The last section is devoted to establish the boundedness of the LittlewoodPaley g-function from $\left.\left.L^{p}\left(d \nu_{\alpha}\right) ; p \in\right] 1,2\right]$, into it self.

We want to add that in a coming paper; we will establish a principle of the maximum for the operator

$$
\triangle_{\alpha}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2 \alpha+1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial t^{2}}
$$

We use this principle of the maximum to prove that for every $p \in[4,+\infty[$; there is $A_{p}>0$ such that for every $f \in L^{p}\left(d \nu_{\alpha}\right)$; we have

$$
\|g(f)\|_{p, \nu_{\alpha}} \leqslant A_{p}\|f\|_{p, \nu_{\alpha}}
$$

Using Marcinkiewisz interpolation theorem's; we deduce that for every $p \in] 1,+\infty[$; there is $C_{p}>0$ satisfying

$$
\forall f \in L^{p}\left(d \nu_{\alpha}\right) ; \frac{1}{C_{p}}\|f\|_{p, \nu_{\alpha}} \leqslant\|g(f)\|_{p, \nu_{\alpha}} \leqslant C_{p}\|f\|_{p, \nu_{\alpha}}
$$

2. The Riemann-Liouville transform

In this section, we recall some harmonic analysis results related to the convolution product and the Fourier transform associated with Riemann-Liouville operator. For more details see $[3,4,5,18]$.

Let D and Ξ be the singular partial differential operators defined by

$$
\left\{\begin{array}{l}
D=\frac{\partial}{\partial x} \\
\left.\Xi=\frac{\partial^{2}}{\partial r^{2}}+\frac{2 \alpha+1}{r} \frac{\partial}{\partial r}-\frac{\partial^{2}}{\partial x^{2}} ; \quad(r, x) \in\right] 0,+\infty[\times \mathbb{R}, \alpha \geqslant 0 .
\end{array}\right.
$$

For all $(\mu, \lambda) \in \mathbb{C}^{2}$; the system

$$
\left\{\begin{aligned}
D u(r, x) & =-i \lambda u(r, x) \\
\Xi u(r, x) & =-\mu^{2} u(r, x) \\
u(0,0) & =1 \\
\frac{\partial u}{\partial r}(0, x) & =0 ; \forall x \in \mathbb{R}
\end{aligned}\right.
$$

admits a unique solution $\varphi_{\mu, \lambda}$ given by

$$
\begin{equation*}
\forall(r, x) \in\left[0,+\infty\left[\times \mathbb{R} ; \varphi_{\mu, \lambda}(r, x)=j_{\alpha}\left(r \sqrt{\mu^{2}+\lambda^{2}}\right) e^{-i \lambda x}\right.\right. \tag{2.1}
\end{equation*}
$$

where j_{α} is the modified Bessel function defined by

$$
j_{\alpha}(z)=2^{\alpha} \Gamma(\alpha+1) \frac{J_{\alpha}(z)}{z^{\alpha}}=\Gamma(\alpha+1) \sum_{k=0}^{+\infty} \frac{(-1)^{k}}{k!\Gamma(\alpha+k+1)}\left(\frac{z}{2}\right)^{2 k}
$$

and J_{α} is the Bessel function of first kind and index $\alpha[10,11,14,26]$. The modified Bessel function j_{α} has the integral representation

$$
j_{\alpha}(z)=\frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{-1}^{1}\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} \exp (-i z t) d t
$$

Consequently, for every $k \in \mathbb{N}$ and $z \in \mathbb{C}$; we have

$$
\begin{equation*}
\left|j_{\alpha}^{(k)}(z)\right| \leqslant e^{|\operatorname{Im}(z)|} \tag{2.2}
\end{equation*}
$$

The eigenfunction $\varphi_{\mu, \lambda}$ satisfies the following properties

- The function $\varphi_{\mu, \lambda}$ is bounded on \mathbb{R}^{2} if, and only if $(\mu, \lambda) \in \Upsilon$, where Υ is the set defined by

$$
\Upsilon=\mathbb{R}^{2} \cup\left\{(i \mu, \lambda) ;(\mu, \lambda) \in \mathbb{R}^{2} ;|\mu| \leqslant|\lambda|\right\}
$$

and in this case

$$
\begin{equation*}
\sup _{(r, x) \in \mathbb{R}^{2}}\left|\varphi_{\mu, \lambda}(r, x)\right|=1 \tag{2.3}
\end{equation*}
$$

- The function $\varphi_{\mu, \lambda}$ has the following Mehler integral representation

$$
\varphi_{\mu, \lambda}(r, x)= \begin{cases}\frac{\alpha}{\pi} \int_{-1}^{1} \int_{-1}^{1} \cos \left(\mu r s \sqrt{1-t^{2}}\right) \exp (-i \lambda(x+r t)) \\ \quad \times\left(1-t^{2}\right)^{\alpha-\frac{1}{2}}\left(1-s^{2}\right)^{\alpha-1} d t d s, & \text { if } \alpha>0 \\ \frac{1}{\pi} \int_{-1}^{1} \cos \left(r \mu \sqrt{1-t^{2}}\right) \exp (-i \lambda(x+r t)) \frac{d t}{\sqrt{1-t^{2}}}, & \text { if } \alpha=0\end{cases}
$$

The precedent integral representation allows us to define the Riemann-Liouville transform \mathscr{R}_{α} associated with the operators D and Ξ by

$$
\mathscr{R}_{\alpha}(f)(r, x)=\left\{\begin{array}{rr}
\frac{\alpha}{\pi} \int_{-1}^{1} \int_{-1}^{1} f\left(r s \sqrt{1-t^{2}}, x+r t\right)\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} & \\
\times\left(1-s^{2}\right)^{\alpha-1} d t d s, & \text { if } \alpha>0 \\
\frac{1}{\pi} \int_{-1}^{1} f\left(r \sqrt{1-t^{2}}, x+r t\right) \frac{d t}{\sqrt{1-t^{2}}}, & \text { if } \alpha=0
\end{array}\right.
$$

where f is any continuous function on \mathbb{R}^{2}, even with respect to the first variable.

- From the precedent integral representation of the eigenfunction $\varphi_{\mu, \lambda}$, we deduce that

$$
\forall(r, x) \in\left[0,+\infty\left[\times \mathbb{R} ; \varphi_{\mu, \lambda}(r, x)=\mathscr{R}_{\alpha}\left(\cos (\mu .) e^{-i \lambda .}\right)(r, x)\right.\right.
$$

In the following, we will define the convolution product and the Fourier transform associated with the Riemann-Liouville operator. For this, we need the coming notation

- $L^{p}\left(d \nu_{\alpha}\right) ; p \in[1,+\infty]$, is the Lebesgue space formed by the measurable functions f on $\left[0,+\infty\left[\times \mathbb{R}\right.\right.$ such that $\|f\|_{p, \nu_{\alpha}}<+\infty$, where

$$
\|f\|_{p, \nu_{\alpha}}= \begin{cases}\left(\int_{0}^{+\infty} \int_{\mathbb{R}}|f(r, x)|^{p} d \nu_{\alpha}(r, x)\right)^{\frac{1}{p}}, & \text { if } p \in[1,+\infty[, \\ \operatorname{ess~sup}_{(r, x) \in[0,+\infty[\times \mathbb{R}}^{\operatorname{esc}}|f(r, x)|, & \text { if } p=+\infty\end{cases}
$$

Definition 2.1

i) For every $(r, x) \in\left[0,+\infty\left[\times \mathbb{R}\right.\right.$, the translation operator $\tau_{(r, x)}$ associated with Riemann-Liouville operator is defined on $L^{p}\left(d \nu_{\alpha}\right), p \in[1,+\infty]$, by

$$
\begin{align*}
& \tau_{(r, x)} f(s, y) \\
& \quad=\frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{0}^{\pi} f\left(\sqrt{r^{2}+s^{2}+2 r s \cos \theta}, x+y\right) \sin ^{2 \alpha}(\theta) d \theta \tag{2.4}
\end{align*}
$$

ii) The convolution product of $f, g \in L^{1}\left(d \nu_{\alpha}\right)$ is defined for every $(r, x) \in$ $[0,+\infty[\times \mathbb{R}$, by

$$
\begin{equation*}
f * g(r, x)=\int_{0}^{+\infty} \int_{\mathbb{R}} \tau_{(r,-x)}(\check{f})(s, y) g(s, y) d \nu_{\alpha}(s, y) \tag{2.5}
\end{equation*}
$$

where $\check{f}(s, y)=f(s,-y)$.
We have the following properties

- The eigenfunction $\varphi_{\mu, \lambda}$ satisfies the product formula

$$
\tau_{(r, x)}\left(\varphi_{\mu, \lambda}\right)(s, y)=\varphi_{\mu, \lambda}(r, x) \varphi_{\mu, \lambda}(s, y)
$$

- For every $f \in L^{p}\left(d \nu_{\alpha}\right), 1 \leqslant p \leqslant+\infty$, and for every $(r, x) \in[0,+\infty[\times \mathbb{R}$, the function $\tau_{(r, x)}(f)$ belongs to $L^{p}\left(d \nu_{\alpha}\right)$ and we have

$$
\left\|\tau_{(r, x)}(f)\right\|_{p, \nu_{\alpha}} \leqslant\|f\|_{p, \nu_{\alpha}} .
$$

- For every $f \in L^{p}\left(d \nu_{\alpha}\right), p \in[1,+\infty[$, we have

$$
\begin{equation*}
\lim _{(r, x) \rightarrow(0,0)}\left\|\tau_{(r, x)}(f)-f\right\|_{p, \nu_{\alpha}}=0 \tag{2.6}
\end{equation*}
$$

- For $f, g \in L^{1}\left(d \nu_{\alpha}\right)$, the function $f * g$ belongs to $L^{1}\left(d \nu_{\alpha}\right)$; the convolution product is commutative, associative and we have

$$
\|f * g\|_{1, \nu_{\alpha}} \leqslant\|f\|_{1, \nu_{\alpha}}\|g\|_{1, \nu_{\alpha}}
$$

Moreover, if $1 \leqslant p, q, r \leqslant+\infty$ are such that $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}-1$ and if $f \in L^{p}\left(d \nu_{\alpha}\right)$, $g \in L^{q}\left(d \nu_{\alpha}\right)$, then the function $f * g$ belongs to $L^{r}\left(d \nu_{\alpha}\right)$, and we have the Young's inequality

$$
\begin{equation*}
\|f * g\|_{r, \nu_{\alpha}} \leqslant\|f\|_{p, \nu_{\alpha}}\|g\|_{q, \nu_{\alpha}} \tag{2.7}
\end{equation*}
$$

- Let φ be a nonnegative measurable function on $\mathbb{R} \times \mathbb{R}$, even with respect to the first variable, such that

$$
\int_{0}^{+\infty} \int_{\mathbb{R}} \varphi(r, x) d \nu_{\alpha}(r, x)=1
$$

Then by relation (2.6), the family $\left(\varphi_{t}\right)_{t>0}$ defined by

$$
\forall(r, x) \in \mathbb{R} \times \mathbb{R} ; \varphi_{t}(r, x)=\frac{\varphi\left(\frac{r}{t}, \frac{x}{t}\right)}{t^{2 \alpha+3}}
$$

is an approximation of the identity in $L^{p}\left(d \nu_{\alpha}\right) ; p \in[1,+\infty[$, that is for every $f \in L^{p}\left(d \nu_{\alpha}\right)$, we have

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}}\left\|\varphi_{t} * f-f\right\|_{p, \nu_{\alpha}}=0 \tag{2.8}
\end{equation*}
$$

In the sequel, we use the following notations

- Υ_{+}is the subset of Υ given by

$$
\Upsilon_{+}=\mathbb{R}_{+} \times \mathbb{R} \cup\left\{(i t, x) ;(t, x) \in \mathbb{R}^{2} ; 0 \leqslant t \leqslant|x|\right\}
$$

- $\mathscr{B} \Upsilon_{+}$is the σ-algebra defined on Υ_{+}by

$$
\mathscr{B}_{\Upsilon_{+}}=\left\{\theta^{-1}(B), B \in \mathscr{B}_{\text {or }}([0,+\infty[\times \mathbb{R})\}\right.
$$

where θ is the bijective function defined on the set Υ_{+}by

$$
\begin{equation*}
\theta(\mu, \lambda)=\left(\sqrt{\mu^{2}+\lambda^{2}}, \lambda\right) \tag{2.9}
\end{equation*}
$$

- $d \gamma_{\alpha}$ is the measure defined on $\mathscr{B}_{\Upsilon_{+}}$by

$$
\forall A \in \mathscr{B}_{\Upsilon_{+}} ; \gamma_{\alpha}(A)=\nu_{\alpha}(\theta(A))
$$

- $L^{p}\left(d \gamma_{\alpha}\right) ; p \in[1,+\infty]$, is the space of measurable functions f on Υ_{+}, such that

$$
\|f\|_{p, \gamma_{\alpha}}<+\infty
$$

Proposition 2.2

i. For all non negative measurable function g on Υ_{+}, we have

$$
\begin{aligned}
& \iint_{\Upsilon_{+}} g(\mu, \lambda) d \gamma_{\alpha}(\mu, \lambda) \\
&= \frac{1}{2^{\alpha} \Gamma(\alpha+1) \sqrt{2 \pi}}\left(\int_{0}^{+\infty} \int_{\mathbb{R}} g(\mu, \lambda)\left(\mu^{2}+\lambda^{2}\right)^{\alpha} \mu d \mu d \lambda\right. \\
&\left.+\int_{\mathbb{R}} \int_{0}^{|\lambda|} g(i \mu, \lambda)\left(\lambda^{2}-\mu^{2}\right)^{\alpha} \mu d \mu d \lambda\right)
\end{aligned}
$$

ii. For all non negative measurable function f on $[0,+\infty[\times \mathbb{R}$ (respectively integrable on $\left[0,+\infty\left[\times \mathbb{R}\right.\right.$ with respect to the measure $\left.d \nu_{\alpha}\right) f \circ \theta$ is a nonnegative measurable function on Υ_{+}(respectively integrable on Υ_{+}with respect to the measure $d \gamma_{\alpha}$) and we have

$$
\begin{equation*}
\iint_{\Upsilon_{+}}(f \circ \theta)(\mu, \lambda) d \gamma_{\alpha}(\mu, \lambda)=\int_{0}^{+\infty} \int_{\mathbb{R}} f(r, x) d \nu_{\alpha}(r, x) \tag{2.10}
\end{equation*}
$$

Definition 2.3

The Fourier transform associated with the Riemann-Liouville operator is defined on $L^{1}\left(d \nu_{\alpha}\right)$ by

$$
\forall(\mu, \lambda) \in \Upsilon ; \mathscr{F}_{\alpha}(f)(\mu, \lambda)=\int_{0}^{+\infty} \int_{\mathbb{R}} f(r, x) \varphi_{\mu, \lambda}(r, x) d \nu_{\alpha}(r, x)
$$

where $\varphi_{\mu, \lambda}$ is the eigenfunction given by relation (2.1).
We have the following properties

- From relation (2.3), we deduce that for $f \in L^{1}\left(d \nu_{\alpha}\right)$ the function $\mathscr{F}_{\alpha}(f)$ belongs to the space $L^{\infty}\left(d \gamma_{\alpha}\right)$ and we have

$$
\begin{equation*}
\left\|\mathscr{F}_{\alpha}(f)\right\|_{\infty, \gamma_{\alpha}} \leqslant\|f\|_{1, \nu_{\alpha}} . \tag{2.11}
\end{equation*}
$$

- For $f \in L^{1}\left(d \nu_{\alpha}\right)$, we have

$$
\begin{equation*}
\forall(\mu, \lambda) \in \Upsilon ; \mathscr{F}_{\alpha}(f)(\mu, \lambda)=\widetilde{\mathscr{F}}_{\alpha}(f) \circ \theta(\mu, \lambda), \tag{2.12}
\end{equation*}
$$

where for every $(\mu, \lambda) \in \mathbb{R}^{2}$,

$$
\widetilde{\mathscr{F}}_{\alpha}(f)(\mu, \lambda)=\int_{0}^{+\infty} \int_{\mathbb{R}} f(r, x) j_{\alpha}(r \mu) \exp (-i \lambda x) d \nu_{\alpha}(r, x)
$$

and θ is the function defined by relation (2.9).

- Let $f \in L^{1}\left(d \nu_{\alpha}\right)$ such that the function $\mathscr{F}_{\alpha}(f)$ belongs to the space $L^{1}\left(d \gamma_{\alpha}\right)$, then we have the following inversion formula for \mathscr{F}_{α}, for almost every $(r, x) \in$ $[0,+\infty[\times \mathbb{R}$,

$$
f(r, x)=\iint_{\Upsilon_{+}} \mathscr{F}_{\alpha}(f)(\mu, \lambda) \overline{\varphi_{\mu, \lambda}(r, x)} d \gamma_{\alpha}(\mu, \lambda)
$$

- Let $f \in L^{1}\left(d \nu_{\alpha}\right)$. For every $(r, x) \in[0,+\infty[\times \mathbb{R}$, we have

$$
\forall(\mu, \lambda) \in \Upsilon ; \mathscr{F}_{\alpha}\left(\tau_{(r, x)}(f)\right)(\mu, \lambda)=\overline{\varphi_{\mu, \lambda}(r, x)} \mathscr{F}_{\alpha}(f)(\mu, \lambda) .
$$

- For $f, g \in L^{1}\left(d \nu_{\alpha}\right)$, we have

$$
\forall(\mu, \lambda) \in \Upsilon ; \mathscr{F}_{\alpha}(f * g)(\mu, \lambda)=\mathscr{F}_{\alpha}(f)(\mu, \lambda) \mathscr{F}_{\alpha}(g)(\mu, \lambda) .
$$

- Let $p \in[1,+\infty]$. From relation (2.10), the function f belongs to $L^{p}\left(d \nu_{\alpha}\right)$ if, and only if the function $f \circ \theta$ belongs to the space $L^{p}\left(d \gamma_{\alpha}\right)$ and we have

$$
\begin{equation*}
\|f \circ \theta\|_{p, \gamma_{\alpha}}=\|f\|_{p, \nu_{\alpha}} \tag{2.13}
\end{equation*}
$$

Since the mapping $\widetilde{\mathscr{F}}_{\alpha}$ is an isometric isomorphism from $L^{2}\left(d \nu_{\alpha}\right)$ onto itself [24, 25], then the relations (2.12) and (2.13) show that the Fourier transform \mathscr{F}_{α} is an isometric isomorphism from $L^{2}\left(d \nu_{\alpha}\right)$ into $L^{2}\left(d \gamma_{\alpha}\right)$. Namely, for every $f \in L^{2}\left(d \nu_{\alpha}\right)$, the function $\mathscr{F}_{\alpha}(f)$ belongs to the space $L^{2}\left(d \gamma_{\alpha}\right)$ and we have

$$
\begin{equation*}
\left\|\mathscr{F}_{\alpha}(f)\right\|_{2, \gamma_{\alpha}}=\|f\|_{2, \nu_{\alpha}} . \tag{2.14}
\end{equation*}
$$

Proposition 2.4
For every f in $L^{p}\left(d \nu_{\alpha}\right), p \in[1,2]$; the function $\mathscr{F}_{\alpha}(f)$ lies in $L^{p^{\prime}}\left(d \gamma_{\alpha}\right), p^{\prime}=\frac{p}{p-1}$, and we have

$$
\left\|\mathscr{F}_{\alpha}(f)\right\|_{p^{\prime}, \gamma_{\alpha}} \leqslant\|f\|_{p, \nu_{\alpha}} .
$$

Proof. The result follows from relations (2.11), (2.14) and the Riesz-Thorin theorem's [20, 22].

We denote by

- $\mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$ the space of infinitely differentiable functions on \mathbb{R}^{2}, rapidly decreasing together with all their derivatives, even with respect to the first variable. The space $\mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$ is endowed with the topology generated by the family of norms

$$
\begin{equation*}
\rho_{m}(\varphi)=\sup _{\substack{(r, x) \in[0,+\infty[\times \mathbb{R} \\ k+|\beta| \leqslant m}}\left(1+r^{2}+x^{2}\right)^{k}\left|D^{\beta}(\varphi)(r, x)\right| ; \quad m \in \mathbb{N} . \tag{2.15}
\end{equation*}
$$

- $\mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$ the subspace of $\mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$ of functions with compact support.

3. Gauss and Poisson semigroups associated with the Riemann-Liouville operator

In this section, we will define and study the Gauss and Poisson semigroups. Also, the maximal functions connected with these semigroups are checked.

Definition 3.1

The Gauss kernel $g_{t}, t>0$, associated with the Riemann-Liouville operator is defined on \mathbb{R}^{2} by

$$
\begin{align*}
g_{t}(r, x) & =\frac{e^{-\frac{\left(r^{2}+x^{2}\right)}{4 t}}}{(2 t)^{\alpha+\frac{3}{2}}}=\iint_{\Upsilon_{+}} e^{-t\left(\mu^{2}+2 \lambda^{2}\right)} \overline{\varphi_{\mu, \lambda}(r, x)} d \gamma_{\alpha}(\mu, \lambda) \tag{3.16}\\
& =\widetilde{\mathscr{F}}_{\alpha}^{-1}\left(e^{-t\left(s^{2}+y^{2}\right)}\right)(r, x) .
\end{align*}
$$

Lemma 3.2
The family $\left(g_{t}\right)_{t>0}$ is an approximation of the identity in the space $\mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$; that is for every $f \in \mathscr{S}_{e}\left(\mathbb{R}^{n}\right)$; and every $t>0$; the function $g_{t} * f$ belongs to $\mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$ and for every $m \in \mathbb{N}$;

$$
\lim _{t \rightarrow 0^{+}} \rho_{m}\left(g_{t} * f-f\right)=0
$$

where ρ_{m} is the norm defined by relation (2.15).
Proof. Since the Schwartz space $\mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$ is stable under convolution product, we deduce that for every $f \in \mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$; and every $t>0$; the function $g_{t} * f$ belongs to the space $\mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$. On the other hand, the transform $\widetilde{\mathscr{F}}_{\alpha}$ is a topological isomorphism from $\mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$ onto itself which satisfies

$$
\begin{equation*}
\widetilde{\mathscr{F}_{\alpha}}(f * g)=\widetilde{\mathscr{F}_{\alpha}}(f) \widetilde{\mathscr{F}_{\alpha}}(g) . \tag{3.17}
\end{equation*}
$$

By relation (3.16), we get $\widetilde{\mathscr{F}_{\alpha}}\left(g_{t}\right)(r, x)=e^{-t\left(r^{2}+x^{2}\right)}$. So, we must show that for every $(k, \beta) \in \mathbb{N} \times \mathbb{N}^{2}$ and every $f \in \mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$,

$$
\lim _{t \rightarrow 0^{+}}\left\|\left(1+r^{2}+x^{2}\right)^{k} D^{\beta}\left(e^{-t\left(r^{2}+x^{2}\right)} f-f\right)\right\|_{\infty, \nu_{\alpha}}=0
$$

Applying Leibniz formula, we get

$$
\begin{aligned}
& D^{\beta}\left(e^{-t\left(r^{2}+x^{2}\right)} f(r, x)\right) \\
&=\sum_{\gamma \leqslant \beta} \frac{\beta!}{\gamma!(\beta-\gamma)!} D^{\gamma}\left(e^{-t\left(r^{2}+x^{2}\right)}\right) D^{\beta-\gamma}(f)(r, x) \\
&=\sum_{\gamma \leqslant \beta} \frac{\beta!}{\gamma!(\beta-\gamma)!}(-1)^{|\gamma|} \sqrt{t}{ }^{|\gamma|} H_{\gamma}(r \sqrt{t}, x \sqrt{t}) e^{-t\left(r^{2}+x^{2}\right)} D^{\beta-\gamma}(f)(r, x),
\end{aligned}
$$

where H_{γ} is the Hermite polynomial on \mathbb{R}^{2} with index γ.

Consequently,

$$
\begin{aligned}
& D^{\beta}\left(e^{-t\left(r^{2}+x^{2}\right)} f(r, x)-f(r, x)\right) \\
& \quad=\sum_{\substack{\gamma \leqslant \beta \\
\gamma \neq 0}} \frac{\beta!}{\gamma!(\beta-\gamma)!}(-1)^{|\gamma|} \sqrt{t}{ }^{|\gamma|} H_{\gamma}(r \sqrt{t}, x \sqrt{t}) e^{-t\left(r^{2}+x^{2}\right)} D^{\beta-\gamma}(f)(r, x) \\
& \quad \quad+\left(e^{-t\left(r^{2}+x^{2}\right)}-1\right) D^{\beta}(f)(r, x) .
\end{aligned}
$$

Thus, for every $t, 0 \leqslant t<1$;

$$
\begin{aligned}
\|(1+ & \left.r^{2}+x^{2}\right)^{k} D^{\beta}\left(e^{-t\left(r^{2}+x^{2}\right)} f-f\right) \|_{\infty, \nu_{\alpha}} \\
\leqslant & \sqrt{t}\left[\sum_{\gamma \leqslant \beta} \frac{\beta!}{\gamma!(\beta-\gamma)!}\left\|H_{\gamma} e^{-\left(r^{2}+x^{2}\right)}\right\|_{\infty, \nu_{\alpha}}\left\|\left(1+r^{2}+x^{2}\right)^{k} D^{\beta-\gamma}(f)\right\|_{\infty, \nu_{\alpha}}\right. \\
& \left.+\left\|\left(1+r^{2}+x^{2}\right)^{k+1} D^{\beta}(f)\right\|_{\infty, \nu_{\alpha}}\right]
\end{aligned}
$$

The last inequality shows that for every $(k, \beta) \in \mathbb{N} \times \mathbb{N}^{2}$,

$$
\lim _{t \rightarrow 0^{+}}\left\|\left(1+r^{2}+x^{2}\right)^{k} D^{\beta}\left(\widetilde{\mathscr{F}_{\alpha}}\left(g_{t}\right) f-f\right)\right\|_{\infty, \nu_{\alpha}}=0
$$

The proof is complete.

Proposition 3.3

For every $f \in \mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$; the function $\mathscr{V}(f)$ defined by

$$
\left.\mathscr{V}(f)(r, x, t)=g_{t} * f(r, x), \quad \forall(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[,
$$

is infinitely differentiable on $\left.\mathbb{R}^{2} \times\right] 0,+\infty[$ and satisfies the following equation

$$
\left\{\begin{aligned}
\Lambda_{\alpha}(\mathscr{V}(f)) & =\frac{\partial}{\partial t}(\mathscr{V}(f)) \\
\lim _{t \rightarrow 0^{+}} \mathscr{V}(f)(., ., t) & =f \quad \text { uniformly }
\end{aligned}\right.
$$

Where

$$
\begin{equation*}
\Lambda_{\alpha}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2 \alpha+1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial x^{2}} \tag{3.18}
\end{equation*}
$$

Proof. For every $t>0$; the function g_{t} belongs to $\mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$ and consequently, for every $f \in \mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$, the function

$$
(r, x) \longmapsto g_{t} * f(r, x)
$$

belongs to the space $\mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$ and for every $(\mu, \lambda) \in \mathbb{R}^{2}$;

$$
\widetilde{\mathscr{F}_{\alpha}}\left(g_{t} * f\right)(\mu, \lambda)=\widetilde{\mathscr{F}_{\alpha}}(\mathscr{V}(f)(., ., t))(\mu, \lambda)=e^{-t\left(\mu^{2}+\lambda^{2}\right) \widetilde{\mathscr{F}_{\alpha}}(f)(\mu, \lambda) . . ~}
$$

This implies that for every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$, we have

$$
\mathscr{V}(f)(r, x, t)=\int_{0}^{\infty} \int_{\mathbb{R}} e^{-t\left(\mu^{2}+\lambda^{2}\right)} \widetilde{\mathscr{F}}_{\alpha}(f)(\mu, \lambda) j_{\alpha}(r \mu) e^{i \lambda x} d \nu_{\alpha}(\mu, \lambda)
$$

From this equality; it follows that the function

$$
(r, x, t) \longmapsto \mathscr{V}(f)(r, x, t)
$$

is infinitely differentiable on $\left.\mathbb{R}^{2} \times\right] 0,+\infty[$ and we have

$$
\begin{aligned}
\frac{\partial}{\partial t}(\mathscr{V}(f))(r, x, t) & =-\int_{0}^{\infty} \int_{\mathbb{R}}\left(\mu^{2}+\lambda^{2}\right) e^{-t\left(\mu^{2}+\lambda^{2}\right)} \widetilde{\mathscr{F}}(f)(\mu, \lambda) j_{\alpha}(r \mu) e^{i \lambda x} d \nu_{\alpha}(r, x) \\
& =\Lambda_{\alpha}(\mathscr{V}(f))(r, x, t),
\end{aligned}
$$

because $\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2 \alpha+1}{\partial r}\right)\left(j_{\alpha}(\mu r)\right)=-\mu^{2} j_{\alpha}(r \mu)$ and $\frac{\partial^{2}}{\partial x^{2}}\left(e^{i \lambda x}\right)=-\lambda^{2} e^{i \lambda x}$.
On the other hand; for $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$,

$$
\begin{aligned}
f(r, x) & -\mathscr{V}(f)(r, x, t) \\
& =\int_{0}^{\infty} \int_{\mathbb{R}}\left(1-e^{-t\left(\mu^{2}+\lambda^{2}\right)}\right) \widetilde{\mathscr{F}_{\alpha}}(f)(\mu, \lambda) j_{\alpha}(r \mu) e^{i \lambda x} d \nu_{\alpha}(r, x) .
\end{aligned}
$$

So

$$
\|f-\mathscr{V}(f)(., ., t)\|_{\infty, \nu_{\alpha}} \leqslant t \int_{0}^{\infty} \int_{\mathbb{R}}\left(\mu^{2}+\lambda^{2}\right)\left|\widetilde{\mathscr{F}_{\alpha}}(f)(\mu, \lambda)\right| d \nu_{\alpha}(\mu, \lambda)
$$

which means that

$$
\lim _{t \rightarrow 0^{+}}\|\mathscr{V}(f)(., ., t)-f\|_{\infty, \nu_{\alpha}}=0
$$

Proposition 3.4
i. For every $p \in[1,+\infty]$; the operator $\mathscr{G}^{t}, t>0$, defined by

$$
\begin{equation*}
\mathscr{G}^{t}(f)=g_{t} * f \tag{3.19}
\end{equation*}
$$

is a bounded positive operator from $L^{p}\left(d \nu_{\alpha}\right)$ into itself and for every $f \in$ $L^{p}\left(d \nu_{\alpha}\right)$, we have

$$
\left\|\mathscr{G}^{t}(f)\right\|_{p, \nu_{\alpha}} \leqslant\|f\|_{p, \nu_{\alpha}} .
$$

ii. For every $p \in\left[1,+\infty\left[\right.\right.$, the family $\left(\mathscr{G}^{t}\right)_{t>0}$ is a strongly continuous semigroup of operators on $L^{p}\left(d \nu_{\alpha}\right)$, that is

- For $s, t>0 ; \mathscr{G}^{s} \circ \mathscr{G}^{t}=\mathscr{G}^{s+t}$,
- For every $f \in L^{p}\left(d \nu_{\alpha}\right), \lim _{t \rightarrow 0^{+}}\left\|\mathscr{G}^{t}(f)-f\right\|_{p, \nu_{\alpha}}=0$.

The family $\left(\mathscr{G}^{t}\right)_{t>0}$ is called Gauss semigroup associated with the RiemannLiouville operator \mathscr{R}_{α}.

Proof. i. Let $g(r, x)=e^{-\frac{r^{2}+x^{2}}{2}}, g$ is a measurable positive function and we have

$$
g_{t}(r, x)=\frac{g\left(\frac{r}{\sqrt{2 t}}, \frac{x}{\sqrt{2 t}}\right)}{(\sqrt{2 t})^{2 \alpha+3}} .
$$

So

$$
\int_{0}^{\infty} \int_{\mathbb{R}} g_{t}(r, x) d \nu_{\alpha}(r, x)=\int_{0}^{\infty} \int_{\mathbb{R}} g(r, x) d \nu_{\alpha}(r, x)=1
$$

From relation (2.7), for every $f \in L^{p}\left(d \nu_{\alpha}\right)$; and every $t>0$, the function $\mathscr{G}^{t}(f)=$ $g_{t} * f$ belongs to $L^{p}\left(d \nu_{\alpha}\right)$ and we have

$$
\left\|\mathscr{G}^{t}(f)\right\|_{p, \nu_{\alpha}} \leqslant\left\|g_{t}\right\|_{1, \nu_{\alpha}}\|f\|_{p, \nu_{\alpha}}=\|f\|_{p, \nu_{\alpha}}
$$

ii. From relation (3.16), we have

$$
\forall(\mu, \lambda) \in \mathbb{R}^{2} ; \widetilde{\mathscr{F}_{\alpha}}\left(g_{t}\right)(\mu, \lambda)=e^{-t\left(\mu^{2}+\lambda^{2}\right)}
$$

So, from relation (3.17); for $s, t>0$; we get

$$
\widetilde{\mathscr{F}_{\alpha}}\left(g_{t} * g_{s}\right)(\mu, \lambda)=e^{-(t+s)\left(\mu^{2}+\lambda^{2}\right)}=\widetilde{\mathscr{F}_{\alpha}}\left(g_{t+s}\right)(\mu, \lambda),
$$

and consequently; $g_{s} * g_{t}=g_{s+t}$ which involves that for every $f \in L^{p}\left(d \nu_{\alpha}\right)$;

$$
\mathscr{G}^{s}\left(\mathscr{G}^{t}(f)\right)=\mathscr{G}^{s+t}(f)
$$

Moreover, from relation (2.8),

$$
\lim _{t \rightarrow 0^{+}}\left\|\mathscr{G}^{t}(f)-f\right\|_{\infty, \nu_{\alpha}}=0
$$

The proof is complete.
Proposition 3.5
For every $f \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$, the maximal function $\mathscr{M}(f)$ defined on \mathbb{R}^{2} by

$$
\begin{equation*}
\mathscr{M}(f)(r, x)=\sup _{s>0} \frac{1}{s}\left|\int_{0}^{s} \mathscr{G}^{t}(f)(r, x) d t\right| \tag{3.20}
\end{equation*}
$$

belongs to the space $\left.L^{p}\left(d \nu_{\alpha}\right), p \in\right] 1,+\infty[$, moreover

$$
\|\mathscr{M}(f)\|_{p, \nu_{\alpha}} \leqslant 2\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\|f\|_{p, \nu_{\alpha}} .
$$

Proof. The result follows immediately from [9, theorem 7, pp 693].

Definition 3.6

For every $t>0$, the Poisson kernel p_{t} associated with the Riemann-Liouville operator is defined on \mathbb{R}^{2} by

$$
\begin{align*}
p_{t}(r, x) & =\iint_{\Upsilon_{+}} e^{-t \sqrt{s^{2}+2 y^{2}}} \overline{\varphi_{s, y}(r, x)} d \gamma_{\alpha}(s, y)=\mathscr{F}_{\alpha}^{-1}\left(e^{-t \sqrt{s^{2}+2 y^{2}}}\right)(r, x) \tag{3.21}\\
& =\mathscr{F}_{\alpha}-1 \\
& \left(e^{-t \sqrt{s^{2}+y^{2}}}\right)(r, x) .
\end{align*}
$$

Lemma 3.7

For every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$, we have

$$
p_{t}(r, x)=\frac{2^{\alpha+\frac{3}{2}} \Gamma(\alpha+2)}{\sqrt{\pi}} \frac{t}{\left(t^{2}+r^{2}+x^{2}\right)^{\alpha+2}} .
$$

Proof. We know that for every $x \in \mathbb{R}$; we have

$$
\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}} e^{-\frac{x^{2}}{4 u}} d u=e^{-|x|}
$$

From Definition 3.6, and applying Fubini's theorem, we get

$$
\begin{align*}
p_{t}(r, x) & =\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}}\left(\iint_{\Upsilon_{+}} e^{-\frac{t^{2}}{4 u}\left(s^{2}+2 y^{2}\right)} \overline{\varphi_{s, y}(r, x)} d \gamma_{\alpha}(s, y)\right) \\
& =\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}} g_{\frac{t^{2}}{4 u}}(r, x) d u \tag{3.22}\\
& =\frac{2^{\alpha+\frac{3}{2}}}{\sqrt{\pi}} t^{-2 \alpha-3} \int_{0}^{\infty} e^{-\frac{u}{t^{2}}\left(r^{2}+x^{2}+t^{2}\right)} u^{\alpha+1} d u \\
& =\frac{2^{\alpha+\frac{3}{2}} \Gamma(\alpha+2)}{\sqrt{\pi}} \frac{t}{\left(t^{2}+r^{2}+x^{2}\right)^{\alpha+2}} .
\end{align*}
$$

Proposition 3.8

Let $f \in \mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$, the function $\mathscr{U}(f)$ defined on $\left.\mathbb{R}^{2} \times\right] 0,+\infty[$ by

$$
\mathscr{U}(f)(r, x)=p_{t} * f(r, x)
$$

is infinitely differentiable and satisfies the equation

$$
\left\{\begin{aligned}
\Lambda_{\alpha}(\mathscr{U}(f))+\frac{\partial^{2}}{\partial t^{2}}(\mathscr{U}(f)) & =0 \\
\lim _{t \rightarrow 0^{+}} \mathscr{U}(f)(., ., t) & =f \quad \text { uniformly. }
\end{aligned}\right.
$$

Proof. From relation (3.21), for every $(\mu, \lambda) \in \mathbb{R}^{2}$, we have

$$
\widetilde{\mathscr{F}_{\alpha}}(\mathscr{U}(f)(., ., t))=\widetilde{\mathscr{F}_{\alpha}}\left(p_{t}\right)(\mu, \lambda) \widetilde{\mathscr{F}_{\alpha}}(f)(\mu, \lambda)=e^{-t \sqrt{\mu^{2}+\lambda^{2}} \widetilde{\mathscr{F}_{\alpha}}}(f)(\mu, \lambda) .
$$

So, for every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$;

$$
\begin{aligned}
\mathscr{U}(f)(r, x, t) & =\widetilde{\mathscr{F}}_{\alpha}^{-1}\left(e^{-t \sqrt{\mu^{2}+\lambda^{2}}} \widetilde{\mathscr{F}}_{\alpha}(f)\right)(r, x) \\
& =\int_{0}^{\infty} \int_{\mathbb{R}} e^{-t \sqrt{\mu^{2}+\lambda^{2}}} \widetilde{\mathscr{F}}_{\alpha}(f)(\mu, \lambda) j_{\alpha}(r \mu) e^{i \lambda x} d \nu_{\alpha}(\mu, \lambda) .
\end{aligned}
$$

From relation (2.2) and the fact that the function $\widetilde{\mathscr{F}}_{\alpha}(f)$ belongs to the space $\mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$; we deduce that the function $\mathscr{U}(f)$ is infinitely differentiable on
$\left.\mathbb{R}^{2} \times\right] 0,+\infty[$. Moreover,

$$
\begin{aligned}
\Lambda_{\alpha}(\mathscr{U} & (f))(r, x, t) \\
& =-\int_{0}^{\infty} \int_{\mathbb{R}}\left(\mu^{2}+\lambda^{2}\right) e^{-t \sqrt{\mu^{2}+\lambda^{2}}} \widetilde{\mathscr{F}}_{\alpha}(f)(\mu, \lambda) j_{\alpha}(r \mu) e^{i \lambda x} d \nu_{\alpha}(\mu, \lambda) \\
& =-\frac{\partial^{2}}{\partial t^{2}}(\mathscr{U}(f))(r, x, t) .
\end{aligned}
$$

On the other hand; for every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$; we get

$$
\begin{aligned}
|f(r, x)-\mathscr{U}(f)(r, x, t)| & \leqslant \int_{0}^{\infty} \int_{\mathbb{R}}\left|1-e^{-t \sqrt{\mu^{2}+\lambda^{2}}}\right| \widetilde{\mathscr{F}_{\alpha}}(f)(\mu, \lambda) \mid d \nu_{\alpha}(\mu, \lambda) \\
& \leqslant t \int_{0}^{\infty} \int_{\mathbb{R}} \sqrt{\mu^{2}+\lambda^{2}}\left|\widetilde{\mathscr{F}_{\alpha}}(f)(\mu, \lambda)\right| d \nu_{\alpha}(\mu, \lambda)
\end{aligned}
$$

which means that

$$
\|\mathscr{U}(f)(., ., t)-f\|_{\infty, \nu_{\alpha}} \leqslant t \int_{0}^{\infty} \int_{\mathbb{R}} \sqrt{\mu^{2}+\lambda^{2}}\left|\widetilde{\mathscr{F}_{\alpha}}(f)(\mu, \lambda)\right| d \nu_{\alpha}(\mu, \lambda)
$$

and proves that

$$
\lim _{t \rightarrow 0^{+}}\|\mathscr{U}(f)(., ., t)-f\|_{\infty, \nu_{\alpha}}=0
$$

Proposition 3.9

i. For every $p \in[1,+\infty]$; the operator $\mathscr{P}^{t}, t>0$, defined by

$$
\mathscr{P}^{t}(f)=p_{t} * f
$$

is a bounded positive operator from $L^{p}\left(d \nu_{\alpha}\right)$ into itself and for every $f \in$ $L^{p}\left(d \nu_{\alpha}\right)$, we have

$$
\left\|\mathscr{P}^{t}(f)\right\|_{p, \nu_{\alpha}} \leqslant\|f\|_{p, \nu_{\alpha}}
$$

ii. For every $p \in\left[1,+\infty\left[\right.\right.$, the family $\left(\mathscr{P}^{t}\right)_{t>0}$ is a strongly continuous semigroup of operators on $L^{p}\left(d \nu_{\alpha}\right)$, that is

- For $s, t>0 ; \mathscr{P}^{s} \circ \mathscr{P}^{t}=\mathscr{P}^{s+t}$,
- For every $f \in L^{p}\left(d \nu_{\alpha}\right), \lim _{t \rightarrow 0^{+}}\left\|\mathscr{P}^{t}(f)-f\right\|_{p, \nu_{\alpha}}=0$.

The family $\left(\mathscr{P}^{t}\right)_{t>0}$ is called Poisson semigroup associated with the RiemannLiouville operator \mathscr{R}_{α}.

Proof. i. Let $p(r, x)=\frac{2^{\alpha+\frac{3}{2}} \Gamma(\alpha+2)}{\sqrt{\pi}} \frac{1}{\left(1+r^{2}+x^{2}\right)^{\alpha+2}}, p$ is a measurable positive function and we have

$$
p_{t}(r, x)=\frac{1}{t^{2 \alpha+3}} p\left(\frac{r}{t}, \frac{x}{t}\right) .
$$

So,

$$
\begin{equation*}
\int_{0}^{\infty} \int_{\mathbb{R}} p_{t}(r, x) d \nu_{\alpha}(r, x)=\int_{0}^{\infty} \int_{\mathbb{R}} p(r, x) d \nu_{\alpha}(r, x)=1 \tag{3.23}
\end{equation*}
$$

From relation (2.7), for every $f \in L^{p}\left(d \nu_{\alpha}\right)$; and every $t>0$, the function $\mathscr{P}^{t}(f)=$ $p_{t} * f$ belongs to $L^{p}\left(d \nu_{\alpha}\right)$ and we have

$$
\left\|\mathscr{P}^{t}(f)\right\|_{p, \nu_{\alpha}} \leqslant\left\|p_{t}\right\|_{1, \nu_{\alpha}}\|f\|_{p, \nu_{\alpha}}=\|f\|_{p, \nu_{\alpha}}
$$

ii. From relation (3.21), we have

$$
\forall(\mu, \lambda) \in \mathbb{R}^{2} ; \widetilde{\mathscr{F}_{\alpha}}\left(p_{t}\right)(\mu, \lambda)=e^{-t \sqrt{\mu^{2}+\lambda^{2}}}
$$

So, from relation (3.17); for $s, t>0$; we get

$$
\widetilde{\mathscr{F}_{\alpha}}\left(p_{t} * p_{s}\right)(\mu, \lambda)=e^{-(t+s) \sqrt{\mu^{2}+\lambda^{2}}}=\widetilde{\mathscr{F}_{\alpha}}\left(p_{t+s}\right)(\mu, \lambda),
$$

and consequently; $p_{s} * p_{t}=p_{s+t}$ which involves that for every $f \in L^{p}\left(d \nu_{\alpha}\right)$;

$$
\mathscr{P}^{s}\left(\mathscr{P}^{t}(f)\right)=\mathscr{P}^{s+t}(f) .
$$

Moreover, from relations (2.8) and (3.23),

$$
\lim _{t \rightarrow 0^{+}}\left\|\mathscr{P}^{t}(f)-f\right\|_{p, \nu_{\alpha}}=0
$$

This finishes the proof.
Lemma 3.10
We have the following connexion between the Gauss and Poisson semigroups, that is

$$
\mathscr{P}^{t}(f)(r, x)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}} \mathscr{G}^{\frac{t^{2}}{4 u}}(f)(r, x) d u .
$$

Proof. Let $f \in L^{p}\left(d \nu_{\alpha}\right), p \in[1,+\infty]$; for every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$, the integral

$$
\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}} \mathscr{G}^{\mathscr{t}^{2}}(f)(r, x) d u
$$

is well defined.
Moreover, from relations (2.5), (3.19) and applying Fubini's theorem, we get

$$
\begin{aligned}
& \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}} \mathscr{G ^ { t ^ { 2 } }} 4(f)(r, x) d u \\
& \quad=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}}\left(\int_{0}^{\infty} \int_{\mathbb{R}} \tau_{(r,-x)}(\breve{f})(s, y) g_{\frac{t^{2}}{4 u}}(s, y) d \nu_{\alpha}(s, y)\right) d u \\
& \quad=\int_{0}^{\infty} \int_{\mathbb{R}} \tau_{(r,-x)}(\breve{f})(s, y)\left(\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}} g_{\frac{t^{2}}{4 u}}(s, y) d u\right) d \nu_{\alpha}(s, y) .
\end{aligned}
$$

By relation (3.22), we obtain

$$
\begin{aligned}
& \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}} \mathscr{G}^{t^{2}} \\
& 4 u \\
&(f)(r, x) d u=\int_{0}^{\infty} \int_{\mathbb{R}} \tau_{(r,-x)}(\breve{f})(s, y) p_{t}(s, y) d \nu_{\alpha}(s, y) \\
&=\mathscr{P}^{t}(f)(r, x)
\end{aligned}
$$

Proposition 3.11
For every $f \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$, the maximal function f^{*} defined on \mathbb{R}^{2} by

$$
\begin{equation*}
f^{*}(r, x)=\sup _{t>0}\left|\mathscr{P}^{t}(f)(r, x)\right| \tag{3.24}
\end{equation*}
$$

belongs to the space $\left.L^{p}\left(d \nu_{\alpha}\right) ; p \in\right] 1,+\infty[$, and we have

$$
\begin{equation*}
\left\|f^{*}\right\|_{p, \nu_{\alpha}} \leqslant 2\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\|f\|_{p, \nu_{\alpha}} \tag{3.25}
\end{equation*}
$$

Proof. Let $f \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$. From Lemma 3.10, for every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$, we have

$$
\mathscr{P}^{t}(f)(r, x)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-u}}{\sqrt{u}} \mathscr{G}^{\frac{t^{2}}{4 u}}(f)(r, x) d u=\frac{t}{2 \sqrt{\pi}} \int_{0}^{\infty} \frac{e^{\frac{-t^{2}}{4 s}}}{s^{\frac{3}{2}}} \mathscr{G}^{s}(f)(r, x) d s
$$

Integrating by parts and using the fact that for every $s>0,\left|\int_{0}^{s} \mathscr{G}^{u}(f)(r, x) d u\right| \leqslant$ $s\|f\|_{\infty, \nu_{\alpha}}$, we get

$$
\mathscr{P}^{t}(f)(r, x)=-\frac{t}{2 \sqrt{\pi}} \int_{0}^{\infty} s \frac{d}{d s}\left[\frac{e^{\frac{-t^{2}}{4 s}}}{s^{\frac{3}{2}}}\right]\left[\frac{1}{s} \int_{0}^{s} \mathscr{G}^{u}(f)(r, x) d u\right] d s
$$

Thus, for every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$; we have

$$
\left|\mathscr{P}^{t}(f)(r, x)\right| \leqslant \mathscr{M}(f)(r, x)\left|\frac{t}{2 \sqrt{\pi}} \int_{0}^{\infty} s \frac{d}{d s}\left(\frac{e^{\frac{-t^{2}}{4 s}}}{s^{\frac{3}{2}}}\right) d s\right|=\mathscr{M}(f)(r, x)
$$

So; for every $(r, x) \in \mathbb{R}^{2} ; f^{*}(r, x) \leqslant \mathscr{M}(f)(r, x)$; where $\mathscr{M}(f)$ is the maximal function defined by relation (3.20). Using Proposition 3.5, we deduce that

$$
\left\|f^{*}\right\|_{p, \nu_{\alpha}} \leqslant 2\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\|f\|_{p, \nu_{\alpha}}
$$

4. The Littlewood-Paley g-function associated with the Riemann-Liouville operator

This section is devoted to study the boundedness of the g-function. We start this section by some intermediate results.

Lemma 4.1

Let f be a function of $\mathscr{S}_{e}\left(\mathbb{R}^{2}\right)$; and let $\mathscr{U}(f)$ be the function defined on $\left.\mathbb{R}^{2} \times\right] 0,+\infty[$ by

$$
\mathscr{U}(f)(r, x, t)=\mathscr{P}^{t}(f)(r, x)=p_{t} * f(r, x) .
$$

Then for every $k \in \mathbb{N}$, and $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$, we have

$$
\begin{equation*}
\left|\left(\frac{\partial}{\partial t}\right)^{k}(\mathscr{U}(f))(r, x, t)\right| \leqslant \frac{\Gamma(2 \alpha+k+3)}{2^{\alpha+\frac{1}{2}} \Gamma\left(\alpha+\frac{3}{2}\right)} \frac{\|f\|_{1, \nu_{\alpha}}}{t^{2 \alpha+k+3}} . \tag{4.26}
\end{equation*}
$$

Proof. From the proof of Proposition 3.8 and for every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$, we have

$$
\begin{equation*}
\mathscr{U}(f)(r, x, t)=\int_{0}^{\infty} \int_{\mathbb{R}} e^{-t \sqrt{\mu^{2}+\lambda^{2}}} \widetilde{\mathscr{F}_{\alpha}}(f)(\mu, \lambda) j_{\alpha}(r \mu) e^{i \lambda x} d \nu_{\alpha}(\mu, \lambda) . \tag{4.27}
\end{equation*}
$$

So, for every $k \in \mathbb{N}$,

$$
\begin{aligned}
&\left(\frac{\partial}{\partial t}\right)^{k}(\mathscr{U}(f))(r, x, t) \\
& \quad=(-1)^{k} \int_{0}^{\infty} \int_{\mathbb{R}}\left(\mu^{2}+\lambda^{2}\right)^{\frac{k}{2}} e^{-t \sqrt{\mu^{2}+\lambda^{2}}} \widetilde{\mathscr{F}_{\alpha}}(f)(\mu, \lambda) j_{\alpha}(r \mu) e^{i \lambda x} d \nu_{\alpha}(\mu, \lambda) .
\end{aligned}
$$

Consequently, for every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$;

$$
\begin{aligned}
\left|\left(\frac{\partial}{\partial t}\right)^{k}(\mathscr{U}(f))(r, x, t)\right| & \leqslant\left\|\widetilde{\mathscr{F}_{\alpha}}(f)\right\|_{\infty, \nu_{\alpha}} \int_{0}^{\infty} \int_{\mathbb{R}}\left(\mu^{2}+\lambda^{2}\right)^{\frac{k}{2}} e^{-t \sqrt{\mu^{2}+\lambda^{2}}} d \nu_{\alpha}(\mu, \lambda) \\
& \leqslant\|f\|_{1, \nu_{\alpha}} \int_{0}^{\infty} \int_{\mathbb{R}}\left(\mu^{2}+\lambda^{2}\right)^{\frac{k}{2}} e^{-t \sqrt{\mu^{2}+\lambda^{2}}} d \nu_{\alpha}(\mu, \lambda) \\
& =\frac{\Gamma(2 \alpha+k+3)\|f\|_{1, \nu_{\alpha}}}{2^{\alpha+\frac{1}{2}} \Gamma\left(\alpha+\frac{3}{2}\right)} \frac{1}{t^{2 \alpha+k+3}} .
\end{aligned}
$$

Lemma 4.2

Let f be a function of $\mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$ and let a be a positive real number such that $\operatorname{supp}(f) \subset B_{a}=\left\{(r ; x) \in \mathbb{R}^{2}, r^{2}+x^{2} \leqslant a^{2}\right\}$. Then for every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$ such that $r^{2}+x^{2} \geqslant 4 a^{2}$, we have

$$
\begin{align*}
|\mathscr{U}(f)(r, x, t)| & \leqslant \frac{a^{2 \alpha+3} 2^{2 \alpha+4} \Gamma(\alpha+2)}{(2 \alpha+3) \Gamma\left(\alpha+\frac{3}{2}\right) \sqrt{\pi}} \frac{\|f\|_{\infty, \nu_{\alpha}}}{\left(t^{2}+r^{2}+x^{2}\right)^{\alpha+\frac{3}{2}}} \tag{4.28}\\
\left|\frac{\partial}{\partial r}(\mathscr{U}(f))(r, x, t)\right| & \leqslant \frac{a^{2 \alpha+3} 2^{2 \alpha+8} \Gamma(\alpha+3)}{(2 \alpha+3) \Gamma\left(\alpha+\frac{3}{2}\right) \sqrt{\pi}} \frac{\|f\|_{\infty, \nu_{\alpha}}}{\left(t^{2}+r^{2}+x^{2}\right)^{\alpha+2}}, \tag{4.29}\\
\left|\frac{\partial}{\partial x}(\mathscr{U}(f))(r, x, t)\right| & \leqslant \frac{a^{2 \alpha+3} 2^{2 \alpha+8} \Gamma(\alpha+3)}{(2 \alpha+3) \Gamma\left(\alpha+\frac{3}{2}\right) \sqrt{\pi}} \frac{\|f\|_{\infty, \nu_{\alpha}}}{\left(t^{2}+r^{2}+x^{2}\right)^{\alpha+2}} . \tag{4.30}
\end{align*}
$$

Proof. From relation (2.4) and Lemma 3.7, we have

$$
\begin{align*}
& \tau_{(r,-x)}\left(p_{t}\right)(s, y) \tag{4.31}\\
&=\frac{2^{\alpha+\frac{3}{2}} \Gamma(\alpha+2)}{\sqrt{\pi}} \frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{0}^{\pi} \frac{t \sin ^{2 \alpha} \theta d \theta}{\left(t^{2}+\left(r^{2}+s^{2}+2 r s \cos \theta\right)+(x-y)^{2}\right)^{\alpha+2}} \\
& \leqslant \frac{2^{\alpha+\frac{3}{2}} \Gamma(\alpha+2)}{\sqrt{\pi}} \frac{t}{\left(t^{2}+(r-s)^{2}+(x-y)^{2}\right)^{\alpha+2}} \frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)} \int_{0}^{\pi} \sin ^{2 \alpha} \theta d \theta
\end{align*}
$$

and

$$
\begin{equation*}
\tau_{(r,-x)}\left(p_{t}\right)(s, y) \leqslant \frac{2^{\alpha+\frac{3}{2}} \Gamma(\alpha+2)}{\sqrt{\pi}} \frac{t}{\left(t^{2}+(r-s)^{2}+(x-y)^{2}\right)^{\alpha+2}} \tag{4.32}
\end{equation*}
$$

Let $f \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right) ; \operatorname{supp}(f) \subset B_{a}$. We have

$$
\begin{aligned}
\mathscr{U}(f)(r, x, t) & =p_{t} * f(r, x)=\int_{0}^{\infty} \int_{\mathbb{R}} \tau_{(r,-x)}\left(p_{t}\right)(s, y) f(s, y) d \nu_{\alpha}(s, y) \\
& =\iint_{B_{\alpha}^{+}} \tau_{(r,-x)}\left(p_{t}\right)(s, y) f(s, y) d \nu_{\alpha}(s, y)
\end{aligned}
$$

where

$$
B_{a}^{+}=\left\{(r, x) ; r^{2}+x^{2} \leqslant a^{2}, r \geqslant 0\right\} .
$$

From relation (4.32), for every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$;

$$
\begin{aligned}
\mid \mathscr{U}(f) & (r, x, t) \mid \\
& \leqslant \frac{2^{\alpha+\frac{3}{2}} \Gamma(\alpha+2)\|f\|_{\infty, \nu_{\alpha}}}{\sqrt{\pi}} \iint_{B_{\alpha}^{+}} \frac{t d \nu_{\alpha}(s, y)}{\left(t^{2}+(r-s)^{2}+(x-y)^{2}\right)^{\alpha+2}} \\
& \leqslant \frac{2^{\alpha+\frac{3}{2}} \Gamma(\alpha+2)\|f\|_{\infty, \nu_{\alpha}}}{\sqrt{\pi}} \iint_{B_{a}^{+}} \frac{d \nu_{\alpha}(s, y)}{\left(t^{2}+(r-s)^{2}+(x-y)^{2}\right)^{\alpha+\frac{3}{2}}} \\
& =\frac{2^{\alpha+\frac{3}{2}} \Gamma(\alpha+2)\|f\|_{\infty, \nu_{\alpha}}}{\sqrt{\pi}} \iint_{B_{\alpha}^{+}} \frac{d \nu_{\alpha}(s, y)}{\left(t^{2}+\|(r, x)-(s, y)\|^{2}\right)^{\alpha+\frac{3}{2}}} .
\end{aligned}
$$

For every $(r, x) \in \mathbb{R}^{2}$ such that $r^{2}+x^{2} \geqslant 4 a^{2}$ and for every $(s, y) \in B_{a}^{+}$; we have

$$
\|(r, x)-(s, y)\| \geqslant\|(r, x)\|-\|(s, y)\|=\sqrt{r^{2}+x^{2}}-\sqrt{s^{2}+y^{2}} \geqslant \frac{1}{2}\|(r, x)\|
$$

This implies that for every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty\left[; r^{2}+x^{2} \geqslant 4 a^{2}\right.$,

$$
\begin{aligned}
|\mathscr{U}(f)(r, x, t)| & \leqslant \frac{2^{3 \alpha+\frac{9}{2}} \Gamma(\alpha+2)}{\sqrt{\pi}} \frac{\|f\|_{\infty, \nu_{\alpha}}}{\left(t^{2}+r^{2}+x^{2}\right)^{\alpha+\frac{3}{2}}} \nu_{\alpha}\left(B_{a}^{+}\right) \\
& =\frac{a^{2 \alpha+3} 2^{2 \alpha+4} \Gamma(\alpha+2)}{(2 \alpha+3) \Gamma\left(\alpha+\frac{3}{2}\right) \sqrt{\pi}}\|f\|_{\infty, \nu_{\alpha}} \frac{1}{\left(t^{2}+r^{2}+x^{2}\right)^{\alpha+\frac{3}{2}}} .
\end{aligned}
$$

From relation (4.31); we have

$$
\begin{aligned}
\frac{\partial}{\partial r}\left(\tau_{(r,-x)}\left(p_{t}\right)(s, y)\right)= & \frac{2^{\alpha+\frac{3}{2}} \Gamma(\alpha+2)}{\sqrt{\pi}} \frac{\Gamma(\alpha+1)}{\sqrt{\pi} \Gamma\left(\alpha+\frac{1}{2}\right)}(-2(\alpha+2)) \\
& \times \int_{0}^{\pi} \frac{t(r+s \cos \theta) \sin ^{2 \alpha} \theta d \theta}{\left(t^{2}+\left(r^{2}+s^{2}+2 r s \cos \theta\right)+(x-y)^{2}\right)^{\alpha+3}},
\end{aligned}
$$

and consequently,

$$
\begin{aligned}
\left|\frac{\partial}{\partial r}\left(\tau_{(r,-x)}\left(p_{t}\right)(s, y)\right)\right| & \leqslant \frac{2^{\alpha+\frac{5}{2}} \Gamma(\alpha+3)}{\sqrt{\pi}} \frac{t(r+s)}{\left(t^{2}+(r-s)^{2}+(x-y)^{2}\right)^{\alpha+3}} \\
& \leqslant \frac{2^{\alpha+\frac{5}{2}} \Gamma(\alpha+3)}{\sqrt{\pi}} \frac{r+s}{\left(t^{2}+(r-s)^{2}+(x-y)^{2}\right)^{\alpha+\frac{5}{2}}}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left\lvert\, \frac{\partial}{\partial r}\right. & (\mathscr{U}(f))(r, s, t) \mid \\
& \leqslant \iint_{B_{a}^{+}}\left|\frac{\partial}{\partial r}\left(\tau_{(r,-x)}\left(p_{t}\right)(s, y)\right)\right||f(s, y)| d \nu_{\alpha}(s, y) \\
& \leqslant \frac{2^{\alpha+\frac{5}{2}} \Gamma(\alpha+3)}{\sqrt{\pi}}\|f\|_{\infty, \nu_{\alpha}} \iint_{B_{a}^{+}} \frac{(r+s) d \nu_{\alpha}(s, y)}{\left(t^{2}+(r-s)^{2}+(x-y)^{2}\right)^{\alpha+\frac{5}{2}}} .
\end{aligned}
$$

But, for every $(r, x) ; r^{2}+x^{2} \geqslant 4 a^{2}$ and every $(s, y) \in B_{a}^{+}$; we have

$$
\frac{r+s}{\left(t^{2}+(r-s)^{2}+(x-y)^{2}\right)^{\alpha+\frac{5}{2}}} \leqslant \frac{2 \sqrt{r^{2}+x^{2}}}{\left(t^{2}+\frac{1}{4}\left(r^{2}+x^{2}\right)\right)^{\alpha+\frac{5}{2}}} \leqslant \frac{2^{2 \alpha+6}}{\left(t^{2}+r^{2}+x^{2}\right)^{\alpha+2}}
$$

This implies that

$$
\left|\frac{\partial}{\partial r}(\mathscr{U}(f))(r, s, t)\right| \leqslant \frac{2^{3 \alpha+\frac{17}{2}} \Gamma(\alpha+3)}{\sqrt{\pi}}\|f\|_{\infty, \nu_{\alpha}} \frac{1}{\left(t^{2}+r^{2}+x^{2}\right)^{\alpha+2}} \nu_{\alpha}\left(B_{a}^{+}\right) .
$$

Then, the result follows from the fact that

$$
\nu_{\alpha}\left(B_{a}^{+}\right)=\frac{a^{2 \alpha+3}}{(2 \alpha+3) 2^{\alpha+\frac{1}{2}} \Gamma\left(\alpha+\frac{3}{2}\right)} .
$$

We get the result (4.30) as the same way as the precedent inequality.

Theorem 4.3

Let Δ_{α} be the partial differential operator defined by

$$
\Delta_{\alpha}=\Lambda_{\alpha}+\frac{\partial^{2}}{\partial t^{2}}
$$

where Λ_{α} is given by relation (3.18). Then, for every non negative function $f \in$ $\mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$ and every $\left.\left.p \in\right] 1,2\right]$, we have

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \int_{\mathbb{R}} \Delta_{\alpha}\left((\mathscr{U}(f))^{p}\right)(r, x, t) d \nu_{\alpha}(r, x) t d t=\|f\|_{p, \nu_{\alpha}}^{p} \tag{4.33}
\end{equation*}
$$

Proof. Let f be a non negative function, $f \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$. Then $\mathscr{U}(f)$ is a positive function and from Proposition 3.8,

$$
\Delta_{\alpha}(\mathscr{U}(f))=0 .
$$

Moreover; we have

$$
\begin{equation*}
\Delta_{\alpha}\left((\mathscr{U}(f))^{p}\right)=p(p-1)(\mathscr{U}(f))^{p-2}|\nabla(\mathscr{U}(f))|^{2} \geqslant 0 \tag{4.34}
\end{equation*}
$$

where

$$
\nabla(\mathscr{U}(f))=\left(\frac{\partial}{\partial r}(\mathscr{U}(f)), \frac{\partial}{\partial x}(\mathscr{U}(f)), \frac{\partial}{\partial t}(\mathscr{U}(f))\right) .
$$

Then, we have

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty} \int_{\mathbb{R}} \Delta_{\alpha}\left((\mathscr{U}(f))^{p}\right)(r, x, t) d \nu_{\alpha}(r, x) t d t \\
& \quad=\lim _{A \rightarrow+\infty} \int_{0}^{A} \int_{0}^{A} \int_{-A}^{A}\left(\Lambda_{\alpha}\left((\mathscr{U}(f))^{p}\right)(r, x, t)+\frac{\partial^{2}}{\partial t^{2}}\left((\mathscr{U}(f))^{p}\right)(r, x, t)\right) d \nu_{\alpha}(r, x) t d t
\end{aligned}
$$

From relation (4.27); we deduce that for every $\left.(r, x, t) \in \mathbb{R}^{2} \times\right] 0,+\infty[$ and for every $k \in \mathbb{N}$; we have

$$
\left|\frac{\partial^{k}}{\partial t^{k}}(\mathscr{U}(f))(r, x, t)\right| \leqslant \int_{0}^{\infty} \int_{\mathbb{R}}\left(\mu^{2}+\lambda^{2}\right)^{\frac{k}{2}}\left|\widetilde{\mathscr{F}}_{\alpha}(f)(\mu, \lambda)\right| d \nu_{\alpha}(\mu, \lambda)<+\infty .
$$

It follows that, the function

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial t^{2}}\left((\mathscr{U}(f))^{p}\right) \\
& \quad=p(p-1)(\mathscr{U}(f))^{p-2}\left(\frac{\partial}{\partial t}(\mathscr{U}(f))\right)^{2}+p(\mathscr{U}(f))^{p-1} \frac{\partial^{2}(\mathscr{U}(f))}{\partial t^{2}}
\end{aligned}
$$

is bounded on $[0, A] \times[-A, A] \times[0, A]$.
As the same way; the function

$$
\Lambda_{\alpha}\left((\mathscr{U}(f))^{p}\right)=\frac{\partial^{2}}{\partial r^{2}}\left((\mathscr{U}(f))^{p}\right)+\frac{2 \alpha+1}{r} \frac{\partial}{\partial r}\left((\mathscr{U}(f))^{p}\right)+\frac{\partial^{2}}{\partial x^{2}}\left((\mathscr{U}(f))^{p}\right)
$$

is bounded on $[0, A] \times[-A, A] \times[0, A]$.

Then, by Fubini's theorem; we get

$$
\begin{equation*}
\int_{0}^{A} \int_{0}^{A} \int_{-A}^{A} \Delta_{\alpha}\left((\mathscr{U}(f))^{p}\right)(r, x, t) d \nu_{\alpha}(r, x) t d t=I_{1}(A)+I_{2}(A)+I_{3}(A) \tag{4.35}
\end{equation*}
$$

where

$$
\begin{aligned}
& I_{1}(A)=C_{\alpha} \int_{0}^{A} \int_{-A}^{A}\left(\int_{0}^{A} \frac{\partial}{\partial r}\left[r^{2 \alpha+1} \frac{\partial}{\partial r}\left((\mathscr{U}(f))^{p}\right)\right](r, x, t) d r\right) d x t d t \\
& I_{2}(A)=C_{\alpha} \int_{0}^{A} \int_{0}^{A}\left(\int_{-A}^{A} \frac{\partial^{2}}{\partial x^{2}}\left[(\mathscr{U}(f))^{p}\right](r, x, t) d x\right) r^{2 \alpha+1} d r t d t \\
& I_{3}(A)=\int_{0}^{A} \int_{-A}^{A}\left(\int_{0}^{A}\left(\frac{\partial}{\partial t}\right)^{2}\left[(\mathscr{U}(f))^{p}\right](r, x, t) t d t\right) d \nu_{\alpha}(r, x)
\end{aligned}
$$

with $C_{\alpha}=\frac{1}{2^{\alpha} \Gamma(\alpha+1) \sqrt{2 \pi}}$.
Now,

$$
I_{1}(A)=p C_{\alpha} \int_{0}^{A} \int_{-A}^{A} A^{2 \alpha+1} \frac{\partial}{\partial r}(\mathscr{U}(f))(A, x, t)(\mathscr{U}(f))^{p-1}(A, x, t) d x t d t .
$$

Let $a>0$ such that $\operatorname{supp}(f) \subset B_{a}$ and let $A \geqslant 2 a$. By relations (4.28) and (4.29), we have

$$
\left|I_{1}(A)\right| \leqslant \frac{C_{1} A^{2 \alpha+4}}{A^{(2 \alpha+3)(p-1)} A^{2 \alpha+4}}=\frac{C_{1}}{A^{(2 \alpha+3)(p-1)}}
$$

which involves that

$$
\begin{equation*}
\lim _{A \rightarrow+\infty} I_{1}(A)=0 \tag{4.36}
\end{equation*}
$$

As the same way;

$$
\begin{aligned}
I_{2}(A)= & p C_{\alpha} \int_{0}^{A} \int_{0}^{A}\left[\frac{\partial}{\partial x}(\mathscr{U}(f))(r, A, t)(\mathscr{U}(f))^{p-1}(r, A, t)\right. \\
& \left.-\frac{\partial}{\partial x}(\mathscr{U}(f))(r,-A, t)(\mathscr{U}(f))^{p-1}(r,-A, t)\right] r^{2 \alpha+1} d r t d t
\end{aligned}
$$

and by relations (4.28) and (4.30); we obtain

$$
\left|I_{2}(A)\right| \leqslant \frac{C_{2} A^{2 \alpha+4}}{A^{(2 \alpha+3)(p-1)} A^{2 \alpha+4}}=\frac{C_{2}}{A^{(2 \alpha+3)(p-1)}}
$$

so,

$$
\begin{equation*}
\lim _{A \rightarrow+\infty} I_{2}(A)=0 \tag{4.37}
\end{equation*}
$$

Let us checking the integral $I_{3}(A)$. We have

$$
\begin{aligned}
& \int_{0}^{A}\left(\frac{\partial}{\partial t}\right)\left[(\mathscr{U}(f))^{p}\right](r, x, t) t d t \\
& \quad=p A \frac{\partial}{\partial t}(\mathscr{U}(f))(r, x, A)(\mathscr{U}(f))^{p-1}(r, x, A)-(\mathscr{U}(f))^{p}(r, x, A)+f^{p}(r, x)
\end{aligned}
$$

However,

$$
\begin{aligned}
\int_{0}^{A} \int_{-A}^{A} \mathscr{U}^{p}(f)(r, x, A) d \nu_{\alpha}(r, x) & \leqslant \int_{0}^{\infty} \int_{\mathbb{R}} \mathscr{U}^{p}(f)(r, x, A) d \nu_{\alpha}(r, x) \\
& =\left\|p_{A} * f\right\|_{p, \nu_{\alpha}}^{p} \leqslant\left\|p_{A}\right\|_{p, \nu_{\alpha}}^{p}\|f\|_{1, \nu_{\alpha}}^{p}
\end{aligned}
$$

By a simple computation and using Lemma 3.7, we deduce that

$$
\lim _{A \rightarrow+\infty}\left\|p_{A}\right\|_{p, \nu_{\alpha}}^{p}=0
$$

and then

$$
\lim _{A \rightarrow+\infty} \int_{0}^{A} \int_{-A}^{A} \mathscr{U}^{p}(f)(r, x, A) d \nu_{\alpha}(r, x)=0
$$

On the other hand, by relation (4.26), we have

$$
p A \int_{0}^{A} \int_{-A}^{A}\left|\frac{\partial}{\partial t}(\mathscr{U}(f))(r, x, A)\right|(\mathscr{U}(f))^{p-1}(r, x, A) d \nu_{\alpha}(r, x) \leqslant \frac{C_{3}}{A^{(2 \alpha+3)(p-1)}},
$$

which implies that

$$
\lim _{A \rightarrow+\infty} p A \int_{0}^{A} \int_{-A}^{A} \frac{\partial}{\partial t}(\mathscr{U}(f))(r, x, A)(\mathscr{U}(f))^{p-1}(r, x, A) d \nu_{\alpha}(r, x)=0 .
$$

hence,

$$
\begin{equation*}
\lim _{A \rightarrow+\infty} I_{3}(A)=\int_{0}^{\infty} \int_{\mathbb{R}}(f(r, x))^{p} d \nu_{\alpha}(r, x)=\|f\|_{p, \nu_{\alpha}}^{p} \tag{4.38}
\end{equation*}
$$

Then, the desired result follows from relations (4.35), (4.36), (4.37) and (4.38) .
Definition 4.4
The Littlewood-Paley g-function associated with the Riemann-Liouville operator is defined for $f \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$ by

$$
g(f)(r, x)=\left(\int_{0}^{\infty}|\nabla(\mathscr{U}(f))(r, x, t)|^{2} t d t\right)^{\frac{1}{2}}
$$

Let $\mathscr{C}_{c, e}\left(\mathbb{R}^{2}\right)$ be the space of continuous functions on \mathbb{R}^{2}, even with respect to the first variable and with compact support.

In the following, we need the coming result.

Lemma 4.5

Let g be a non negative function, $g \in \mathscr{C}_{c, e}\left(\mathbb{R}^{2}\right) ; \operatorname{supp}(g) \subset B_{a}$. For every ε; $0<\varepsilon<1$, there exists a non negative function $f \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$ such that

$$
\forall(r, x) \in \mathbb{R}^{2} ; 0 \leqslant f(r, x)-g(r, x) \leqslant \varepsilon
$$

with $\operatorname{supp}(f) \subset B_{a+2}$.
Proof. It is well known that for every non negative function $h ; h \in \mathscr{C}_{c, e}\left(\mathbb{R}^{2}\right)$, $\operatorname{supp}(h) \subset B_{a}$ and for every $\eta>0$, there is a non negative function $f \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$, $\operatorname{supp}(f) \subset B_{a+1}$ such that

$$
\begin{equation*}
\forall(r, x) \in \mathbb{R}^{2} ;-\eta \leqslant f(r, x)-h(r, x) \leqslant \eta \tag{4.39}
\end{equation*}
$$

Let g be a non negative function in $\mathscr{C}_{c, e}\left(\mathbb{R}^{2}\right), \operatorname{supp}(g) \subset B_{a}$ and let $\varepsilon \in \mathbb{R}, 0<$ $\varepsilon<1$. We define the function θ by

$$
\theta(r, x)= \begin{cases}g(r, x)+\frac{\varepsilon}{2}, & \text { if } r^{2}+x^{2} \leqslant a^{2} \\ -\sqrt{r^{2}+x^{2}}+a+\frac{\varepsilon}{2}, & \text { if } a^{2} \leqslant r^{2}+x^{2} \leqslant\left(a+\frac{\varepsilon}{2}\right)^{2} \\ 0, & \text { if } r^{2}+x^{2} \geqslant\left(a+\frac{\varepsilon}{2}\right)^{2}\end{cases}
$$

Then θ is a non negative function, θ belongs to the space $\mathscr{C}_{c, e}\left(\mathbb{R}^{2}\right)$ and $\operatorname{supp}(\theta) \subset$ B_{a+1}.

From relation (4.39), there exists a non negative function $f \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$ such that $\operatorname{supp}(f) \subset B_{a+2}$, and

$$
\forall(r, x) \in \mathbb{R}^{2} ;-\frac{\varepsilon}{4} \leqslant f(r, x)-\theta(r, x) \leqslant \frac{\varepsilon}{4} .
$$

Thus, the function f satisfies

$$
\forall(r, x) \in \mathbb{R}^{2} ; 0 \leqslant f(r, x)-g(r, x) \leqslant \varepsilon
$$

with $\operatorname{supp}(f) \subset B_{a+2}$.

Proposition 4.6

For every $p \in] 1,2]$, and for every function $f \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$, the function $g(f)$ belongs to the space $L^{p}\left(d \nu_{\alpha}\right)$ and we have

$$
\|g(f)\|_{p, \nu_{\alpha}} \leqslant 2 \frac{2^{\frac{2-p}{2}}}{p}\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\|f\|_{p, \nu_{\alpha}}
$$

Proof. Let f be a non negative function; $f \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$. From relation (4.34), we have

$$
|\nabla(\mathscr{U}(f))(r, x, t)|^{2}=\frac{1}{p(p-1)}(\mathscr{U}(f))^{2-p}(r, x, t) \Delta_{\alpha}\left(\mathscr{U}^{p}(f)\right)(r, x, t) .
$$

For $p=2$ and using relation (4.33), we obtain

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\mathbb{R}} g^{2}(f)(r, x) d \nu_{\alpha}(r, x) & =\int_{0}^{\infty} \int_{\mathbb{R}}\left(\int_{0}^{\infty}|\nabla(\mathscr{U}(f))(r, x, t)|^{2} t d t\right) d \nu_{\alpha}(r, x) \\
& =\frac{1}{2} \int_{0}^{\infty} \int_{\mathbb{R}}^{\infty} \int_{0}^{\infty} \Delta_{\alpha}\left(\mathscr{U}^{2}(f)\right)(r, x, t) t d t d \nu_{\alpha}(r, x) \\
& =\frac{1}{2} \int_{0}^{\infty} \int_{\mathbb{R}}(f(r, x))^{2} d \nu_{\alpha}(r, x) .
\end{aligned}
$$

This means that

$$
\|g(f)\|_{2, \nu_{\alpha}}=\frac{1}{\sqrt{2}}\|f\|_{2, \nu_{\alpha}}
$$

For $p \in] 1,2[$, we have

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{\mathbb{R}}(g(f))^{p}(r, x) d \nu_{\alpha}(r, x) \\
& \quad=\int_{0}^{\infty} \int_{\mathbb{R}}\left(\int_{0}^{\infty}|\nabla(\mathscr{U}(f))(r, x, t)|^{2} t d t\right)^{\frac{p}{2}} d \nu_{\alpha}(r, x) \\
& \quad=\left(\frac{1}{p(p-1)}\right)^{\frac{p}{2}} \int_{0}^{\infty} \int_{\mathbb{R}}\left(\int_{0}^{\infty} \mathscr{U}^{2-p}(f)(r, x, t) \Delta_{\alpha}\left(\mathscr{U}^{p}(f)\right)(r, x, t) t d t\right)^{\frac{p}{2}} d \nu_{\alpha}(r, x) \\
& \quad \leqslant\left(\frac{1}{p(p-1)}\right)^{\frac{p}{2}} \int_{0}^{\infty} \int_{\mathbb{R}}\left(f^{*}(r, x)\right)^{(2-p) \frac{p}{2}}\left(\int_{0}^{\infty} \Delta_{\alpha}\left(\mathscr{U}^{p}(f)\right)(r, x, t) t d t\right)^{\frac{p}{2}} d \nu_{\alpha}(r, x)
\end{aligned}
$$

where f^{*} is the maximal function defined by relation (3.24).
Using Hölder's inequality and relation (4.33), we get

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{\mathbb{R}^{n}}(g(f))^{p}(r, x) d \nu_{\alpha}(r, x) \\
& \quad \leqslant\left(\frac{1}{p(p-1)}\right)^{\frac{p}{2}}\left\|f^{*}\right\|_{p, \nu_{\alpha}}^{p \frac{(2-p)}{2}}\left(\int_{0}^{\infty} \int_{\mathbb{R}} \int_{0}^{\infty} \Delta_{\alpha}\left(\mathscr{U}^{p}(f)\right)(r, x, t) t d t d \nu_{\alpha}(r, x)\right)^{\frac{p}{2}} \\
& \quad=\left(\frac{1}{p(p-1)}\right)^{\frac{p}{2}}\left\|f^{*}\right\|_{p, \nu_{\alpha}^{2}}^{p \frac{(2-p)}{p}}\|f\|_{p, \nu_{\alpha}}^{p, \frac{p}{2}}
\end{aligned}
$$

and by means of relation (3.25),

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{n}}(g(f))^{p}(r, x) d \nu_{\alpha}(r, x) \leqslant\left(\frac{1}{p(p-1)}\right)^{\frac{p}{2}}\left(2\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\right)^{p \frac{(2-p)}{2}}\|f\|_{p, \nu_{\alpha}}^{p}
$$

in other words,

$$
\begin{equation*}
\|g(f)\|_{p, \nu_{\alpha}} \leqslant \frac{2^{\frac{2-p}{2}}}{p}\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\|f\|_{p, \nu_{\alpha}} \tag{4.40}
\end{equation*}
$$

Let $f \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right) ; \operatorname{supp}(f) \subset B_{a}$ and let $f^{+}=\frac{f+|f|}{2}, f^{-}=\frac{-f+|f|}{2}$. Then f^{+} is a non negative function, $f^{+} \in \mathscr{C}_{c, e}\left(\mathbb{R}^{2}\right)$. From Lemma 4.5, for every $\varepsilon \in \mathbb{R}$, $0<\varepsilon<1$, there is a non negative function $h_{1} \in \mathscr{D}_{e}\left(\mathbb{R}^{2}\right), \operatorname{supp}\left(h_{1}\right) \subset B_{a+2}$ and

$$
\begin{equation*}
\forall(r, x) \in \mathbb{R}^{2} ; 0 \leqslant h_{1}(r, x)-f^{+}(r, x) \leqslant \varepsilon \tag{4.41}
\end{equation*}
$$

Now, the function

$$
h_{2}=h_{1}-f=h_{1}-f^{+}+f^{-}
$$

is non negative, belongs to the space $\mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$ with $\operatorname{supp}\left(h_{2}\right) \subset B_{a+2}$. Moreover

$$
\forall(r, x) \in \mathbb{R}^{2} ; 0 \leqslant h_{2}(r, x)-f^{-}(r, x)=h_{1}(r, x)-f^{+}(r, x) \leqslant \varepsilon
$$

and we have $f=h_{1}-h_{2}$.
Since the mapping $f \longmapsto g(f)$ is sub-linear in the sense that $g\left(f_{1}+f_{2}\right) \leqslant$ $g\left(f_{1}\right)+g\left(f_{2}\right)$; we deduce that

$$
g(f) \leqslant g\left(h_{1}\right)+g\left(h_{2}\right)
$$

and applying inequality (4.40), we get

$$
\|g(f)\|_{p, \nu_{\alpha}} \leqslant\left\|g\left(h_{1}\right)\right\|_{p, \nu_{\alpha}}+\left\|g\left(h_{2}\right)\right\|_{p, \nu_{\alpha}} \leqslant \frac{2^{\frac{2-p}{2}}}{p}\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\left(\left\|h_{1}\right\|_{p, \nu_{\alpha}}+\left\|h_{2}\right\|_{p, \nu_{\alpha}}\right)
$$

On the other hand, from relation (4.41), we obtain

$$
\begin{aligned}
\left\|h_{1}\right\|_{p, \nu_{\alpha}} & =\left(\iint_{B_{a+2}^{+}}\left(h_{1}(r, x)\right)^{p} d \nu_{\alpha}(r, x)\right)^{\frac{1}{p}} \\
& \leqslant\left(\iint_{B_{a+2}^{+}}\left(f^{+}(r, x)\right)^{p} d \nu_{\alpha}(r, x)\right)^{\frac{1}{p}}+\varepsilon\left(\nu_{\alpha}\left(B_{a+2}^{+}\right)\right)^{\frac{1}{p}} \\
& \leqslant\|f\|_{p, \nu_{\alpha}}+\varepsilon\left(\nu_{\alpha}\left(B_{a+2}^{+}\right)\right)^{\frac{1}{p}}
\end{aligned}
$$

As the same way,

$$
\left\|h_{2}\right\|_{p, \nu_{\alpha}} \leqslant\|f\|_{p, \nu_{\alpha}}+\varepsilon\left(\nu_{\alpha}\left(B_{a+2}^{+}\right)\right)^{\frac{1}{p}} .
$$

This means that for every $\varepsilon \in \mathbb{R}, 0<\varepsilon<1$,

$$
\|g(f)\|_{p, \nu_{\alpha}} \leqslant 2 \frac{2^{\frac{2-p}{2}}}{p}\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\left(\|f\|_{p, \nu_{\alpha}}+\varepsilon\left(\nu_{\alpha}\left(B_{a+2}^{+}\right)\right)^{\frac{1}{p}}\right)
$$

and consequently,

$$
\|g(f)\|_{p, \nu_{\alpha}} \leqslant 2 \frac{2^{\frac{2-p}{2}}}{p}\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\|f\|_{p, \nu_{\alpha}} .
$$

The precedent Proposition allows us to prove the followings Theorem, that is the main result of this paper.

Theorem 4.7

For every $p \in] 1,2]$; the mapping $f \longmapsto g(f)$ can be extended to the space $L^{p}\left(d \nu_{\alpha}\right)$ and for every $f \in L^{p}\left(d \nu_{\alpha}\right)$, we have

$$
\|g(f)\|_{p, \nu_{\alpha}} \leqslant 2 \frac{2^{\frac{2-p}{2}}}{2}\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\|f\|_{p, \nu_{\alpha}}
$$

Proof. Let $f \in L^{p}\left(d \nu_{\alpha}\right)$, then there exists a sequence $\left(f_{k}\right)_{k} \subset \mathscr{D}_{e}\left(\mathbb{R}^{2}\right)$ such that

$$
\lim _{k \rightarrow+\infty}\left\|f_{k}-f\right\|_{p, \nu_{\alpha}}=0
$$

Since the mapping $f \longmapsto g(f)$ is sub-linear; then for every $(k, l) \in \mathbb{N}^{2}$; we have

$$
\begin{aligned}
\left\|g\left(f_{k+l}\right)-g\left(f_{k}\right)\right\|_{p, \nu_{\alpha}} & \leqslant\left\|g\left(f_{k+l}-f_{k}\right)\right\|_{p, \nu_{\alpha}} \\
& \leqslant 2 \frac{2^{\frac{2-p}{2}}}{2}\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\left\|f_{k+l}-f_{k}\right\|_{p, \nu_{\alpha}}
\end{aligned}
$$

Consequently, the sequence $\left(g\left(f_{k}\right)\right)_{k}$ is a Cauchy one in $L^{p}\left(d \nu_{\alpha}\right)$. We put

$$
g(f)=\lim _{k \rightarrow+\infty} g\left(f_{k}\right)
$$

in $L^{p}\left(d \nu_{\alpha}\right)$.
It is clear that $g(f)$ is independent of the choice of the sequence $\left(f_{k}\right)_{k}$ and we have

$$
\|g(f)\|_{p, \nu_{\alpha}}=\lim _{k \rightarrow+\infty}\left\|g\left(f_{k}\right)\right\|_{p, \nu_{\alpha}} \leqslant 2 \frac{2^{\frac{2-p}{2}}}{p}\left(\frac{p}{p-1}\right)^{\frac{1}{p}}\|f\|_{p, \nu_{\alpha}}
$$

References

[1] A. Achour, K. Trimèche, La g-fonction de Littlewood-Paley associée à un opérateur différentiel singulier sur $] 0,+\infty[$, Ann. Inst. Fourier, Grenoble, 33 (1983), 203226.
[2] H. Annabi, A. Fitouhi, La g-fonction de Littlewood-Paley associée à une classe d'opérateurs différentiels sur $] 0,+\infty[$ contenant l'opérateur de Bessel, C. R. Acad. Sc. Paris, 303 (1986), 411-413.
[3] C. Baccar, N.B. Hamadi, L.T. Rachdi, Inversion formulas for Riemann-Liouville transform and its dual associated with singular partial differential operators, Int. J. Math. Math. Sci. 2006 Art. ID 86238, 26 pp.
[4] C. Baccar, N.B. Hamadi, L.T. Rachdi, Best approximation for Weierstrass transform connected with Riemann-Liouville operator, Commun. Math. Anal. 5 (2008), 65-83.
[5] C. Baccar, L.T. Rachdi, Spaces of $D_{L^{p}}$-type and a convolution product associated with the Riemann-Liouville operators, Bull. Math. Anal. Appl. 1 (2009), 16-41.
[6] A. Beurling, The collected works of Arne Beurling, Birkhäuser, Vol.1-2, Boston, 1989.
[7] A. Bonami, B. Demange, P. Jaming, Hermite functions and uncertainty priciples for the Fourier and the widowed Fourier transforms, Rev. Mat. Iberoamericana 19 (2003), 23-55.
[8] M.G. Cowling, J.F. Price, Generalizations of Heisenberg's inequality in Harmonic analysis, (Cortona, 1982), Lecture Notes in Math. 992 (1983), 443-449.
[9] N. Dunford, J.T. Schwartz, Linear operators part I, John Wiley \& Sons, Inc., New York, 1988.
[10] A. Erdely and all, Tables of integral transforms, Mc Graw-Hill Book Compagny., Vol.2, New York 1954.
[11] A. Erdely and all, Asymptotic expansions, Dover publications, New-York 1956.
[12] G.B. Folland, A. Sitaram, The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., 3 (1997), 207-238.
[13] G.H. Hardy, A theorem concerning Fourier transforms, J. London. Math. Soc. 8 (1933), 227-231.
[14] N.N. Lebedev, Special functions and their applications, Dover publications, Inc., New-York 1972.
[15] G.W. Morgan, A note on Fourier transforms, J. London. Math. Soc. 9 (1934), 178-192.
[16] S. Omri, L.T. Rachdi, An $L^{p}-L^{q}$ version of Morgan's theorem associated with Riemann-Liouville transform, Int. J. Math. Anal. 1 (2007), 805-824.
[17] S. Omri, L.T. Rachdi, Heisenberg-Pauli-Weyl uncertainty principle for the Riemann-Liouville Operator, JIPAM. J. Inequal. Pure Appl. Math. 9 (2008), Article 88, 23 pp.
[18] L.T. Rachdi, A. Rouz, On the range of the Fourier transform connected with Riemann-Liouville operator, Ann. Math. Blaise Pascal, 16 (2009), 355-397.
[19] F. Soltani, Littlewood-Paley g-function in the Dunkl analysis on \mathbb{R}^{d}, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), Article 84, 13 pp. (electronic).
[20] E.M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492.
[21] E.M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory, Annals of Mathematics Studies, 63 Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo 1970.
[22] E.M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32. Princeton University Press, Princeton, N.J., 1971.
[23] K. Stempak, La théorie de Littlewood-Paley pour la transformation de FourierBessel, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 15--18.
[24] K. Trimèche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur $(0,+\infty)$, J. Math. Pures Appl. 60 (1981) 51-98.
[25] K. Trimèche, Inversion of the Lions transmutation operators using generalized wavelets, Appl. Comput. Harmon. Anal. 4 (1997), 97-112.
[26] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1995.

Besma Amri
Département de Mathématiques et d'Informatique
Institut national des sciences appliquées et de Thechnologie
Centre Urbain Nord BP 676-1080 Tunis cedex
Tunisia
E-mail: besmaa.amri@gmail.com
Lakhdar T. Rachdi
Department of Mathematics
Faculty of Sciences of Tunis
2092 Manar 2, Tunis
Tunisia
E-mail: lakhdartannech.rachdi@fst.rnu.tn

Received: April 18, 2012; final version: February 7, 2013;
available online: May 3, 2013.

[^0]: AMS (2000) Subject Classification: 43A32, 42B25.

