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The Fourteenth International Conference on Functional Equations and Inequal-
ities was held from September 11 to 17, 2011 in Będlewo, Poland. The series of
ICFEI meetings has been organized by the Department of Mathematics of the Pe-
dagogical University in Cracow since 1984. For the fourth time, the conference
was organized jointly with the Stefan Banach International Mathematical Center
and hosted by the Mathematical Research and Conference Center in Będlewo.

This year’s conference was dedicated to the memory of Professor Marek Kucz-
ma, the founder of the Polish School of Functional Equations and Inequalities, who
died 20 years ago.

The Organizing Committee of the 14th ICFEI consisted of Janusz Brzdęk
as Chairman, Zbigniew Leśniak as Vice-Chairman, Anna Bahyrycz, Magdalena
Piszczek, Paweł Solarz, Janina Wiercioch and Krzysztof Ciepliński, who also acted
as Vice-Chairman and Scientific Secretary.

The Scientific Committee consisted of Professors: Dobiesław Brydak as Ho-
norary Chairman, Janusz Brzdęk as Chairman, Nicole Brillouët-Belluot, Jacek
Chmieliński, Bogdan Choczewski, Roman Ger, Hans-Heinrich Kairies, László
Losonczi, Zsolt Páles and Marek Cezary Zdun.

The 60 participants came from 12 countries: Australia, Austria, Denmark,
France, Germany, Hungary, India, Iran, Israel, Russia, Serbia and Poland.

The conference was opened on Monday, September 12 by Professor Janusz
Brzdęk – the Chairman of the Scientific and Organizing Committees, who wel-
comed the participants on behalf of the Organizing Committee and read a letter
to them from Professor Władysław Błasiak, the Dean of the Faculty of Mathe-
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matics, Physics and Technical Science of the Pedagogical University. The opening
address was given by Professor Jacek Chmieliński, the Head of the Department
of Mathematics. The opening ceremony was followed by the first scientific ses-
sion chaired by Professor Roman Ger. Altogether, during 22 scientific sessions 3
lectures (given by Professors: Karol Baron – opening lecture, Stevo Stević and
Boris Paneah) and 51 talks were delivered. They focused on functional equations
in a single variable and in several variables, functional inequalities, stability the-
ory, convexity, multifunctions, means and other topics. Several contributions have
been made during special Problems and Remarks sessions.

On Tuesday, September 13, a picnic was organized. On the next day afternoon
the participants visited Rogalin Palace with its gallery of paintings from the 19th
and 20th centuries, and collection of horse-drawn vehicles. In the evening the piano
recital was performed by Professor Marek Czerni. On Thursday, September 15,
a banquet was held at the Palace in Będlewo. At the start of the banquet, George
Gershwin’s “Summertime” was performed by Professor Ewelina Mainka-Niemczyk.

The conference was closed on Friday, September 16 by Professor Janusz Brzdęk.
He announced that Professors Ekaterina Shulman and László Székelyhidi had
agreed to join the Scientific Committee. The 15th ICFEI will be organized in
the south of Poland, in the spring of 2013.

The following part of the report contains the abstracts of the talks, the prob-
lems and remarks, and a list of the participants with their addresses.Abstrats of Talks
Anna Bahyrycz On the solutions of Wilson first generalization of d’Alembert’s
functional equation on some set

Let A be a non-empty subset of an Abelian group. In the talk, under some
simple additional assumptions on the set A, we deal with functions f, g:A → C

satisfying the equation

f(x+ y) + f(x− y) = 2f(x)g(y)

for x, y ∈ A such that x+ y, x− y ∈ A.

Karol Baron Marek Kuczma

The scientific output of Marek Kuczma consists of 179 papers (listed in [4])
published within the years 1958–1993 and three books [6, 7, 8] still used and
quoted. Professor Marek Kuczma created and developed the theory of iterative
functional equations but his name is also connected with important results on
functional equations in several variables, in particular on Cauchy’s equation and
Jensen’s inequality. In fact Marek Kuczma has founded a mathematical school:
he supervised 13 Ph.D. dissertations, 10 his students have already their habilitation
and 6 of them became full professors (cf. also [5]). In the talk I would like to present
more information about this great teacher and, making also use of [1, 2, 3], some
results of this outstanding mathematician.
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[1] K. Baron, M. Kuczma’s papers on iterative functional equations, Selected topics in

functional equations and iteration theory (Graz, 1991), 1–6, Grazer Math. Ber. 316,
Karl-Franzens-Univ. Graz, Graz, 1992.

[2] B. Choczewski, Papers of Marek Kuczma written in the last decade of his life, Selected
topics in functional equations and iteration theory (Graz, 1991), 7–16, Grazer Math.
Ber. 316, Karl-Franzens-Univ. Graz, Graz, 1992.

[3] R. Ger, M. Kuczma’s papers on functional equations in several variables, Selected
topics in functional equations and iteration theory (Graz, 1991), 17–28, Grazer Math.
Ber. 316, Karl-Franzens-Univ. Graz, Graz, 1992.

[4] R. Ger, Marek Kuczma, 1935-1991, Aequationes Math. 44 (1992), 1–10.

[5] R. Ger, Functional equations and inequalities (Polish), Half a century of mathematics

in Upper Silesia (Polish), 223–251, Pr. Nauk. Uniw. Śl. Katow. 2196, Wydawn. Uniw.
Śląskiego, Katowice, 2003.

[6] M. Kuczma, Functional equations in a single variable, Monografie Matematyczne 46,
Państwowe Wydawnictwo Naukowe, Warszawa, 1968.

[7] M. Kuczma, An introduction to the theory of functional equations and inequalities.

Cauchy’s equation and Jensen’s inequality, Pr. Nauk. Uniw. Śl. Katow. 489, Uniwer-
sytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe, Warszawa, 1985 [Second
edition: Edited and with a preface by Attila Gilányi, Birkhaüser Verlag, Basel, 2009].

[8] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia of
Mathematics and its Applications 32, Cambridge University Press, Cambridge, 1990.

Janusz Brzdęk Stability of linear equations of higher orders
(joint work with B. Xu and W. Zhang)

We present some fixed point results, which provide a general method for in-
vestigations of the Hyers-Ulam stability of the linear operator equations of higher
orders. In numerous cases, the Hyers-Ulam stability of such an equation is a con-
sequence of a similar property of the corresponding first order equations. We
describe some particular examples of applications for differential, integral, and
functional equations.

Jacek Chmieliński On approximate parallelogram identity in normed spaces

Suppose that a norm in a real or complex space X approximately satisfies the
parallelogram law, i.e.,

∣

∣‖x+ y‖2 + ‖x− y‖2 − 2‖x‖2 − 2‖y‖2
∣

∣ ≤ Φ(x, y), x, y ∈ X

with a given mapping Φ:X → R+. We show that for some control mappings Φ
the above property yields that X is equivalent to an inner product space.

Jacek Chudziak On continuous solutions of a composite functional equation

Inspired by some problems concerning invariant utility functions we consider
continuous solutions of the following functional equation

f(k(t)x+ l(t)) = a(t)f(x) + b(t).
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Krzysztof Ciepliński A fixed point approach to the stability of functional equa-
tions in non-Archimedean metric spaces
(joint work with J. Brzdęk)

In the talk we present a fixed point theorem for complete non-Archimedean
metric spaces and apply it to obtain the Hyers-Ulam stability of a quite wide class
of functional equations in a single variable.

Marek Czerni On a generalization of the problem of D. Brydak

Let I be a real interval of the form [0, a), where 0 < a ≤ ∞. Let ψ: I → R be
a continuous solution of the linear nonhomogeneous functional inequality

ψ[f(x)] ≤ g(x)ψ(x) + h(x).

We assume the following hypotheses about given functions f , g and h:

(H1) the function f : I → R is continuous and strictly increasing. Moreover,
0 < f(x) < x for x ∈ I⋆ = I \ {0},

(H2) the function g: I → R is continuous and g(x) > 0 for x ∈ I⋆,

(H3) the function h: I → R is continuous and h(0) = 0,

(H4) the functional sequence Gn(x) =
∏n−1
i=0 g[f

i(x)] converges to zero almost
uniformly in I⋆,

(H5) the functional sequence ϕ⋆n(x) =
∑n−1
i=0

h[fi(x)]
Gi+1(x)

converges almost uniformly

in I⋆.

In the talk we give partial answer to the following question: does there always
exist a continuous solution ϕ: I → R of the functional equation

ϕ[f(x)] = g(x)ϕ(x) + h(x)

or

ϕ[f(x)] = g(x)ϕ(x)

such that the finite limit limx→0+
ψ(x)
ϕ(x) exists?

At the 3rd International Symposium on Functional Equations and Inequalities
in Noszvaj (Hungary) in September 1986 D. Brydak put the similar problem for
linear homogeneous inequality (see [1]). This problem was solved in [2].

[1] Report on the Third International Symposium on Functional Equations and Inequal-

ities. Abstracts from the symposium held in Noszvaj, September 21-27, 1986, Publ.
Math. Debrecen 38 (1991), 1–38.

[2] M. Czerni, On a problem of D. Brydak, Publ. Math. Debrecen 44 (1994), 243–248.

Włodzimierz Fechner Functional equations with exotic addition

S. Northshield in [1] introduced the term exotic addition for two types of op-
erations he dealt with. One of them was the following “sine-type” addition on the
real line

x⊕ y := xf(y) + yf(x)
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with f :R → R enjoying some regularity properties. The name “sine-type” addition
which appears in [1] is justified by the fact that if one takes mapping f : [−1, 1] → R

given by f(x) =
√
1− x2 for x ∈ [−1, 1], then in this particular case the sine

function acts as a homomorphism between the real line with ordinary addition
and the interval [−1, 1] with “exotic” addition ⊕. In other words, we have

sin(x+ y) = sin(x)⊕ sin(y), x, y ∈ R.

Northshield provided several conditions equivalent to the associativity of ⊕
(see Theorem 4 and Corollary 1 in [1]). From these results it follows that the
associativity seems to be a fairly restrictive assumption since it implies a particular
form of the mapping f (given in an implicit form involving solutions of some
ODE’s).

We will deal with operation ⊕ without assuming its associativity and for map-
ping f defined on an arbitrary interval. We solve “exotic” modifications of some
functional equations, including the equation of derivations, with ordinary addition
replaced by ⊕.

[1] S. Northshield, On two types of exotic addition, Aequationes Math. 77 (2009), 1–23.

Żywilla Fechner On some integral generalizations of trigonometric functional
equations

Let (G,+) be a locally compact Abelian group, B(G) the space of all Borel
subsets of G and µ:B(G) → C a bounded regular measure. The following equation

∫

G

{f(x+ y − s) + f(x− y + s)} dµ(s) = f(x)f(y), x, y ∈ G,

where f :G → C is essentially bounded, was introduced and solved by Z. Gajda
in [3]. We are going to present some other possible generalizations of this functional
equation.

[1] Ż. Fechner, A generalization of Gajda’s equation, J. Math. Anal. Appl. 354 (2009),
584–593.

[2] Ż. Fechner, A note on a modification of Gajda’s equation, Aequationes Math. 82

(2011), 135–141.

[3] Z. Gajda, A generalization of d’Alembert’s functional equation, Funkcial. Ekvac. 33

(1990), 69–77.

[4] L. Székelyhidi, Convolution type functional equations on topological abelian groups,
World Scientific Publishing Co., Inc., Teaneck, NJ, 1991.

Roman Ger On a subsequent problem of Roger Cuculière

In the May 2011 issue of The American Mathematical Monthly (118, Problems
and Solutions, p. 464) the following problem was proposed by Roger Cuculière:

Let E be a real normed vector space of dimension at least 2. Let f be a mapping
from E into E, bounded on the unit sphere {x ∈ E : ‖x‖ = 1}, such that whenever



[122℄ Report of Meeting
x and y are in E, f(x + f(y)) = f(x) + y. Prove that f is a continuous, linear
involution on E. (Problem 11578).

We shall present the general solution of the functional equation in question (in
much more general setting) from which the proof spoken of will be obtained as
a corollary.

Dorota Głazowska Uniformly bounded composition operators in the space of
functions of bounded ϕ-variation with weight in the sense of Riesz
(joint work with J. Matkowski)

We prove that if a uniformly bounded (or equidistantly bouned) Nemytskij
operator maps a space of functions of bounded ϕ-variation with weight function in
the sense of Riesz into another space of the same type and its generator function
is continuous with respect to the second variable, then this generator function is
an affine function in the second variable.

Moshe Goldberg Submultiplicativity and stability of sup norms on homotonic
algebras

An algebra A of real or complex valued functions defined on a set S shall be
called homotonic if A is closed under forming of absolute values, and if for all f and
g in A, the product f × g satisfies |f × g| ≤ |f |× |g|. Our purpose in this talk is to
offer several examples of homotonic algebras and provide a simple inequality which
characterizes submultiplicativity and strong stability for weighted sup norms on
such algebras.

Niyati Gurudwan Strong convergence theorem for finite family of m-accretive
operators in Banach spaces
(joint work with B.K. Sharma)

The purpose of this presentation is to propose a composite iterative scheme
for approximating a common solution of a finite family of m-accretive (nonlinear)
operators in a strictly convex Banach space having a uniformly Gateaux differen-
tiable norm. As a consequence, the strong convergence of the scheme for a common
fixed point of a finite family of pseudocontractive mappings is also obtained. The
results presented herein improve and extend the corresponding results of Kim and
Xu, Qin and Su, Xu, and Zegeye and Shahzad (see [1, 2, 3, 4] and the references
given there) to a finite family of operators in a strictly convex Banach space.

[1] T.-H. Kim, H.-K. Xu, Strong convergence of modified Mann iterations, Nonlinear
Anal. 61 (2005), 51–60.

[2] X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces,
J. Math. Anal. Appl. 329 (2007), 415–424.

[3] H.-K. Xu, Strong convergence of an iterative method for nonexpansive and accretive

operators, J. Math. Anal. Appl. 314 (2006), 631–643.

[4] H. Zegeye, N. Shahzad, Strong convergence theorems for a common zero for a finite

family of m-accretive mappings, Nonlinear Anal. 66 (2007), 1161–1169.
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Attila Házy On (α, β, a, b)-convex functions

Bernstein and Doetsch (see [1]) proved that the local upper boundedness of
a Jensen-convex function yields its local boundedness and continuity as well on
the whole domain, which implies the convexity of the function.

In this talk we present some Bernstein-Doetsch type results for (α, β, a, b)-
convex functions, which were intoduced by Maksa and Páles (see [4]) in the fol-
lowing way:

Let X be a real or complex topological vector space, D ⊂ X be a nonempty open
(α, β)-convex (that is, α(t)x+β(t)y ∈ D whenever x, y ∈ D and t ∈ [0, 1]) set, and
α, β, a, b: [0, 1] → R be given functions. The function f is called (α, β, a, b)-convex
function if

f(α(t)x+ β(t)y) ≤ a(t)f(x) + b(t)f(y), x, y ∈ D, t ∈ [0, 1]

holds. To avoid the trivialities and the unimportant cases, we suppose that there
exists an element t0 such that α(t0)β(t0)a(t0)b(t0) 6= 0.

[1] F. Bernstein, G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann. 76

(1915), 514–526.

[2] P. Burai, A. Házy, On approximately h-convex functions, J. Convex Anal. 18 (2011),
447–454.

[3] P. Burai, A. Házy, T. Juhász, Bernstein-Doetsch type results for s-convex functions,
Publ. Math. Debrecen 75 (2009), 23–31.

[4] Gy. Maksa, Zs. Páles, The equality case in some recent convexity inequalities, Opus-
cula Math. 31 (2011), 269–277.

[5] A. Házy, Bernstein-Doetsch type results for h-convex functions, Math. Inequal. Appl.
14 (2011), 499–508.

[6] S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303–311.

Eliza Jabłońska On the pexiderized Gołąb-Schinzel equation

Let X be a linear space over a commutative field K. We characterize a general
solution f, g, h, k:X → K of the pexiderized Gołąb-Schinzel equation

f(x+ g(x)y) = h(x)k(y),

as well as, in the case K = R, continuous on rays solutions of the equation.

Justyna Jarczyk On some equality problem connected with conjugate means
(joint work with J. Dascăl)

Let I ⊂ R be an open interval and p, q ∈ (0, 1). We present some partial results
on solutions (ϕ, ψ) of the functional equation

ϕ−1
(

ϕ(x)+ϕ(y)− 1

2
(ϕ(px+(1−p)y)+ϕ(qx+(1− q)y))

)

= ψ−1
(ψ(x) + ψ(y)

2

)

,

where ϕ, ψ: I → R are four times continuously differentiable functions.



[124℄ Report of Meeting
Witold Jarczyk Note on an equation occurring in a problem of Nicole Brillouët-
Belluot
(joint work with J. Morawiec)

We study the functional equation

f(x)f−1(x) = x2

imposing no continuity assumptions on its bijective solutions defined on an interval.
All the continuous bijections of an interval were determined in [2] when solving a
problem posed by N. Brillouët-Belluot (see [1]).

[1] N. Brillouët-Belluot, Problem posed during the Forty-nine International Symposium

on Functional Equations, June 19–26, 2011, Graz-Mariatrost, Austria.

[2] J. Morawiec, On a problem of Nicole Brillouët-Belluot, Aequationes Math. (in print).

Vyacheslav Kalnitsky Solution of the Kuczma equation

In the works of M. Kuczma and J. Sándor (see [1, 2]) was noted that all
monotone convex (vertex) solutions of a special class of Stamate-type equation

f(x)− f(y)

x− y
= ϕ(h(x), h(y)),

where ϕ(u, v) = u + v, uv, 1
u+v , are arcs of cone sections. Assuming h, ϕ ∈ C,

ϕ(u, u) being invertible, the above equation is reducible to the form

f(x)− f(y)

x− y
= K(f ′(x), f ′(y)), (1)

where K is necessarily generalized mean. In this form Kuczma’s result can be
formulated in the following way: all solutions for arithmetical, geometrical and
harmonical means are arcs of vertical paraboles, vertical hyperbols and horizontal
parabols correspondently.

If for a mean K there is the function f solving equation (1), then we call it
solvable mean. The simple criteria of solvability is proven: the nondegenerate mean
K ∈ C1([α]× [β]) is solvable if and only if for any four numbers a, b, c, d ∈ [α, β],

∣

∣

∣

∣

∣

∣

K(a, b) K(a, b) K(c, d)
K(c, a) K(a, d) K(c, d)
K(c, b) K(b, d) K(c, d)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

K(a, d) K(b, d) K(b, d)
K(a, d) K(a, b) K(c, b)
K(c, a) K(c, a) K(c, b)

∣

∣

∣

∣

∣

∣

.

Equation (1) has relations with different disciplines such as economics, opera-
tional research and low-dimensional geometry (see [3, 4, 5]).

[1] M. Kuczma, On some functional equations with conic sections as solutions, Rocznik
Nauk.-Dydakt. Prace Mat. 13 (1993), 197–213.

[2] J. Sándor, On certain functional equations, Itinerant Seminar on Functional Equa-
tions, Approximation and Convexity (Cluj-Napoca, 1988), 285–288, Preprint, 88-6,
Univ. “Babes-Bolyai”, Cluj-Napoca, 1988.
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[3] E. Akerman, V. Kalnitsky, The purpose function in the problem of the effective distri-

bution of resurces, Works of Int. Sci. School “MA SRQ 2001”, 18-22 June 2001, St.P.,
Russia.

[4] V. Kalnitsky, The reconstruction operator of two-argument function by its section,
Proc. of Int. Sci. Conf. “Lobachevsky readings-2001”, Kazan.

[5] V. Kalnitsky, Arithmetic properties of the Lagrange equation solutions, Proc. of
ICM’2002, August 20-28, Beijing, China.

Tomasz Kochanek Steinhaus’ lattice points problem for Banach spaces

A classical property of the Euclidean plane, which goes back to H. Steinhaus,
asserts that for any n ∈ N one may find a circle surrounding exactly n lattice points.
P. Zwoleński generalized this result to the setting of Hilbert spaces replacing the
set of lattice points by a quasi-finite set, i.e., a countably infinite set such that
every ball contains only finitely many of its points.

We extend his result by giving a geometrical characterization (involving only
the shape of the unit ball) of what we shall call a Steinhaus property of a given
Banach space X :

(S) for any quasi-finite set A ⊂ X there exists a dense set Y ⊂ X such that for
any y ∈ Y and n ∈ N there exists a ball B centered at y with |A ∩B| = n.

It turns out that every strictly convex Banach space shares this property, but
in any dimension greater than 2 property (S) is weaker than strict convexity (e.g.,
as we will see, the space L1(0, 1) satisfies (S), nonetheless it is not strictly convex).
We will give some positive and negative examples for property (S) and discuss its
connection with the existence of an equivalent strictly convex norm.

Barbara Koclęga-Kulpa On a functional equation connected to Hermite quadra-
ture rule
(joint work with T. Szostok)

In the talk we deal with the functional equation

F (y)− F (x) = (y − x)
[

αf(x) + βf
(x+ y

2

)

+ αf(y)
]

+ (y − x)2[g(y)− g(x)],

which is connected to Hermite quadrature rule. It is easy to note that particular
cases of this equation generalize many well-known functional equations connected
to quadrature rules and mean value theorems. Thus the set of solutions is too
complicated to be described completely and therefore we prove that (under some
assumptions) all solutions of the above equation have to be polynomials.

We obtain the aforementioned result using a lemma proved by M. Sablik, how-
ever this lemma works only in case β 6= 0. Taking β = 0, we obtain the following
equation

F (y)− F (x) = (y − x)[f(x) + f(y)] + (y − x)2[g(y)− g(x)],

which will also be solved in the talk.
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Zygfryd Kominek On pexiderized Jensen-Hosszú functional equation on the unit
interval

We solve the functional equation of the form

2f
(x+ y

2

)

= g(x+ y − xy) + h(xy)

in the class of real functions defined on the unit interval [0, 1]. We prove that it
is not stable, but if two functions from the triple {f, g, h} coincide the analogue
equation is stable in the Hyers-Ulam sense.

Dawid Kotrys Hermite-Hadamard inequality for convex stochastic processes

In 1980 K. Nikodem introduced convex stochastic processes and investigated
their regularity properties. In 1992 A. Skowroński obtained some further results
on convex stochastic processes which generalize some known properties of con-
vex functions. The aim of this talk is to extend the classical Hermite-Hadamard
inequality to convex stochastic processes.

Grażyna Łydzińska On iterative roots of some multifunctions with a unique
set-value point

In [1] and [2] the authors considered the problem of the existence of square
iterative roots of multifunctions with exactly one set-value point. In this talk we
present a generalization of some results from these papers.

[1] L. Li, J. Jarczyk, W. Jarczyk, W. Zhang, Iterative roots of mappings with a unique

set-value point, Publ. Math. Debrecen 75 (2009), 203–220.

[2] W. Jarczyk, W. Zhang, Also set-valued functions do not like iterative roots, Elem.
Math. 62 (2007), 73–80.

Ewelina Mainka-Niemczyk Set-valued sine families

Let K be a convex cone in a normed linear space X and let Ft:K → n(X),
Et:K → n(K) for t ≥ 0. A family {Et : t ≥ 0} is called a sine family associated
with family {Ft : t ≥ 0} if

Et+s(x) = Et−s(x) + 2Ft(Es(x)), 0 ≤ s ≤ t, x ∈ K.

Our primary objective in the talk is to show some properties of sine families,
such as continuity and correlation with cosine families. Moreover, an integral
representation of sine families is given.

Judit Makó Implications between approximate convexity properties and approxi-
mate Hermite-Hadamard inequalities
(joint work with Zs. Páles)

In this talk, the connection between the functional inequalities

f
(x+ y

2

)

≤ f(x) + f(y)

2
+ αJ(x− y), x, y ∈ D
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and

1
∫

0

f(tx+ (1 − t)y)ρ(t) dt ≤ λf(x) + (1 − λ)f(y) + αH(x− y), x, y ∈ D

is investigated, where D is a convex subset of a linear space, f :D → R,
αH , αJ :D − D → R are even functions, λ ∈ [0, 1], and ρ: [0, 1] → R+ is an in-

tegrable nonnegative function with
∫ 1

0
ρ(t) dt = 1.

Bartosz Micherda On some inequalities of Hermite-Hadamard-Fejér type for
(k, h)-convex functions
(joint work with T. Rajba)

Let k, h be two given real functions defined on the interval (0, 1), and choose
a nonempty set D ⊂ R. Then a function f :D → R will be called (k, h)-convex if,
for all x, y ∈ D and t ∈ (0, 1), k(t)x+ k(1− t)y ∈ D and

f(k(t)x+ k(1− t)y) ≤ h(t)f(x) + h(1− t)f(y). (1)

Condition (1), for conveniently chosen mappings k and h, produces various
families of well-known functions, e.g. s-Orlicz convex functions, h-convex func-
tions, subadditive functions and starshaped functions.

In our talk we present two new inequalities of Hermite-Hadamard-Fejér type
for (k, h)-convex functions, and we apply them to some special kinds of mappings.
This extends results given e.g. in [1] and [2].

[1] M. Bombardelli, S. Varošanec, Properties of h-convex functions related to the

Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl. 58 (2009), 1869–1877.

[2] S.S. Dragomir, S. Fitzpatrick, Hadamard’s inequality for s-convex functions in the

first sense and applications, Demonstratio Math. 31 (1998), 633–642.

[3] B. Micherda, T. Rajba, On some Hermite-Hadamard-Fejér inequalities for (k, h)-
convex functions (preprint).

Krzysztof Misztal Midconvexity for finite sets
(joint work with Jacek Tabor and Józef Tabor)

Motivated by increasing role of computers we introduce two definitions of mid-
convexity for a finite subset X of RN :

Definition 1

We say that W ⊂ X is X-midconvex if

v + w

2
∈ X =⇒ v + w

2
∈ W, v,w ∈W.

Definition 2

We say that W ⊂ X is function X-midconvex if there exists a function f :X → R+

such that

x1 + x2
2

∈ X =⇒ f
(x1 + x2

2

)

≤ f(x1) + f(x2)

2
, x1, x2 ∈ X

and W = f−1(0).
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The properties of such notions are investigated, and the analogues of some

classical results are shown. In particular we show that, for the second definition,
an analogue of the theorem stating that compact convex set in RN is a convex hull
of its extremal points is valid.

Janusz Morawiec On a problem of Nicole Brillouët-Belluot

We solve the problem posed by Nicole Brillouët-Belluot during the 49th Inter-
national Symposium on Functional Equations determining all continuous bijections
f : I → I satisfying

f(x)f−1(x) = x2, x ∈ I,

where I is an arbitrary subinterval of the real line.

Marek Niezgoda Schur-convexity and similar separability of vectors

Let G be a compact group acting on an inner product space (V, 〈·, ·〉). A vector
y ∈ V is said to be G-majorized by a vector x ∈ V , written as y ≺G x, if y lies
in the the convex hull of the orbit {gx : g ∈ G}. A function F :V → R is called
G-increasing if for x, y ∈ V , y ≺G x implies F (y) ≤ F (x).

A group G acting on V is said to be a reflection group, if G is the closure of
a subgroup of the orthogonal group O(V ) generated by a set of reflections in the
form Srx = x− 2〈x, r〉r for x ∈ V , where r ∈ V , ‖r‖ = 1.

A differential characterization of G-increasing functions, due to Eaton and
Perlman, is as follows.

Let G be a reflection group acting on V with dimV < ∞. Assume F :V →
R is a G-invariant function, i.e., F (gx) = F (x) for x ∈ V and g ∈ G. If F
is differentiable on V , then a necessary and sufficient condition that F be G-
increasing on V is

〈x, r〉 · 〈∇F (x), r〉 ≥ 0

for x ∈ V and r ∈ V such that Sr ∈ G, where ∇F (x) stands for the gradient of F
at x.

In the particular situation when G is the permutation group Pn acting on
V = Rn, the preorder ≺G reduces to the classical majorization ≺ on Rn. In this
case, the G-increasing functions are called Schur-convex functions.

A differential characterization of Schur-convex functions is included in the fol-
lowing Schur-Ostrowski’s Theorem.

If F :Rn → R is a symmetric differentiable function, then a necessary and
sufficient condition that F be a Schur-convex function on Rn is

(xi − xj)
( ∂F

∂xi
(x)− ∂F

∂xj
(x)

)

≥ 0, x ∈ R
n, i, j = 1, 2, . . . , n.

The aim of this talk is to present some extensions of the sufficiency part of
Schur-Ostrowski and Eaton-Perlman’s Theorems from majorized vectors to simi-
larly separable vectors. A generalized Schur-Ostrowski’s condition is introduced.
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The obtained results are applied for cone orderings and group-induced cone order-
ings.

Agata Nowak On a generalization of the Gołąb-Schinzel equation

Inspired by a problem posed by J. Matkowski in [1] we investigate the equation

f
(

p(x, y)(xf(y) + y) + (1− p(x, y))(yf(x) + x))
)

= f(x)f(y), x, y ∈ R,

where functions f :R → R, p:R2 → R are assumed to be continuous.

[1] J. Matkowski, A generalization of the Gołąb-Schinzel functional equation, Aequa-
tiones Math. 80 (2010), 181–192.

Andrzej Olbryś On some derivatives and (s, t)-convex functions

In our talk we consider some kinds of derivatives and investigate their connec-
tions with (s, t)-convexity.

Zsolt Páles On the generalization of the lower Hermite-Hadamard inequality and
Korovkin type theorems

We investigate functions that satisfy an approximate or strenghtened version
of the lower Hermite-Hadamard inequality. Under certain assumptions we deduce
that they are also approximately or strongly convex in an appropriate sense. The
approach involves certain Korovkin type approximation theorems.

Boris Paneah On the general theory of multidimensional functional operators:
new problems and new approaches

At first, using the frameworks of the classical triad: where we are? who we
are? where do we go? we discuss the notion “General theory of MFO”. The most
meaningful part here is undoubtedly nonphilosophical second part. Up to recently
the only solvability of the Ulam–stability problem for new functional operators
traditionally considered as an advance in the general theory of MFO. But now
such approach can not be treated as progressive and, moreover, it is harmful one.

The following problem is deep, very interesting, and plays an important role
in applications:

given an MFO P, to describe asymptotic behavior of solutions to nonhomoge-
neous MFE

PF = Hε(x), x ∈ D ⊂ R
n

with Hε(x) = O(ε), as ε→ 0.

In his book Ulam guessed the answer for the Cauchy operator, and Hyers
verified this. The answer is:

F (t) = λt+O(ε),

where λ is an arbitrary real number. Thus, the function ϕ(t) = λt is the main
term of the asymptotic of the solution to the equation

PF = Hε, as Hε → 0 for ε→ 0.
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The excellent question, excellent answer, and . . . no mystical stability.

In 2006 it was established something cardinally new in searching asymptotic
behavior of the same function F . Namely, to identify the main term of the asymp-
totic we do not need to know the function PF on the full domain D. It suffices
to know it only at the points of a curve Γ (Γ-asymptotic). This result generates
very actual problem. Given an operator P to describe a set of submanifolds Γ for
which the Γ-asymptotic problem

PF |Γ= Hε(x), x ∈ D, Hε(x) = O(ε) =⇒ F = ψ +O(ε)

is solvable.
It is not difficult to formulate a series important technical problems leading to

the significant extension of the class MFO of operators P generating for some Γ
a solvable Γ-asymptotic problem.

Example: a = b+ c.
The following problems are formulated in a general form for the first time,

although some particular cases have been considered earlier by the speaker.

Inverse problem. To describe a class of MFO in a domain D such that any
operator from this class can be uniquely determined by its asymptotic behavior.

It is a surprising result reminding the famous inverse problem in the spectral
theory of the differential operators. The possibility to reconstruct an MFO oper-
ator using only the asymptotic behavior of the solution to the equation PF = Hε

must find many important applications.

Uniqueness problem. Given an MFO operator P in a domain D ⊂ Rn, to find
a curve Γ ⊂ D such that

if PF |Γ= 0, then PF = 0 in D.

It is an analogue of the famous uniqueness theorem in the theory of holomorphic
functions.

Magdalena Piszczek The properties of functional inclusions and Hyers-Ulam
stability

We show the properties of some inclusions, especially we prove that a set-valued
function satisfying these inclusions admits, in appropriate conditions, a unique
selection. As a consequence we obtain a result on the Hyers-Ulam stability of the
functional equation

Ψ ◦ f ◦ a = f,

where Ψ:Y → Y , f :K → Y , a:K → K, K is a nonempty set and Y is a complete
metric space.

Wolfgang Prager On a system of inhomogeneous linear functional equations
(joint work with J. Schwaiger)

Given a,A ∈ R with aA 6= 0, and an additive function φ:R → R, we give the
possible additive solution(s) of the equation

α(ax)−Aα(x) = φ(x). (1)
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Imposing the same assumptions as above on b, B, ψ, we consider (1) together with

α(bx) −Bα(x) = ψ(x) (2)

and investigate solvability of the system (1), (2) within the set of additive functions.
Finally, the role of system (1), (2) in our efforts to find necessary and sufficient
conditions for solvability of the inhomogeneous general linear functional equation
will be discussed.

Ludwig Reich Reversible power series and generalized Abel equations
(joint work with P. Kahlig)

An invertible formal power series F with complex coefficients is called reversible
if there exists an invertible series T such that

F−1 = T−1 ◦ F ◦ T (1)

holds. If, in particular, we can choose T (X) = ηX in (1), then (1) yields the
generalized Legendre-Gudermann equation

F−1(X) =
1

η
F (ηX) (2)

for F .
We are interested here in solutions F with F (X) = X + . . . , F (X) 6= X . We

characterize the values of η for which (2) has such a solution, then we construct the
set of all solutions of (2) using ideas of J. Haneczok and we discuss the following
connections with (generalized) Abel equations.

Theorem

(i) F (X) = X + . . . , F (X) 6= X , is reversible if and only if there exists a non-
constant Laurent series and a Möbius transformation L such that

V (F (X)) = L(V (X))

holds.
(ii) A formal series F as in (i) is a solution of (2) if and only if there exists a Laurent
series V and a constant C ∈ C \ {0} such that

V (ηX) = −V (X),

V (F (X)) = V (X) + C

holds.

This theorem can also be used to construct reversible series.

Maciej Sablik Functional equations characterizing future life-time

In our talk we will present a source of functional equations appearing in ac-
tuarial mathematics. The analytic form of future life-time has been an essential
concept for actuaries since it makes calculations easier. Another facilitation of
calculations is used in the procedure of “group insurance” where many lives are re-
placed by one artificial, usually aggregated. The method leads to some functional
equations which in turn characterize models of de Moivre, Gompertz, Makeham
and Weibull among others.
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Jens Schwaiger On the construction of functional equations with prescribed so-
lutions of a certain type

In the literature one may find certain functional equations such that their
general solution is a homogeneous polynomial of degree n where n ≤ 5. One
example is the equation

f(kx+ y)+ f(ky− y) = k2(f(x+ y)+ f(x− y))+ 2k2(k2− 1)f(x)− 2(k2− 1)f(y).

This equation was considered in [1] for k ∈ N, k ≥ 2. One can motivate the special
form of the coefficients not only for this equation but for much more general cases.
For example the following holds true.

Theorem

Let n ∈ N and let ρ1, ρ2, . . . , ρn be rationals different from 0 such that the squares
ρ2i are different in pairs. Then for any given rational number k a certain linear
system of equations has a unique solution (α0, α1, . . . , αn). If, moreover, V,W are
non-trivial rational vector spaces, then all generalized homogeneous polynomials
f :V →W of degree 2n satisfy

f(kx+y)+f(kx−y)+
n−1
∑

i=1

αi(f(x+ρiy)+f(x−ρiy))+α0f(x)+αnf(y) = 0, x, y ∈ V.

Provided that k is not a zero of a certain polynomial with rational coefficients this
equation does not have other solutions.

[1] M. Eshaghi Gordji, Ch. Park, M.B. Savadkouhi, The stability of a quartic type func-

tional equation with the fixed point alternative, Fixed Point Theory 11 (2010), 265–
272.

Ekaterina Shulman Subadditive set-functions on groups and applications to
functional equations

Let G be a group and Ω be an arbitrary set. A map F :G → 2Ω is called
subadditive if F (gh) ⊂ F (g) ∪ F (h) for all g, h ∈ G. Let us denote by |M | the
number of elements of a subset M ⊂ Ω. It will be shown that

∣

∣

∣

⋃

g∈G

F (g)
∣

∣

∣
≤ 4 sup

g∈G

|F (g)|.

We also establish the extensions of this inequality to maps with values in measur-
able subsets of a measure space and to maps with values in subspaces of a linear
space. We apply this technique to the functional equation

f(g1g2 . . . gn) =
∑

E

NE
∑

j=1

uEj v
E
j , (1)

where E runs through all proper non-empty subsets of {1, 2, . . . , n}, NE ∈ N

and for each E, the functions uEj only depend on variables gi with i ∈ E, while
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the vEj only depend on gi with i /∈ E. Namely, we prove that any bounded
continuous function f on G satisfying (1), for an n > 2, is a matrix element of
a continuous finite-dimensional representation of G. Earlier this was known only
for topologically finitely generated G.

Dhiraj Kumar Singh On three sum form functional equations
(joint work with P. Nath)

The general solutions of three sum form functional equations, without imposing
any regularity conditions on any of the mappings appearing in these equations,
have been obtained.

Barbara Sobek Wilson’s functional equation on a restricted domain

Assume that X is a real or complex linear topological space and D is a non-
empty, open and connected subset of X ×X . Let

D+ := {x+ y : (x, y) ∈ D},
D− := {x− y : (x, y) ∈ D},
D1 := {x : (x, y) ∈ D for a y ∈ X}

and

D2 := {y : (x, y) ∈ D for an x ∈ X}.
We study the equation

f(x+ y) + g(x− y) = h(x)k(y), (x, y) ∈ D,

where f :D+ → C, g:D− → C, h:D1 → C and k:D2 → C are unknown functions.
We investigate the problem of existence and uniqueness of extensions of the solu-
tions and determine the general solution of this equation. Some results concerning
conditional d’Alembert’s equation are also presented.

Przemysław Spurek Strict numerical verification of optimality condition for
approximately midconvex functions
(joint work with Jacek Tabor)

Let X be a normed space and V be a convex subset of X . Let α:R+ → R+.
A function f :V → R is called α-midconvex if

f
(x+ y

2

)

− f(x) + f(y)

2
≤ α(‖x− y‖), x, y ∈ V.

It can be shown that every continuous α-midconvex function satisfies the following
estimation:

f(tx+ (1 − t)y)− tf(x)− (1 − t)f(y) ≤
∞
∑

k=0

1

2k
α(d(2kt‖x− y‖)), t ∈ [0, 1],

where d(t) := 2dist(t,Z) for t ∈ [0, 1].
An important problem lies in verifying for which functions α the above esti-

mation is optimal. The conjecture of Zs. Páles that this is the case for functions
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of type α(r) = rp for p ∈ (0, 1), was proved by J. Makó and Zs. Páles in [1].

In this paper we present a computer assisted method to verifying optimality of
this estimation in the class of piecewise linear functions α.

[1] J. Makó, Zs. Páles, Approximate convexity of Takagi type function, J. Math. Anal.
Appl. 369 (2010), 545–554.

Henrik Stetkær Levi-Civitá’s functional equation

Let G be a group. Levi-Civitá’s functional equation

f(xy) =

N
∑

l=1

gl(x)hl(y), x, y ∈ G, (1)

where f, g1, . . . , gN , h1, . . . , hN :G→ C are unknown, has been thoroughly studied
on abelian groups by Székelyhidi in [1]. But little is known about its solutions on
non-abelian groups, even for N as small as 2.

We shall briefly discuss the general structure of the solutions of (1) on any
group G, before we concentrate on a choice example, viz.

f(xy) = f(x)h(y) + f(y), x, y ∈ G,

f, h:G→ C being the unknown functions. It turns out that h is multiplicative on
any group G, if f 6= 0. We will prove that f is central on all nilpotent groups, and
give an example of a non-central f on the (ax + b)-group. We conclude that the
solution formulas for f are the same on nilpotent groups as on abelian, and that
a new phenomenon occurs on the (ax+ b)-group.

[1] L. Székelyhidi, Convolution type functional equations on topological abelian groups,
World Scientific Publishing Co., Inc., Teaneck, NJ, 1991.

Stevo Stević On some nonlinear recurrences

Studying nonlinear difference equations and systems has attracted considerable
attention in the last few decades. Usually such equations cannot be solved so that
the behavior of their solutions is investigated by various analytic methods. Here
we present several classes of difference equations and systems whose solutions can
be explicitly found.

First we present some classical methods for solving the nonhomogeneous linear
difference equation of the first order

xn+1 = pnxn + qn, n ∈ N0,

where (pn)n∈N0
and (qn)n∈N0

are arbitrary real sequences and x0 ∈ R. Then we
emphasize the role of the equation by giving numerous applications of it, for ex-
ample in: getting Cauchy-Binet formula, solving nonhomogeneous second order
difference equation with constant coefficients, solving some homogeneous second
order difference equations with nonconstant coefficients, solving Beverton-Holt dif-
ference equation and studying its periodic solutions etc.



14th International Conferene on Funtional Equations and Inequalities [135℄
Further we show that the system of difference equations

un+1 =
wn

1 + sn
, vn+1 =

tn
1 + rn

,

where wn, sn, tn and rn are some of the sequences un or vn, with u0, v0 ∈ R, can
be solved in many cases.

Finally we show that the system of difference equations

xn+1 =
axn−1

bynxn−1 + c
, yn+1 =

αyn−1

βxnyn−1 + γ
, n ∈ N0,

where parameters a, b, c, α, β, γ and initial values x−1, x0, y−1, y0 are real numbers,
can be also solved.

[1] S. Stević, More on a rational recurrence relation, Appl. Math. E-Notes 4 (2004),
80–85.

[2] S. Stević, On a system of difference equations, Appl. Math. Comput. (to appear).

[3] S. Stević, On some solvable systems of difference equations, Appl. Math. Comput. (to
appear).

László Székelyhidi Polynomial functions on Abelian groups

Polynomial functions on Abelian groups play a basic role in the theory of
functional equations and spectral analysis. In this paper we investigate the ring-
structure of polynomial functions on topological Abelian groups. We show that
polynomial functions form a Noetherian ring if and only if the linear space of con-
tinuous homomorphisms of the group into the additive group of complex numbers
is finite dimensional. In the case of discrete Abelian groups this is equivalent to
the presence of spectral synthesis.

Jacek Tabor New approach to entropy
(joint work with M. Śmieja)

The classical approach to entropy lies in the division of the given measure space
into pairwise disjoint sets. We show that we can equivalently use a partition of
the measure into measures with not necessarily disjoint supports.

The basic role in our proof plays the classical Hardy-Littlewood-Polya Theo-
rem.

Józef Tabor Uniform convexity
(joint work with Jacek Tabor)

We present some convenient tools to compute the modulus of uniform convexity
of a given convex function f : I → R, where I is a subinterval of R.

We first show that if f ′ is convex or concave then the modulus of uniform
convexity of f equals to the Bergman distance at a respective endpoint of I.
Then, in our main result, we give an estimation from below the modulus of uniform
convexity of f by applying moduli of uniform convexities of f restricted to intervals
J,K such that I is the union of J and K.
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Jointly the two above mentioned results allow to estimate the moduli of uniform

convexity for a large class of convex functions.

Jörg Tomaschek On the solvability of generalized Dhombres functional equations

The generalized Dhombres functional equation in the complex domain was
introduced in [1] and is given by

f(zf(z)) = ϕ(f(z)), (1)

where f is an unknown function and ϕ is a known one. In [2] it is shown that (1)
is equivalent to the transformed generalized Dhombres functional equation

g(w0z + zg(z)) = ϕ̃(g(z)).

We discuss solutions f of (1) with f(0) = w0, where w0 is a root of unity of order
l ≥ 2, and we characterize those equations (1) which have non-trivial solutions.
After that an example where the given function ϕ̃ is a Möbius transformation is
computed.

[1] L. Reich, J. Smítal, M. Štefánková, Local analytic solutions of the generalized Dhom-

bres functional equation I, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II
214 (2005), 3–25.

[2] L. Reich, J. Smítal, M. Štefánková, Local analytic solutions of the generalized Dhom-

bres functional equation II, J. Math. Anal. Appl. 355 (2009), 821–829.

Hamid Vaezi Fuzzy approximation of an additive functional equation

In this paper, we investigate the generalized Hyers-Ulam-Rassias stability of
the functional equation

m
∑

i=1

f

(

mxi +

m
∑

j=1,j 6=i

xj

)

+ f

( m
∑

i=1

xi

)

= 2f

( m
∑

i=1

mxi

)

in fuzzy Banach spaces. Some applications of our results to the stability of the
above equation in the case when f is a mapping from a normed space to a Banach
space will also be presented.

Szymon Wąsowicz Spline approximation method in higher-order convexity busi-
ness

It is well-known that a continuous convex function f : [a, b] → R can be uni-
formly approximated on [a, b] by convex polygonal functions. This property allows
us to give easy proofs of many linear inequalities involving (continuous) convex
functions, among others of the celebrated Hermite-Hadamard inequality

f
(a+ b

2

)

6
1

b− a

∫ b

a

f(x) dx 6
f(a) + f(b)

2
. (1)

Our considerations will be based on the observation that the left hand side in-
equality of (1) gives the better estimate of the integral mean value from the right
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one

1

b− a

∫ b

a

f(x) dx− f
(a+ b

2

)

6
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x) dx, (2)

whenever f is convex on [a, b].
The similar approximation property holds for convex functions of higher order.

Namely, every continuous n-convex function f : [a, b] → R can be uniformly approx-
imated on [a, b] by n-convex spline functions of order n (Bojanic, Roulier, 1974).
In the talk we will show an aplication of this result to prove some counterparts of
(2) for convex functions of higher order.

Alfred Witkowski Interpolations of Schwab-Borchardt mean

For positive numbers x, y the pair of sequences

xn+1 =
xn + yn

2
, yn+1 =

√

yn
xn + yn

2
, x0 = x, y0 = y (1)

converges to a common limit called the Schwab-Borchardt mean

SB(x, y) =



























√

y2 − x2

arccos x
y

, x < y,

√

x2 − y2

arccoshx
y

, y < x,

x, x = y.

Algorithm (1) was known to Gauss but has been rediscovered by Borchradt and
named after him.

Two means introduced by Seiffert

P (x, y) =







x− y

2 arcsin x−y
x+y

, x 6= y,

x, x = y,

T (x, y) =







x− y

2 arctan x−y
x+y

, x 6= y,

x, x = y

are of great interest for many mathematicians. Neuman and Sándor proved that
both are particular cases of the Schwab-Borchardt means, namely

P (x, y) = SB
(√

xy,
x+ y

2

)

and T (x, y) = SB

(

x+ y

2
,

√

x2 + y2

2

)

.

Interesting inequalities between P , T , arithmetic, geometric, logarithmic, iden-
tric and power means were obtained by many authors using analytic approach or
properties of the Schwab-Borchardt algorithm.

In this talk we use geometric properties of the “upper” part of SB to generalize
those results and to obtain some new estimates. In particular we show some new
interpolations of the Seiffert means.



[138℄ Report of Meeting
David Yost Pseudolinear functions, Banach spaces and polyhedra

We begin with F -spaces (which are not necessarily locally convex) and a class
of mappings between them defined by a certain functional inequality. We briefly
describe how their study led us to some results about Minkowski decomposability
of finite-dimensional convex sets.

Marek C. Zdun On some applications of Kuczma’s ideas to Schröder’s equation
in multidimensional case

Let U ⊂ R
N be a neighbourhood of the origin, a function F :U → U be of class

C2 and 0 ∈ IntU be an attractive fixed point of F . We consider a problem when
a regular solution ϕ of Schröder’s equation

ϕ(F (x)) = Sϕ(x),

where S = dF (0), is given by

ϕ(x) = lim
n→∞

S−nFn(x).

We give some sufficient conditions for truthfulness of this formula as well as some
conditions which imply its falsehood.

Marek Żołdak Approximately convex functions on Abelian topological groups

Let (G,+) be an Abelian topological group and let α:G → R+ be an even
function. A function f :D → R, where D is a subset of G, is called α-convex if

f(z) ≤ f(x) + f(y)

2
+ α(x − y)

for all x, y, z ∈ D such that x+ y = 2z.
Our main result is that if α(0) = 0, α is continuous at zero, D is open and

connected, f is α-convex and locally bounded above at a point, then f is locally
uniformly continuous. The same is true if we replace the assumption that f is
locally bounded above at a point by assumption that f is Haar measurable or
Baire measurable.Problems and Remarks
1. Remark.

We consider the Sierpiński Carpet L (defined in [1]), which is the ICFEI-Logo-
Set. For convenience, we work with the set shifted and sized according to the
requirement

conv{L} =
[

− 1

2
,
1

2

]2

.

From the symmetry and invariance properties of this set we obtain the following
covering of L by its eight subsets (the self-similarity equation)

L =
1

3
A+

1

3
L =

⋃

a∈A

(1

3
a+

1

3
L
)

, (1)
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where A = {−1, 0, 1}2 \ {(0, 0)}. Accordingly, we seek a suitably invariant Borel
probability measure µL concentrated on L. In terms of the random variables

• L is a 2-dimensional random variable (r.v.) with the probability distribution
(p.d.) PL = µL,

• A is an independent 2-dimensional r.v. with the classical p.d. PA = P class
A

on the set A,

the expected invariance of µL is expressed as follows (see (1))

PL =
1

8

∑

a∈A

P 1
3
a+ 1

3
L = P 1

3
A+ 1

3
L = P 1

3
A ∗ P 1

3
L, (2)

where ∗ stands for the convolution of measures. Now, property (2) is equivalent
to the following Poincaré equation for the characteristic function of L

ϕL(t) = ϕ 1
3
A(t) · ϕ 1

3
L(t) = ϕA

( t

3

)

· ϕL
( t

3

)

. (3)

Thus, by iteration procedure, with the use of continuity at 0 only (limx→0 ϕL(x)
= 1), we arrive at the unique solution of (3)

ϕL(t) =
∞
∏

n=1

ϕA

( t

3n

)

= ϕS(t),

where almost surely S =
∑∞

n=1
An

3n and the random vectors An for n ∈ N are
independent, all with the same classical p.d. on A. Since the intersection of L and
the open square (− 1

6 ,
1
6 )

2 is empty, and the same property has the set of values of
the series S, with the use of the symmetry of L we obtain the following well-known
result

Corollary

The Borel measure µL = PL concentrated on L and satisfying (2) exists and is
unique. Moreover, all possible values of the infinite sums of vectors

∑∞
n=1

an
3n with

an ∈ A = {−1, 0, 1}2 \ {(0, 0)} form a set of full measure µL.

[1] W. Sierpiński, On a curve which contains the image of any curve (Russian), Mat. Sb.
30 (1916), 267–287.

Joachim Domsta

2. Remark.
Let d denote the distance function from integer numbers defined by

d(x) := inf{|x− k|, k ∈ Z}.

Then one can see that d is nonnegative and even. It is not difficult to prove that
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d is also subadditive. It easily follows from these properties that

|d(x) − d(y)| ≤ d(x − y), x, y ∈ R. (1)

As an application of these properties we have the following result.

Theorem

Let a, b, a1, b1, . . . , ak, bk be positive numbers such that the rectangle of sides a, b
is the union of rectangles of sides ai, bi (i = 1, . . . , k) such that these rectangles
have no interior points in common. Then

d(a)d(b) ≤
k
∑

i=1

d(ai)d(bi). (2)

Proof. Assume that I = [0, a] × [0, b] and Ii = [xi, xi + ai] × [yi, yi + bi] for
some points (xi, yi) ∈ I. Let

f(x, y) := d′(x)d′(y), (x, y) ∈ I,

and compute the integral of f over I in two ways.
First, using Fubini’s Theorem,

∫

I

f =

a
∫

0

(

b
∫

0

f(x, y) dy

)

dx =

a
∫

0

d′(x) dx ·
b

∫

0

d′(y) dy

= (d(a)− d(0)) · (d(b)− d(0)) = d(a) · d(b).

Secondly, also using the additivity of the integral and (1),

∫

I

f =
k

∑

i=1

∫

Ii

f =
k

∑

i=1

xi+ai
∫

xi

(

yi+bi
∫

yi

f(x, y) dy

)

dx

=
k

∑

i=1

xi+ai
∫

xi

d′(x) dx ·
yi+bi
∫

yi

d′(y) dy

=

k
∑

i=1

(d(xi + ai)− d(xi)) · (d(yi + bi)− d(yi))

≤
k

∑

i=1

|d(xi + ai)− d(xi)| · |d(yi + bi)− d(yi)|

≤
k

∑

i=1

d(ai) · d(bi).

Thus, the proof is complete.

The following consequence is a well-known result.
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Corollary

Let a, b, a1, b1, . . . , ak, bk be positive numbers such that the rectangle of sides a, b
can be decomposed as the (almost disjoint) union of rectangles of sides ai, bi (i =
1, . . . , k). Assume that, for all i, either ai or bi is an integer number. Then a or b
is also an integer.

Proof. If ai or bi is an integer then d(ai) · d(bi) = 0 for all i. Thus, by (2), we
get d(a) · d(b) = 0. Therefore, d(a) = 0 or d(b) = 0 holds. This shows that a or b
is an integer.

Zsolt Páles

3. Problem.
Let g:C → C be an entire function, and assume that

g(z) =
1

2
g
(z

2

)

+
1

2
g
(z + 1

2

)

, z ∈ C

holds. Then F. Schottky and G. Herglotz showed that g is constant.
What is known about entire solutions g of functional equations of the form

p0(z)g(z) =

N
∑

j=1

pj(z)g(αjz + βj) +R(z), z ∈ C,

where p0, . . . , pN are slowly growing entire functions (e.g. polynomials), R is a
given entire function and αj , βj satisfy appopriate conditions?

Ludwig Reich

4. Problems.
1. Let V denote a translation invariant linear subspace in the space of com-

plex polynomials in k variables. Suppose that (pn)n∈N is a sequence in V which
converges pointwise to the polynomial p. Does it follow that p is in V ? In the case
k = 1 the answer is “yes”. (This problem has been presented at the 49th ISFE,
Graz-Mariatrost, 2011.)

2. Does there exist a strictly descending infinite chain of translation invariant
linear spaces of complex polynomials in k variables? In the case k = 1 the answer
is “no”.

László Székelyhidi

5. Remark.
The classical Hermite-Hadamard inequality

f
(a+ b

2

) (1)

6
1

b− a

b
∫

a

f(x) dx
(2)

6
f(a) + f(b)

2

holds for all convex functions f : [a, b] → R. It is well-known that inequality (1)
gives the better estimate of the integral mean value than inequality (2). After
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Sz. Wąsowicz’s talk M. Goldberg asked the speaker the question what about the
multivariate case. Below we give the negative answer.

If S ⊂ Rn is a simplex with vertices p0, p1, . . . , pn, then the following Hermite-
Hadamard type inequality holds:

f
( 1

n+ 1

n
∑

i=0

pi

)

6
1

vol(S)

∫

S

f(x) dx 6
1

n+ 1

n
∑

i=0

f(pi),

whenever f :S → R is a convex function (cf. [1, 2]).
Now let S = conv

{

(0, 0), (0, 1), (1, 0)
}

be the unit simplex in R2. Then the
above inequalities have the form

f
(1

3
,
1

3

) (3)

6 2

∫∫

S

f(x, y) dx dy
(4)

6
f(0, 0) + f(0, 1) + f(1, 0)

3
.

For the convex function f(x, y) = x2 we obtain

1

9
6

1

6
6

1

3

which means that inequality (3) estimates the integral mean value better than (4).
Take now another convex function, whose graph is the surface of a pyramid shown
in the picture below.

x

z

y

1

1

1

Then it is easy to observe that for this function inequalities (3) and (4) have the
form

0 6 2
(1

2
− 1

6

)

=
2

3
6 1

and in this case (4) estimates the integral mean value better than (3).

[1] M. Bessenyei, The Hermite-Hadamard inequality on simplices, Amer. Math. Monthly
115 (2008), 339–345.

[2] Sz. Wąsowicz, Hermite-Hadamard-type inequalities in the approximate integration,
Math. Inequal. Appl. 11 (2008), 693–700.

Szymon Wąsowicz and Alfred Witkowski
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6. Problem.

Let us say that a function f :X → Y between normed spaces has the property
Pn (for a fixed n ∈ N) if it is homogenous and satisfies the functional inequality

∥

∥

∥

∥

f
(

n
∑

i=1

xi

)

−
n
∑

i=1

f(xi)

∥

∥

∥

∥

≤ K

n
∑

i=1

‖xi‖, x1, . . . , xn ∈ X.

The classic property quasilinearity is simply P2. It is clear that Pn+1 =⇒ Pn
for all n. What about the converse? If we denote by Kn the best constant for
which f has Pn, a short calculation shows that Kn+1 ≤ Kn + K2. Can this
estimate be improved? For the “worst” example (which has X = ℓ1 and Y = R)
it is only known that Kn ≥ logn. (When the domain X is a so-called K-space,
P2 already implies Pn for all n with a common value for K. This class includes
all super-reflexive spaces, all quotients of L∞ spaces, in particular all classical
spaces except ℓ1.) Dropping the homogeneity requirement leads to a very different
problem, which may also be interesting.
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