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Multivalued second order differential problem

Abstract. Let K be a closed convex cone with nonempty interior in a real
Banach space and let F, G, H: K — cc(K) be three given continuous additive
set-valued functions. We study the existence and uniqueness of a solution of
the second order differential problem

D*®(t,z) = ®(t, H(x)), ®(0,2)=F(z), D®(t,z)|—0 = G(z)

for t > 0 and z € K, where D®(t,z) and D?®(t, ) denote the Hukuhara
derivative and the second Hukuhara derivative of ®(¢,x) with respect to ¢.

Let X be a normed linear space. By n(X) we denote the set of all nonempty
subsets of X and by b(X) the set of all nonempty and bounded subsets of X,
whereas ¢(X) stands for the set of all compact members of n(X) and cc(X) stands
for the set of all convex members of ¢(X).

We introduce addition and multiplication by scalars as follows

A+B={a+b: a€ A, be B}, M ={Xa: a€ A}

for A,B € n(X) and A € R.

A subset K of the space X is called a cone if tK C K for all ¢t € [0,00). We
say that a cone is convez if it is a convex set.

Unless indicated differently, throughout the paper X denotes a normed linear
space and K a convex cone in X. The Hausdorff distance d derived from the
norm in X is a metric in the set ¢(X). Concepts such as the limit of a set-valued
function at a point, the continuity of a set-valued function, the integral of a set-
valued function and the limit of a sequence of set-valued functions are correlated
to this metric. Moreover, all linear spaces are supposed to be real.

A set-valued function F': K — n(X) is said to be additive if

F(z+y) = F(x) + F(y)
for all z,y € K. An additive set-valued function F' is linear if it is homogeneous,

ie.,

F(Ax) = A\F(x)
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for all z € K, A > 0. An additive and continuous set-valued function with convex
closed and bounded values is linear.

For two set-valued functions F: K — n(X), G: K — n(K) we define a compo-
sition (F o G)(z) = F(G(x)) == U{F(y) : y € G(x)}.

Let A, B, C be sets of cc(X). We say that a set C' is the Hukuhara difference
of Aand B, ie., C = A— B, if B+ C = A. If this difference exists, then it is
unique (see Lemma 1 in [12]).

Let [a,b] C R be a fixed interval, F:[a,b] — cc(X) and assume that the
Hukuhara differences F(t) — F(s) exist for all @ < s < t < b. The Hukuhara
deriative of F' at t € (a,b) is defined by the formula

DF(t) = tim L& ZFO oy FO = F(s)
s—tt s—1 s—t— t—s
whenever both of these limits exist. Furthermore,
F(s)—F Fb) - F
DP(a) = tim ZEZF@  ppgy = FOZFE)
s—a™t s—a s—b— b—s

The aim of this paper is to study existence and uniqueness of a linear with
respect to the second variable solution ®:[0,00) x K — cc(K) of the following
differential problem

D*®(t,z) = ®(t, H(z)), @(0,2)=F(z), D®(t,z)l—0=Gx), (1)

where F, G, H: K — cc(K) are given continuous linear set-valued functions and
D®(t,z) and D?*®(t,z) denote the Hukuhara derivative and the second Hukuhara
derivative of ®(¢,z) with respect to ¢.

The differential problem

DO(t,z) = ®(t,G(x)), D(0,z) = F(x),

where G, I': K — cc(K) are given continuous linear set-valued functions was stud-
ied in [15], while the second order differential problem

D*®(t,2) = B(t,G()), ®(0,2) = F(x), DI(t,)i—o = {0},

where G, F: K — cc(K) are given continuous linear set-valued functions was in-
vestigated in [10].

Now we assume that X is a Banach space. Dinghas in [3] and Hukuhara in [4]
introduced the Riemann type integral

/b F(t)dt

for set-valued functions. If there exists the integral of a function F": [a, b] — cc(X),
then F is said to be integrable. It is known that if F: R — cc(X) is continuous,
then it is integrable on each interval [a,b] C R (cf. [4], p. 212).

Following lemmas introduce some important properties of this integral.
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LEmMmA 1 ([4, p. 212])
If F:[a,b] — cc(X) is continuous and a < ¢ < b, then

/b F(t)dt = / F(t)dt + /b F(t) dt.

LEMMA 2 ([4, P. 211])
If F,G:[a,b] — cc(X) are continuous, then

b b b
d( / F(t)dt, / G(t) dt) < / d(F(t), G(t)) dt.

LeEMMA 3 (4, p. 211])
If F:la,b] — ce(X) is continuous, then

b
/ F(t) dt
LeMMA 4 (]9, LEMMA 10])
If F:la,b] — cc(X) is continuous, then the set-valued function

b
< / |F(0)] dt.

t

H(t)= /F(u) du fort € [a,b]

a

18 continuous.

LEMMA 5 ([15, LEMMA 4])
If F:la,b] — cc(X) is continuous and H(t) = fat F(u)du, then DH(t) = F(t) for
t € [a,b].

LEMMA 6 ([15, LEMMA 5])
If F,G: [a,b] — cc(X) are two differentiable set-valued functions such that DF(t) =
DG(t) fort € [a,b] and F(a) = G(a), then

F(t)=G(t) fort € [a,b].

DEFINITION 1

Let X be a Banach space and let set-valued functions F,G, H: K — cc(K) be
continuous and additive. A map ®: [0, 00) x K — cc(K) is said to be a solution of
problem (1) if it is continuous, twice differentiable with respect to ¢ and it satisfies
the differential equation from (1) in [0,00) X K and the initial conditions in K.

To the problem (1) we associate the following integral equation

O(t, z) —F(:E)-i-tG(ac)-i-/t (/Sq)(u,H(m))du) ds (2)

0 0
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for (t,x) € [0,00) x K, where F,G,H: K — cc(K) are given continuous linear
set-valued maps.

DEFINITION 2

Let X be a Banach space and let set-valued functions F,G,H: K — cc(K) be
continuous and additive. A map ®:[0,00) x K — cc(K) is said to be a solution of
(2) if it is continuous and satisfies (2) in [0, 00) x K.

The proofs of the next two theorems are based on ideas from the proofs of
Proposition and Theorem 1 in [15] and Theorems 1, 2 in [10]. We repeat them
with inevitable changes for the reader’s convenience.

THEOREM 1

Let X be a Banach space and let set-valued functions F,G,H: K — cc(K) be
continuous and additive. Set-valued function ®:[0,00) X K — cc(K) is a solution
of problem (1) if and only if it is a solution of (2).

Proof. 1° Suppose that a set-valued function ®:[0,00) x K — cc(K) is a so-
lution of (2). Then @ is continuous in [0,00) x K. Hence, since H is continuous
in K, from Theorems 1 and 1’ in [1, Chap. VI, p. 113] we get continuity of a map
(u,z) — ®(u, H(x)) in [0,00) x K. In particular, for every x € K a set-valued
function

u— O(u, H(z))

is continuous in [0, 00). Thus by Lemmas 4 and 5 the set-valued function

U(t,z) = F(x) + tG(x) —|—/t </S<I>(U,H(x)) du> ds (3)

0o 0
is twice differentiable with respect to t,

t

DU(t,x) = G(z) + D/t (/Sq)(u,H(x)) du) ds =G(z) + /‘I’(S,H(l‘)) ds,
0 0 0
and

D2U(t,z) = D / (s, H(z)) ds = B(t, H(x)).
0

By (2) we have ®(t,z) = U(t,x) for all (¢,z) € [0,00) x K, therefore
D?®(t,z) = ®(t,H(z)), @(0,2)= F(z) and D®(t,z)|=0 = G(x).
Hence @ satisfies (1).

2° Now assume that ®:[0,00) x K — cc(K) is a solution of (1) and let ¥ be
defined by equation (3) for (¢,x) € [0,00) x K. By Lemmas 4 and 5 we get

DU (t,x) = G(z) —i—/(I)(u,H(x)) du
0
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and
DU (t,x) = ®(t, H(z)).

Since D?¥(t,z) = D*®(t,z) and DY (t,x)|—0 = G(z) = DP(t,x)|t—0, by Lem-
ma 6 we obtain

DY (t,x) = DP(t, x) for (t,z) € [0,00) x K.
Thus, since ¥(0,z) = F(x) = ®(0,x), similarly we obtain
U(t,z) = P(t, x) for (t,z) € [0,00) x K.
Therefore ¢ satisfies (2).

Let K be a closed convex cone in X and Y be a normed linear space. The

functional .
F— ||F||:= sup 1F ()]
cek, z20 |7

is finite for every continuous linear set-valued function F': K — ¢(Y). This func-
tional will be called a norm (cf. [13]).
Next lemmas will be used in the proof of Theorem 2.

LEMMA 7 ([16, THEOREM 3|, [13, LEMMA 4])

LetY be a normed linear space. Suppose that {F; : i € I} is a family of continuous
linear set-valued functions Fi: K — n(Y'). If K is of the second category in K and
Uier Fi(z) € b(Y) for all x € K, then there exists a positive constant M such that

sup || Fi(x)]| < M||z|] for x € K.

iel
LEMMA 8 ([13, LEMMA 5])
LetY be a normed linear space and let d be the Hausdorff distance derived from the
norm in Y. Suppose that K is a convex cone with nonempty interior in X. Then

there exists a positive constant My such that for every linear continuous set-valued
function F: K — ¢(Y') the inequality

d(F(x), F(y)) < Mol F||[lz — y]|
holds for all x,y € K.

Assume that X is a Banach space and int K # (). Let T be a positive real
number and let € be the set of all continuous set-valued functions ®: [0,T] x K —
cc(K), which are linear with respect to the second variable. Define a functional p
in £ x &€ by

p(®, W) = sup{d(®(t, A), ¥(t, A)) : t €[0,T], A€ ce(K), Al <1}

for @, ¥ € &£ (see proof of Theorem 1 in [15] and proof of Theorem 2 in [10]). Sets

o(0,T,2)= |J @t )

t€[0,T]
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are compact for ® € £ and « € K by Theorem 3 in [1, Chap. VI, p. 110], thus they
are bounded. Therefore by Lemma 7, for every ® there exists a positive constant
Mg such that

[@(t, 2)|| < Ma||z|

for t € [0,7] and = € K. Hence
d(D(t, A), (¢, A)) < d(@(t, 4),{0}) + d({0}, W(t, A)) = | (L, A)[| + [W(z, A
< Mg + My
for t € [0,7] and A € ce(K) with ||A]| < 1. Thus
p(P,¥) < Mg + My < 00,

so the functional p is finite. It is easy to verify that p is a metric in £.
Since the space (cc(K),d) is complete (see [2]), (£,p) is a complete metric
space.

THEOREM 2

Let K be a closed convex cone with nonempty interior in a Banach space and let
set-valued functions F,G, H: K — cc(K) be continuous and additive. Then there
exists exactly one solution of problem (1). Moreover, this solution is linear with
respect to the second variable.

Proof. Fix T > 0 arbitrarily. On £ we introduce a map I' which values are
set-valued functions defined by

@@@JyZFuymguyﬁf(;y%H@»m>m

for (t,x) € [0,T] x K. It is easy to see that every set (I'®)(¢, z) belongs to cc(K).
Let ® € £. We shall prove that I'® is continuous. Fix x,y € K. As above, by
Lemma 7 there exists a positive constant Mg such that

[®(u, a)|| < Mollall (4)
for w € [0,7] and a € K. Hence
[®(u, H(z))|| < Mol H ()]
for u € [0,T]. Let 0 < t; <ty <T. By Lemma 3

!(/@(u,j{(x))sdu) ds -
S!(!¢Wﬂ@»&0@§!(1Mﬂmwd0w )

- /qu>||H(x)H ds = Mo H (z)

ty

< (t2 — t1)T Mol H (z)].-

(e
2
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From Lemma 8 and (4) there exists a positive constant My such that
A(®(u, a), ®(u, b)) < Mo|[D(u, ) [la - bl < MoMolla - b|
for uw € [0,T] and a,b € K. This implies that
O (u,a) C P(u,b) + MoMs|la —b||S

for uw € [0,T] and a,b € K, where S is the closed unit ball centered at zero in X.
Let a € H(x). There exists b € H(y) for which

la —bll = inf{lja —ul| : ue H(y)}
Consequently, for every a € H(z) there exists b € H(y) such that

®(u,a) C P(u,b) + MoMad(H (x), H(y))S
C ®(u, H(y)) + MoMgd(H (x), H(y))S,

whence
®(u, H(z)) C (u, H(y)) + MoMod(H (), H(y))S

for every u € [0,T]. Since x,y € K are arbitrary, we obtain
d(®(u, H(x)), ®(u, H(y))) < MoMad(H (x), H(y))

for every u € [0,T]. Therefore by Lemma 2

o [ ([ na)as [ ( fowmona)s)

< 0]1 (jd(@(u,H(m)),@(u,H(y)) du) ds o

1 S

< / <O/M0Mq>d(H(x),H(y))du) ds

0

2
= LM Myd(H (), H(y))
Using Lemma 1 and properties of the Hausdorff distance we get

d(( )( x), (F®)(t2,y))
d(F(z), F(y)) + d(tG(2), t2G(y))

( [ (ot a)as [ ( facmona)s)

0 0 0
d(F(z ,F(y))+t1 (G(2),G(y)) + (t2 — 1) |G ()]
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o f ([owmona)s [ (oo o)
[ (o) as]

0

+

hence from inequalities (5) and (6)

d((l )( z), (F®)(t2,y))
d(F ( ), F(y)) + 11d(G(x), G(y)) + (t2 — 1) [G(Y)]

41 M0M<1>d(H( ), H(y)) + (t2 — t1)T Mg | H(y)||.
Since F';, G and H are continuous, this shows that I'® is a continuous set-valued
function. It is easily seen that = — (I'®)(t,x) are linear for all ¢ € [0,7]. This
implies that T'(€) C £.
Next we shall prove that I' has exactly one fixed point. Fix &, ¥ € £ arbitrarily.
By Lemma 2 we have

for ¢t € [0,T] and = € K, which implies that
2
d((T2)(t, ), (T'V)(t,2)) < S| H(2)llp(2, ¥) (®)
for t € [0,7] and « € K and consequently

T2
p(D,TW) < - |[H|o(®, W),

Let
O (t,x) := (I'D)(¢, x), Uy (t,z) = (T0) (¢, x).

From (7) we have

A((T2®) (¢, 2), (2W) (1, 2)) = d((TBy) (¢, 2), (03 (1, 2)
< [ ([ st v @) ) s
0 0
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for t € [0,7] and « € K, whereas from (8)

A(®1(u,y), U1 (u,)) < S [H )l p(®, ¥)

for all y € H(z), thus

d(®1(u.y), U1 (u.y) < | H(H@)|p(®, D).

It is easy to verify that this implies that
2
u
d(®y (u, H(x)), U1 (u, H(x))) < || H? ()] p(®, ),

and therefore we get

t

S u2
d(r*0)(t.0), (W) (t.0) < | ( / 7|H2<x>|p<@,w>du> ds

0 0

”
= I @)llp(®, ¥)
for t € [0,7] and « € K, thus
28 T2 e
o020, 120) < 102 p(a, ),

By induction we can prove that

T2n

p(I"®, ") < i

[H|"p(®, ¥)

for every positive integer n. Since T' is a positive constant, there is n € N such

that %HHH" < 1. From the Banach’s fixed point Theorem I'" has exactly one
fixed point ®. But

I"(Id) =T(I") =T'd.

Since ® is a unique fixed point of I'", we get ['® = ®. If & was not unique, I'”
would also have more than one fixed point. Therefore we obtain existence and
uniqueness of ® € £ satisfying the differential equation from (1) in [0,7] x K and
the initial conditions in K. Since T' was arbitrary, this finishes the proof.

Let {F; : t > 0} be a family of set-valued functions Fy: K — n(X), t > 0.
A family {E; : t > 0} of set-valued functions E;: K — n(K), t > 0, is called a sine
family associated with family {Fy : t > 0}, if

Eiis(x) = Ei_s(z) + 2F,(Es(z)) 9)

for0<s<tandzx € K.
A sine family {E; : t > 0} of set-valued functions with compact values is

called regular if lim; o+ EtT(x) = {x} (cf. [9]).
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LEMMA 9 (|5, PROPOSITION 1])

Assume that {Fy : t > 0} and {E; : ¢t > 0} are families of set-valued functions
Fi: K — n(X), Ee: K — n(X) such that Fy is continuous linear, Fo(z) € c¢(K),
Eo(z) € ce(K), x € Fy(x) forx € K. If {E;: t > 0} is a sine family associated
with the family {Fy : t > 0}, then Ey(x) = {0} for x € K.

LEMMA 10 ([5, THEOREM 3], [6, THEOREM 3])

Let X be a Banach space, K a closed convexr cone with nonempty interior in X
and let {Fy : t >0} and {E; : t > 0} be families of continuous additive set-valued
functions Fy: K — ce(K), Ey: K — ce(K), Fo(z) = {z} for x € K and x € Fy(x)
forz € K andt > 0. Assume that {E; : t > 0} is a regular sine family associated
with {F; : t > 0}. Then the set-valued function v — F,(x) is continuous for every
z € K and

t
Et(m):/Fu(w)du, t>0,z€eK.
0

A family {F} : ¢t > 0} of set-valued functions F;: K — n(K) is called a cosine
family, if
Fo(z) = {=} (10)

for all z € K and
Fiys(z) + Fr—s(x) = 2F(Fs(2)), (11)

whenever 0 < s <tand z € K.
A cosine family {F}; : t > 0} of set-valued functions with compact values is
called regular if lim; g+ Fy(z) = {z} (cf. [13]).

LEMMA 11 ([8, THEOREM])

Let K be a closed conver cone with nonempty interior in a Banach space X.
Suppose that {Fy : t > 0} is a regular cosine family of continuous linear set-valued
functions Fi: K — ce(K), x € Fy(x) for allxz € K,t >0 and F, o Fy = Fs0 F; for
all s,t > 0. Then this cosine family is twice differentiable and

D*F,(z) = Fy(H(z)) and DFy(z)|i—o = {0} (12)

for x € K, t > 0, where DFy(z) and D?F;(z) denote the Hukuhara derivative
and the second Hukuhara derivative of Fy(x) with respect to t, respectively, and
H(Z’) = D2Ft(1')|t:0,

We shall need some further properties of the Hukuhara derivative and of the
Riemann integral.

LEMMA 12 ([14, LEMMA 3])

Let K be a closed convex cone in a linear space X. Assume that F: K — cc(K)
is a continuous additive set-valued function and A, B € cc(K). If there exists the
difference A — B, then there exists F(A) — F(B) and F(A) — F(B) = F(A — B).
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LEMMA 13
Let K be a closed convex cone in X and [a,b] C R be a given interval. Let
F: K — cc(K) be a continuous additive set-valued function and G:[a,b] — cc(K)
be a differentiable set-valued function. Then D(FoG(t)) exists and D(FoG(t)) =
F o DG(t).

Proof. By the definition of the Hukuhara derivative and Lemma 12

D(FoG)(t) = lim L2GE)=FoCGl) 1, FIG(s) = GH)]
s—tt s—1 s—tt s—1t
Since F' is linear and continuous we have
lim FlG(s) - G@)] — F( lim G(s) _G(t)> — FoDG(t)
s—tt s—t s—tt s—1t

(see Lemma 8 and [13, Lemma 6]). We use the same reasoning when s converges
to t from the left.

LEMMA 14

Let K be a convex cone with nonempty interior in a Banach space and let {F; : t >
0} be a regular cosine family of continuous additive set-valued functions Fy: K —
cc(K) such that Fy o Fy = Fg o Fy for all s,t > 0. Assume that ®: K — cc(K) is
continuous additive and Fy o ® = ® o Fy for allt > 0. Then

(jFu()du) (D(x)) :/SFu((p(x))du

Proof. First we shall prove that
(Fi + F%)(@(m)) = F:(®(x)) + st((I)(:E))

Indeed, since {F; : t > 0} is a cosine family, by (11) and the commutativity of ®
and all F; we have

Let us now assume that for some positive integer n and for all z € K we have

2" —1

2" —1
( > F<ﬁ+%>s>(‘1’(w>> = > Flirsg)s(®(@)). (13)
=0 i=0
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Then, by (11) we obtain

gn+1_q

(T Fitar i @)

i=0

2" —1
— (3 [yt spe + Figtrs ] ) 00)

=0

2" —1
- < > {F<—++— — (9+F<ﬁ+%—ﬁ>s}>(®(w))

=0

2" —1
_ < 3 Q{F(2n1+1+2%)5 OFM])((I)(:E)).

i=0
From the commutativity of F;, Fy and ® and (13), on account of the fact that ®
and F; are additive we have

2" —1

(3 2[R Fut] )0
2{(§§2ﬂwg+ﬁﬁ>@@”]=F

on 1
= ‘I’[ 2 2 )s © Pt (@] ~

i=0

2" —1
x| 2 2P @)
i=0

Again using (11) and the commutativity we get

2" —1
@[Z 2F( it i) F+(x)}

=0

2" —1
=@ D> F gt ptia)s () +F(2n1+1+222n1+2)s($)]

1=0
2n—1
= > [P 20, (@) + F g 2,(9()]
1=0
on+l_q

= D Fligein:(®@).
1=0

Hence we have proved equality (13) for all positive integers n. Multiplying both

S

sides of it by 57 we get

on_q on_q

S S
(X g sion ) @) = 5 3oFls (0]
i=0 =0

Since {Fy:t > 0} is regular, it is continuous (cf. Theorem 2 in [13]) and therefore
integrable. Hence letting n tend to infinity in the above equality, by Lemma 5 in
[11] we obtain the result.
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The following theorem gives the solution of the problem (1) in two special
cases.

THEOREM 3

Let K be a closed convexr cone with nonempty interior in a Banach space. Let
{F;: t >0} be a regular cosine family of continuous additive set-valued functions
Fy: K — cc(K) such that x € Fy(z) for allx € K,t >0, Fy o Fy = Fs 0 Fy for all
s,t >0 and H(z) is the second Hukuhara derivative of Fi(x) att = 0.

(a) Assume that there is G(x) = {0} in problem (1). Then ®(t,z) = F o Fi(x),
(t,z) € [0,00) x K is the unique solution of this problem.

(b) Let {E; : t > 0} be a regular sine family of continuous additive set-valued
functions Ey: K — cc(K) associated with {Fy : t > 0}. Assume that
FioH = HoFy for all t > 0 and there is F(x) = {0} in problem (1).
Then ®(t,x) = G o Ey(x), (t,z) € [0,00) X K is the unique solution of this
problem.

Proof. (a) From Lemmas 11 and 13 the set-valued function @ fulfills equal-
ity (1). The initial conditions

(I)(va) = F(:L'), D(I)(tvx)|t:0 = {0}

are satisfied on account of (10) and (12). By Theorem 2 this solution is unique.

(b) First we shall prove that the set-valued function (t,z) — FE;(x) satisfies
(1). From Lemma 10 we have DE;(x) = F}(x) and therefore

D?Ey(z) = DFy(z) =: G¢(x), Hy(z) := D?*Fy(z) = DGy(x).

Since Go(z) = {0} and H;(z) = F;(H(z)) (cf. Lemma 11), from Lemma 14 we
obtain

D2E,(z) = Gy(z) = /tHu(m) du —/tFt(H(x))du— (/tFt(.)du> (H(z))
= Et(lrf(aﬂ))0 0 0
By Lemma 13

D?®(t,2) = D*(G o Ey(z)) = G o D*Ey(z) = G o Ey(H(x)) = ®(t, H(x)).

Of course
®(0,z) = G o Eg(z) = {0}
and
DO(t,z)|t—0 = G o DE¢(x)|1—0 = G(Fp(x)) = G(x).

A simple corollary of Theorem 3 is the following
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COROLLARY 1

Under assumptions of Theorem 3, if F; o H = H o F; for all t > 0 and the map
H(z) is single-valued, then the set-valued function ®(t,x) = F o Fi(x) + G o Ey(x)
is the unique solution of problem (1).

Proof. By Theorem 3 we have
D*®(t,x) = D*(F o Fy(x)) + D*(G o Ey(x)) = F o Fy(H(x)) + G o E;(H(x)).
Therefore, since H is single-valued, we obtain
D?*®(t,x) = (Fo Fy +Go Ey)(H(z)) = ®(t, H(x)).

It is easy to see that ® fulfills also the initial conditions.
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