Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica XI (2012)

Ewelina Mainka-Niemczyk
 Multivalued second order differential problem

Abstract

Let K be a closed convex cone with nonempty interior in a real Banach space and let $F, G, H: K \rightarrow c c(K)$ be three given continuous additive set-valued functions. We study the existence and uniqueness of a solution of the second order differential problem $$
D^{2} \Phi(t, x)=\Phi(t, H(x)), \quad \Phi(0, x)=F(x),\left.\quad D \Phi(t, x)\right|_{t=0}=G(x)
$$ for $t \geq 0$ and $x \in K$, where $D \Phi(t, x)$ and $D^{2} \Phi(t, x)$ denote the Hukuhara derivative and the second Hukuhara derivative of $\Phi(t, x)$ with respect to t.

Let X be a normed linear space. By $n(X)$ we denote the set of all nonempty subsets of X and by $b(X)$ the set of all nonempty and bounded subsets of X, whereas $c(X)$ stands for the set of all compact members of $n(X)$ and $c c(X)$ stands for the set of all convex members of $c(X)$.

We introduce addition and multiplication by scalars as follows

$$
A+B=\{a+b: a \in A, b \in B\}, \quad \lambda A=\{\lambda a: a \in A\}
$$

for $A, B \in n(X)$ and $\lambda \in \mathbb{R}$.
A subset K of the space X is called a cone if $t K \subset K$ for all $t \in[0, \infty)$. We say that a cone is convex if it is a convex set.

Unless indicated differently, throughout the paper X denotes a normed linear space and K a convex cone in X. The Hausdorff distance d derived from the norm in X is a metric in the set $c(X)$. Concepts such as the limit of a set-valued function at a point, the continuity of a set-valued function, the integral of a setvalued function and the limit of a sequence of set-valued functions are correlated to this metric. Moreover, all linear spaces are supposed to be real.

A set-valued function $F: K \rightarrow n(X)$ is said to be additive if

$$
F(x+y)=F(x)+F(y)
$$

for all $x, y \in K$. An additive set-valued function F is linear if it is homogeneous, i.e.,

$$
F(\lambda x)=\lambda F(x)
$$

for all $x \in K, \lambda \geq 0$. An additive and continuous set-valued function with convex closed and bounded values is linear.

For two set-valued functions $F: K \rightarrow n(X), G: K \rightarrow n(K)$ we define a composition $(F \circ G)(x)=F(G(x)):=\bigcup\{F(y): y \in G(x)\}$.

Let A, B, C be sets of $c c(X)$. We say that a set C is the Hukuhara difference of A and B, i.e., $C=A-B$, if $B+C=A$. If this difference exists, then it is unique (see Lemma 1 in [12]).

Let $[a, b] \subset \mathbb{R}$ be a fixed interval, $F:[a, b] \rightarrow c c(X)$ and assume that the Hukuhara differences $F(t)-F(s)$ exist for all $a \leq s<t \leq b$. The Hukuhara derivative of F at $t \in(a, b)$ is defined by the formula

$$
D F(t)=\lim _{s \rightarrow t^{+}} \frac{F(s)-F(t)}{s-t}=\lim _{s \rightarrow t^{-}} \frac{F(t)-F(s)}{t-s}
$$

whenever both of these limits exist. Furthermore,

$$
D F(a)=\lim _{s \rightarrow a^{+}} \frac{F(s)-F(a)}{s-a}, \quad D F(b)=\lim _{s \rightarrow b^{-}} \frac{F(b)-F(s)}{b-s}
$$

The aim of this paper is to study existence and uniqueness of a linear with respect to the second variable solution $\Phi:[0, \infty) \times K \rightarrow c c(K)$ of the following differential problem

$$
\begin{equation*}
D^{2} \Phi(t, x)=\Phi(t, H(x)), \quad \Phi(0, x)=F(x),\left.\quad D \Phi(t, x)\right|_{t=0}=G(x) \tag{1}
\end{equation*}
$$

where $F, G, H: K \rightarrow c c(K)$ are given continuous linear set-valued functions and $D \Phi(t, x)$ and $D^{2} \Phi(t, x)$ denote the Hukuhara derivative and the second Hukuhara derivative of $\Phi(t, x)$ with respect to t.

The differential problem

$$
D \Phi(t, x)=\Phi(t, G(x)), \quad \Phi(0, x)=F(x)
$$

where $G, F: K \rightarrow c c(K)$ are given continuous linear set-valued functions was studied in [15], while the second order differential problem

$$
D^{2} \Phi(t, x)=\Phi(t, G(x)), \quad \Phi(0, x)=F(x),\left.\quad D \Phi(t, x)\right|_{t=0}=\{0\}
$$

where $G, F: K \rightarrow c c(K)$ are given continuous linear set-valued functions was investigated in [10].

Now we assume that X is a Banach space. Dinghas in [3] and Hukuhara in [4] introduced the Riemann type integral

$$
\int_{a}^{b} F(t) d t
$$

for set-valued functions. If there exists the integral of a function $F:[a, b] \rightarrow c c(X)$, then F is said to be integrable. It is known that if $F: \mathbb{R} \rightarrow c c(X)$ is continuous, then it is integrable on each interval $[a, b] \subset \mathbb{R}$ (cf. [4], p. 212).

Following lemmas introduce some important properties of this integral.

Lemma 1 ([4, P. 212])
If $F:[a, b] \rightarrow c c(X)$ is continuous and $a<c<b$, then

$$
\int_{a}^{b} F(t) d t=\int_{a}^{c} F(t) d t+\int_{c}^{b} F(t) d t
$$

Lemma 2 ([4, P. 211])
If $F, G:[a, b] \rightarrow c c(X)$ are continuous, then

$$
d\left(\int_{a}^{b} F(t) d t, \int_{a}^{b} G(t) d t\right) \leq \int_{a}^{b} d(F(t), G(t)) d t
$$

Lemma 3 ([4, P. 211])
If $F:[a, b] \rightarrow c c(X)$ is continuous, then

$$
\left\|\int_{a}^{b} F(t) d t\right\| \leq \int_{a}^{b}\|F(t)\| d t
$$

Lemma 4 ([9, Lemma 10])
If $F:[a, b] \rightarrow c c(X)$ is continuous, then the set-valued function

$$
H(t)=\int_{a}^{t} F(u) d u \quad \text { for } t \in[a, b]
$$

is continuous.
Lemma 5 ([15, Lemma 4])
If $F:[a, b] \rightarrow c c(X)$ is continuous and $H(t)=\int_{a}^{t} F(u) d u$, then $D H(t)=F(t)$ for $t \in[a, b]$.

Lemma 6 ([15, Lemma 5])
If $F, G:[a, b] \rightarrow c c(X)$ are two differentiable set-valued functions such that $D F(t)=$ $D G(t)$ for $t \in[a, b]$ and $F(a)=G(a)$, then

$$
F(t)=G(t) \quad \text { for } t \in[a, b] .
$$

Definition 1

Let X be a Banach space and let set-valued functions $F, G, H: K \rightarrow c c(K)$ be continuous and additive. A map $\Phi:[0, \infty) \times K \rightarrow c c(K)$ is said to be a solution of problem (1) if it is continuous, twice differentiable with respect to t and it satisfies the differential equation from (1) in $[0, \infty) \times K$ and the initial conditions in K.

To the problem (1) we associate the following integral equation

$$
\begin{equation*}
\Phi(t, x)=F(x)+t G(x)+\int_{0}^{t}\left(\int_{0}^{s} \Phi(u, H(x)) d u\right) d s \tag{2}
\end{equation*}
$$

for $(t, x) \in[0, \infty) \times K$, where $F, G, H: K \rightarrow c c(K)$ are given continuous linear set-valued maps.

Definition 2

Let X be a Banach space and let set-valued functions $F, G, H: K \rightarrow c c(K)$ be continuous and additive. A map $\Phi:[0, \infty) \times K \rightarrow c c(K)$ is said to be a solution of (2) if it is continuous and satisfies (2) in $[0, \infty) \times K$.

The proofs of the next two theorems are based on ideas from the proofs of Proposition and Theorem 1 in [15] and Theorems 1, 2 in [10]. We repeat them with inevitable changes for the reader's convenience.

Theorem 1

Let X be a Banach space and let set-valued functions $F, G, H: K \rightarrow c c(K)$ be continuous and additive. Set-valued function $\Phi:[0, \infty) \times K \rightarrow c c(K)$ is a solution of problem (1) if and only if it is a solution of (2).

Proof. 1° Suppose that a set-valued function $\Phi:[0, \infty) \times K \rightarrow c c(K)$ is a solution of (2). Then Φ is continuous in $[0, \infty) \times K$. Hence, since H is continuous in K, from Theorems 1 and 1^{\prime} in [1, Chap. VI, p. 113] we get continuity of a map $(u, x) \mapsto \Phi(u, H(x))$ in $[0, \infty) \times K$. In particular, for every $x \in K$ a set-valued function

$$
u \mapsto \Phi(u, H(x))
$$

is continuous in $[0, \infty)$. Thus by Lemmas 4 and 5 the set-valued function

$$
\begin{equation*}
\Psi(t, x)=F(x)+t G(x)+\int_{0}^{t}\left(\int_{0}^{s} \Phi(u, H(x)) d u\right) d s \tag{3}
\end{equation*}
$$

is twice differentiable with respect to t,

$$
D \Psi(t, x)=G(x)+D \int_{0}^{t}\left(\int_{0}^{s} \Phi(u, H(x)) d u\right) d s=G(x)+\int_{0}^{t} \Phi(s, H(x)) d s
$$

and

$$
D^{2} \Psi(t, x)=D \int_{0}^{t} \Phi(s, H(x)) d s=\Phi(t, H(x))
$$

By (2) we have $\Phi(t, x)=\Psi(t, x)$ for all $(t, x) \in[0, \infty) \times K$, therefore

$$
D^{2} \Phi(t, x)=\Phi(t, H(x)), \quad \Phi(0, x)=F(x) \quad \text { and }\left.\quad D \Phi(t, x)\right|_{t=0}=G(x)
$$

Hence Φ satisfies (1).
2° Now assume that $\Phi:[0, \infty) \times K \rightarrow c c(K)$ is a solution of (1) and let Ψ be defined by equation (3) for $(t, x) \in[0, \infty) \times K$. By Lemmas 4 and 5 we get

$$
D \Psi(t, x)=G(x)+\int_{0}^{t} \Phi(u, H(x)) d u
$$

and

$$
D^{2} \Psi(t, x)=\Phi(t, H(x))
$$

Since $D^{2} \Psi(t, x)=D^{2} \Phi(t, x)$ and $\left.D \Psi(t, x)\right|_{t=0}=G(x)=\left.D \Phi(t, x)\right|_{t=0}$, by Lemma 6 we obtain

$$
D \Psi(t, x)=D \Phi(t, x) \quad \text { for }(t, x) \in[0, \infty) \times K
$$

Thus, since $\Psi(0, x)=F(x)=\Phi(0, x)$, similarly we obtain

$$
\Psi(t, x)=\Phi(t, x) \quad \text { for }(t, x) \in[0, \infty) \times K
$$

Therefore Φ satisfies (2).
Let K be a closed convex cone in X and Y be a normed linear space. The functional

$$
F \mapsto\|F\|:=\sup _{x \in K, x \neq 0} \frac{\|F(x)\|}{\|x\|}
$$

is finite for every continuous linear set-valued function $F: K \rightarrow c(Y)$. This functional will be called a norm (cf. [13]).

Next lemmas will be used in the proof of Theorem 2.
Lemma 7 ([16, Theorem 3], [13, Lemma 4])
Let Y be a normed linear space. Suppose that $\left\{F_{i}: i \in I\right\}$ is a family of continuous linear set-valued functions $F_{i}: K \rightarrow n(Y)$. If K is of the second category in K and $\bigcup_{i \in I} F_{i}(x) \in b(Y)$ for all $x \in K$, then there exists a positive constant M such that

$$
\sup _{i \in I}\left\|F_{i}(x)\right\| \leq M\|x\| \quad \text { for } x \in K
$$

Lemma 8 ([13, Lemma 5])
Let Y be a normed linear space and let d be the Hausdorff distance derived from the norm in Y. Suppose that K is a convex cone with nonempty interior in X. Then there exists a positive constant M_{0} such that for every linear continuous set-valued function $F: K \rightarrow c(Y)$ the inequality

$$
d(F(x), F(y)) \leq M_{0}\|F\|\|x-y\|
$$

holds for all $x, y \in K$.
Assume that X is a Banach space and $\operatorname{int} K \neq \emptyset$. Let T be a positive real number and let \mathcal{E} be the set of all continuous set-valued functions $\Phi:[0, T] \times K \rightarrow$ $c c(K)$, which are linear with respect to the second variable. Define a functional ρ in $\mathcal{E} \times \mathcal{E}$ by

$$
\rho(\Phi, \Psi)=\sup \{d(\Phi(t, A), \Psi(t, A)): t \in[0, T], A \in c c(K),\|A\| \leq 1\}
$$

for $\Phi, \Psi \in \mathcal{E}$ (see proof of Theorem 1 in [15] and proof of Theorem 2 in [10]). Sets

$$
\Phi([0, T], x)=\bigcup_{t \in[0, T]} \Phi(t, x)
$$

are compact for $\Phi \in \mathcal{E}$ and $x \in K$ by Theorem 3 in [1, Chap. VI, p. 110], thus they are bounded. Therefore by Lemma 7, for every Φ there exists a positive constant M_{Φ} such that

$$
\|\Phi(t, x)\| \leq M_{\Phi}\|x\|
$$

for $t \in[0, T]$ and $x \in K$. Hence

$$
\begin{aligned}
d(\Phi(t, A), \Psi(t, A)) & \leq d(\Phi(t, A),\{0\})+d(\{0\}, \Psi(t, A))=\|\Phi(t, A)\|+\|\Psi(t, A)\| \\
& \leq M_{\Phi}+M_{\Psi}
\end{aligned}
$$

for $t \in[0, T]$ and $A \in c c(K)$ with $\|A\| \leq 1$. Thus

$$
\rho(\Phi, \Psi) \leq M_{\Phi}+M_{\Psi}<\infty
$$

so the functional ρ is finite. It is easy to verify that ρ is a metric in \mathcal{E}.
Since the space $(c c(K), d)$ is complete (see [2]), (\mathcal{E}, ρ) is a complete metric space.

Theorem 2

Let K be a closed convex cone with nonempty interior in a Banach space and let set-valued functions $F, G, H: K \rightarrow c c(K)$ be continuous and additive. Then there exists exactly one solution of problem (1). Moreover, this solution is linear with respect to the second variable.

Proof. Fix $T>0$ arbitrarily. On \mathcal{E} we introduce a map Γ which values are set-valued functions defined by

$$
(\Gamma \Phi)(t, x):=F(x)+t G(x)+\int_{0}^{t}\left(\int_{0}^{s} \Phi(u, H(x)) d u\right) d s
$$

for $(t, x) \in[0, T] \times K$. It is easy to see that every set $(\Gamma \Phi)(t, x)$ belongs to $c c(K)$.
Let $\Phi \in \mathcal{E}$. We shall prove that $\Gamma \Phi$ is continuous. Fix $x, y \in K$. As above, by Lemma 7 there exists a positive constant M_{Φ} such that

$$
\begin{equation*}
\|\Phi(u, a)\| \leq M_{\Phi}\|a\| \tag{4}
\end{equation*}
$$

for $u \in[0, T]$ and $a \in K$. Hence

$$
\|\Phi(u, H(x))\| \leq M_{\Phi}\|H(x)\|
$$

for $u \in[0, T]$. Let $0 \leq t_{1} \leq t_{2} \leq T$. By Lemma 3

$$
\begin{align*}
& \left\|\int_{t_{1}}^{t_{2}}\left(\int_{0}^{s} \Phi(u, H(x)) d u\right) d s\right\| \\
& \quad \leq \int_{t_{1}}^{t_{2}}\left(\int_{0}^{s}\|\Phi(u, H(x))\| d u\right) d s \leq \int_{t_{1}}^{t_{2}}\left(\int_{0}^{s} M_{\Phi}\|H(x)\| d u\right) d s \tag{5}\\
& \quad=\int_{t_{1}}^{t_{2}} s M_{\Phi}\|H(x)\| d s=M_{\Phi}\|H(x)\| \frac{t_{2}^{2}-t_{1}^{2}}{2} \\
& \quad \leq\left(t_{2}-t_{1}\right) T M_{\Phi}\|H(x)\|
\end{align*}
$$

From Lemma 8 and (4) there exists a positive constant M_{0} such that

$$
d(\Phi(u, a), \Phi(u, b)) \leq M_{0}\|\Phi(u, \cdot)\|\|a-b\| \leq M_{0} M_{\Phi}\|a-b\|
$$

for $u \in[0, T]$ and $a, b \in K$. This implies that

$$
\Phi(u, a) \subset \Phi(u, b)+M_{0} M_{\Phi}\|a-b\| S
$$

for $u \in[0, T]$ and $a, b \in K$, where S is the closed unit ball centered at zero in X.
Let $a \in H(x)$. There exists $b \in H(y)$ for which

$$
\|a-b\|=\inf \{\|a-u\|: u \in H(y)\} .
$$

Consequently, for every $a \in H(x)$ there exists $b \in H(y)$ such that

$$
\begin{aligned}
\Phi(u, a) & \subset \Phi(u, b)+M_{0} M_{\Phi} d(H(x), H(y)) S \\
& \subset \Phi(u, H(y))+M_{0} M_{\Phi} d(H(x), H(y)) S
\end{aligned}
$$

whence

$$
\Phi(u, H(x)) \subset \Phi(u, H(y))+M_{0} M_{\Phi} d(H(x), H(y)) S
$$

for every $u \in[0, T]$. Since $x, y \in K$ are arbitrary, we obtain

$$
d(\Phi(u, H(x)), \Phi(u, H(y))) \leq M_{0} M_{\Phi} d(H(x), H(y))
$$

for every $u \in[0, T]$. Therefore by Lemma 2

$$
\begin{align*}
d\left(\int _ { 0 } ^ { t _ { 1 } } \left(\int_{0}^{s} \Phi(u,\right.\right. & \left.H(x)) d u) d s, \int_{0}^{t_{1}}\left(\int_{0}^{s} \Phi(u, H(y)) d u\right) d s\right) \\
& \leq \int_{0}^{t_{1}}\left(\int_{0}^{s} d(\Phi(u, H(x)), \Phi(u, H(y)) d u) d s\right. \tag{6}\\
& \leq \int_{0}^{t_{1}}\left(\int_{0}^{s} M_{0} M_{\Phi} d(H(x), H(y)) d u\right) d s \\
& =\frac{t_{1}^{2}}{2} M_{0} M_{\Phi} d(H(x), H(y))
\end{align*}
$$

Using Lemma 1 and properties of the Hausdorff distance we get

$$
\begin{aligned}
& d\left((\Gamma \Phi)\left(t_{1}, x\right),(\Gamma \Phi)\left(t_{2}, y\right)\right) \\
& \leq \\
& \quad d(F(x), F(y))+d\left(t_{1} G(x), t_{2} G(y)\right) \\
& \quad+d\left(\int_{0}^{t_{1}}\left(\int_{0}^{s} \Phi(u, H(x)) d u\right) d s, \int_{0}^{t_{2}}\left(\int_{0}^{s} \Phi(u, H(y)) d u\right) d s\right) \\
& \leq \\
& \quad d(F(x), F(y))+t_{1} d(G(x), G(y))+\left(t_{2}-t_{1}\right)\|G(y)\|
\end{aligned}
$$

$$
\begin{aligned}
& +d\left(\int_{0}^{t_{1}}\left(\int_{0}^{s} \Phi(u, H(x)) d u\right) d s, \int_{0}^{t_{1}}\left(\int_{0}^{s} \Phi(u, H(y)) d u\right) d s\right) \\
& +\left\|\int_{t_{1}}^{t_{2}}\left(\int_{0}^{s} \Phi(u, H(y)) d u\right) d s\right\|,
\end{aligned}
$$

hence from inequalities (5) and (6)

$$
\begin{aligned}
& d\left((\Gamma \Phi)\left(t_{1}, x\right),(\Gamma \Phi)\left(t_{2}, y\right)\right) \\
& \leq d(F(x), F(y))+t_{1} d(G(x), G(y))+\left(t_{2}-t_{1}\right)\|G(y)\| \\
& \quad+\frac{t_{1}^{2}}{2} M_{0} M_{\Phi} d(H(x), H(y))+\left(t_{2}-t_{1}\right) T M_{\Phi}\|H(y)\| .
\end{aligned}
$$

Since F, G and H are continuous, this shows that $\Gamma \Phi$ is a continuous set-valued function. It is easily seen that $x \mapsto(\Gamma \Phi)(t, x)$ are linear for all $t \in[0, T]$. This implies that $\Gamma(\mathcal{E}) \subset \mathcal{E}$.

Next we shall prove that Γ has exactly one fixed point. Fix $\Phi, \Psi \in \mathcal{E}$ arbitrarily. By Lemma 2 we have

$$
\begin{align*}
& d((\Gamma \Phi)(t, x),(\Gamma \Psi)(t, x)) \\
& \quad=d\left(\int_{0}^{t}\left(\int_{0}^{s} \Phi(u, H(x)) d u\right) d s, \int_{0}^{t}\left(\int_{0}^{s} \Psi(u, H(x)) d u\right) d s\right) \tag{7}\\
& \quad \leq \int_{0}^{t}\left(\int_{0}^{s} d(\Phi(u, H(x)), \Psi(u, H(x)) d u) d s\right.
\end{align*}
$$

for $t \in[0, T]$ and $x \in K$, which implies that

$$
\begin{equation*}
d((\Gamma \Phi)(t, x),(\Gamma \Psi)(t, x)) \leq \frac{t^{2}}{2}\|H(x)\| \rho(\Phi, \Psi) \tag{8}
\end{equation*}
$$

for $t \in[0, T]$ and $x \in K$ and consequently

$$
\rho(\Gamma \Phi, \Gamma \Psi) \leq \frac{T^{2}}{2}\|H\| \rho(\Phi, \Psi)
$$

Let

$$
\Phi_{1}(t, x):=(\Gamma \Phi)(t, x), \quad \Psi_{1}(t, x):=(\Gamma \Psi)(t, x) .
$$

From (7) we have

$$
\begin{aligned}
d\left(\left(\Gamma^{2} \Phi\right)(t, x),\left(\Gamma^{2} \Psi\right)(t, x)\right) & =d\left(\left(\Gamma \Phi_{1}\right)(t, x),\left(\Gamma \Psi_{1}\right)(t, x)\right) \\
& \leq \int_{0}^{t}\left(\int_{0}^{s} d\left(\Phi_{1}(u, H(x)), \Psi_{1}(u, H(x))\right) d u\right) d s
\end{aligned}
$$

for $t \in[0, T]$ and $x \in K$, whereas from (8)

$$
d\left(\Phi_{1}(u, y), \Psi_{1}(u, y)\right) \leq \frac{u^{2}}{2}\|H(y)\| \rho(\Phi, \Psi)
$$

for all $y \in H(x)$, thus

$$
d\left(\Phi_{1}(u, y), \Psi_{1}(u, y)\right) \leq \frac{u^{2}}{2}\|H(H(x))\| \rho(\Phi, \Psi)
$$

It is easy to verify that this implies that

$$
d\left(\Phi_{1}(u, H(x)), \Psi_{1}(u, H(x))\right) \leq \frac{u^{2}}{2}\left\|H^{2}(x)\right\| \rho(\Phi, \Psi)
$$

and therefore we get

$$
\begin{aligned}
d\left(\left(\Gamma^{2} \Phi\right)(t, x),\left(\Gamma^{2} \Psi\right)(t, x)\right) & \leq \int_{0}^{t}\left(\int_{0}^{s} \frac{u^{2}}{2}\left\|H^{2}(x)\right\| \rho(\Phi, \Psi) d u\right) d s \\
& =\frac{t^{4}}{4!}\left\|H^{2}(x)\right\| \rho(\Phi, \Psi)
\end{aligned}
$$

for $t \in[0, T]$ and $x \in K$, thus

$$
\rho\left(\Gamma^{2} \Phi, \Gamma^{2} \Psi\right) \leq \frac{T^{4}}{4!}\left\|H^{2}\right\| \rho(\Phi, \Psi)
$$

By induction we can prove that

$$
\rho\left(\Gamma^{n} \Phi, \Gamma^{n} \Psi\right) \leq \frac{T^{2 n}}{(2 n)!}\|H\|^{n} \rho(\Phi, \Psi)
$$

for every positive integer n. Since T is a positive constant, there is $n \in \mathbb{N}$ such that $\frac{T^{2 n}}{(2 n)!}\|H\|^{n}<1$. From the Banach's fixed point Theorem Γ^{n} has exactly one fixed point Φ. But

$$
\Gamma^{n}(\Gamma \Phi)=\Gamma\left(\Gamma^{n} \Phi\right)=\Gamma \Phi .
$$

Since Φ is a unique fixed point of Γ^{n}, we get $\Gamma \Phi=\Phi$. If Φ was not unique, Γ^{n} would also have more than one fixed point. Therefore we obtain existence and uniqueness of $\Phi \in \mathcal{E}$ satisfying the differential equation from (1) in $[0, T] \times K$ and the initial conditions in K. Since T was arbitrary, this finishes the proof.

Let $\left\{F_{t}: t \geq 0\right\}$ be a family of set-valued functions $F_{t}: K \rightarrow n(X), t \geq 0$. A family $\left\{E_{t}: t \geq 0\right\}$ of set-valued functions $E_{t}: K \rightarrow n(K), t \geq 0$, is called a sine family associated with family $\left\{F_{t}: t \geq 0\right\}$, if

$$
\begin{equation*}
E_{t+s}(x)=E_{t-s}(x)+2 F_{t}\left(E_{s}(x)\right) \tag{9}
\end{equation*}
$$

for $0 \leq s \leq t$ and $x \in K$.
A sine family $\left\{E_{t}: t \geq 0\right\}$ of set-valued functions with compact values is called regular if $\lim _{t \rightarrow 0^{+}} \frac{E_{t}(x)}{t}=\{x\}$ (cf. [5]).

Lemma 9 ([5, Proposition 1])
Assume that $\left\{F_{t}: t \geq 0\right\}$ and $\left\{E_{t}: t \geq 0\right\}$ are families of set-valued functions $F_{t}: K \rightarrow n(X), E_{t}: K \rightarrow n(X)$ such that F_{0} is continuous linear, $F_{0}(x) \in c(K)$, $E_{0}(x) \in c c(K), x \in F_{0}(x)$ for $x \in K$. If $\left\{E_{t}: t \geq 0\right\}$ is a sine family associated with the family $\left\{F_{t}: t \geq 0\right\}$, then $E_{0}(x)=\{0\}$ for $x \in K$.

Lemma 10 ([5, Theorem 3], [6, Theorem 3])
Let X be a Banach space, K a closed convex cone with nonempty interior in X and let $\left\{F_{t}: t \geq 0\right\}$ and $\left\{E_{t}: t \geq 0\right\}$ be families of continuous additive set-valued functions $F_{t}: K \rightarrow c c(K), E_{t}: K \rightarrow c c(K), F_{0}(x)=\{x\}$ for $x \in K$ and $x \in F_{t}(x)$ for $x \in K$ and $t>0$. Assume that $\left\{E_{t}: t \geq 0\right\}$ is a regular sine family associated with $\left\{F_{t}: t \geq 0\right\}$. Then the set-valued function $u \mapsto F_{u}(x)$ is continuous for every $x \in K$ and

$$
E_{t}(x)=\int_{0}^{t} F_{u}(x) d u, \quad t \geq 0, x \in K
$$

A family $\left\{F_{t}: t \geq 0\right\}$ of set-valued functions $F_{t}: K \rightarrow n(K)$ is called a cosine family, if

$$
\begin{equation*}
F_{0}(x)=\{x\} \tag{10}
\end{equation*}
$$

for all $x \in K$ and

$$
\begin{equation*}
F_{t+s}(x)+F_{t-s}(x)=2 F_{t}\left(F_{s}(x)\right), \tag{11}
\end{equation*}
$$

whenever $0 \leq s \leq t$ and $x \in K$.
A cosine family $\left\{F_{t}: t \geq 0\right\}$ of set-valued functions with compact values is called regular if $\lim _{t \rightarrow 0^{+}} F_{t}(x)=\{x\}$ (cf. [13]).

Lemma 11 ([8, Theorem])
Let K be a closed convex cone with nonempty interior in a Banach space X. Suppose that $\left\{F_{t}: t \geq 0\right\}$ is a regular cosine family of continuous linear set-valued functions $F_{t}: K \rightarrow c c(K), x \in F_{t}(x)$ for all $x \in K, t>0$ and $F_{t} \circ F_{s}=F_{s} \circ F_{t}$ for all $s, t>0$. Then this cosine family is twice differentiable and

$$
\begin{equation*}
D^{2} F_{t}(x)=F_{t}(H(x)) \quad \text { and }\left.\quad D F_{t}(x)\right|_{t=0}=\{0\} \tag{12}
\end{equation*}
$$

for $x \in K, t \geq 0$, where $D F_{t}(x)$ and $D^{2} F_{t}(x)$ denote the Hukuhara derivative and the second Hukuhara derivative of $F_{t}(x)$ with respect to t, respectively, and $H(x)=\left.D^{2} F_{t}(x)\right|_{t=0}$.

We shall need some further properties of the Hukuhara derivative and of the Riemann integral.

Lemma 12 ([14, Lemma 3])
Let K be a closed convex cone in a linear space X. Assume that $F: K \rightarrow c c(K)$ is a continuous additive set-valued function and $A, B \in c c(K)$. If there exists the difference $A-B$, then there exists $F(A)-F(B)$ and $F(A)-F(B)=F(A-B)$.

Lemma 13

Let K be a closed convex cone in X and $[a, b] \subset \mathbb{R}$ be a given interval. Let $F: K \rightarrow c c(K)$ be a continuous additive set-valued function and $G:[a, b] \rightarrow c c(K)$ be a differentiable set-valued function. Then $D(F \circ G(t))$ exists and $D(F \circ G(t))=$ $F \circ D G(t)$.

Proof. By the definition of the Hukuhara derivative and Lemma 12

$$
D(F \circ G)(t)=\lim _{s \rightarrow t^{+}} \frac{F \circ G(s)-F \circ G(t)}{s-t}=\lim _{s \rightarrow t^{+}} \frac{F[G(s)-G(t)]}{s-t}
$$

Since F is linear and continuous we have

$$
\lim _{s \rightarrow t^{+}} \frac{F[G(s)-G(t)]}{s-t}=F\left(\lim _{s \rightarrow t^{+}} \frac{G(s)-G(t)}{s-t}\right)=F \circ D G(t)
$$

(see Lemma 8 and [13, Lemma 6]). We use the same reasoning when s converges to t from the left.

Lemma 14
Let K be a convex cone with nonempty interior in a Banach space and let $\left\{F_{t}: t \geq\right.$ $0\}$ be a regular cosine family of continuous additive set-valued functions $F_{t}: K \rightarrow$ $c c(K)$ such that $F_{t} \circ F_{s}=F_{s} \circ F_{t}$ for all $s, t \geq 0$. Assume that $\Phi: K \rightarrow c c(K)$ is continuous additive and $F_{t} \circ \Phi=\Phi \circ F_{t}$ for all $t \geq 0$. Then

$$
\left(\int_{0}^{s} F_{u}(\cdot) d u\right)(\Phi(x))=\int_{0}^{s} F_{u}(\Phi(x)) d u
$$

Proof. First we shall prove that

$$
\left(F_{\frac{s}{4}}+F_{\frac{3 s}{4}}\right)(\Phi(x))=F_{\frac{s}{4}}(\Phi(x))+F_{\frac{3 s}{4}}(\Phi(x)) .
$$

Indeed, since $\left\{F_{t}: t \geq 0\right\}$ is a cosine family, by (11) and the commutativity of Φ and all F_{t} we have

$$
\begin{aligned}
\left(F_{\frac{s}{4}}+F_{\frac{3 s}{4}}\right)(\Phi(x)) & =\left(F_{\frac{s}{2}-\frac{s}{4}}+F_{\frac{s}{2}+\frac{s}{4}}\right)(\Phi(x))=2\left(F_{\frac{s}{2}} \circ F_{\frac{s}{4}}\right)(\Phi(x)) \\
& =\Phi\left(2 F_{\frac{s}{2}} \circ F_{\frac{s}{4}}(x)\right)=\Phi\left(F_{\frac{s}{4}}(x)+F_{\frac{3 s}{4}}(x)\right) \\
& =\Phi\left(F_{\frac{s}{4}}(x)\right)+\Phi\left(F_{\frac{s}{4}}(x)\right) \\
& =F_{\frac{s}{4}}(\Phi(x))+F_{\frac{3 s}{4}}(\Phi(x)) .
\end{aligned}
$$

Let us now assume that for some positive integer n and for all $x \in K$ we have

$$
\begin{equation*}
\left(\sum_{i=0}^{2^{n}-1} F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}\right) s}\right)(\Phi(x))=\sum_{i=0}^{2^{n}-1} F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}\right) s}(\Phi(x)) \tag{13}
\end{equation*}
$$

Then, by (11) we obtain

$$
\begin{aligned}
& \left(\sum_{i=0}^{2^{n+1}-1} F_{\left(\frac{1}{2^{n+2}}+\frac{i}{2^{n+1}}\right) s}\right)(\Phi(x)) \\
& \quad=\left(\sum_{i=0}^{2^{n}-1}\left[F_{\left(\frac{1}{2^{n+2}}+\frac{2 i+1}{2^{n+1}}\right) s}+F_{\left(\frac{1}{2^{n+2}}+\frac{2 i}{2^{n+1}}\right) s}\right]\right)(\Phi(x)) \\
& \quad=\left(\sum _ { i = 0 } ^ { 2 ^ { n } - 1 } \left[F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}+\frac{1}{2^{n+2}}\right) s}+F_{\left.\left.\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}-\frac{1}{2^{n+2}}\right) s\right]\right)(\Phi(x))} \quad=\left(\sum_{i=0}^{2^{n}-1} 2\left[F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}\right) s} \circ F_{\frac{s}{2^{n+2}}}\right]\right)(\Phi(x)) .\right.\right.
\end{aligned}
$$

From the commutativity of F_{t}, F_{s} and Φ and (13), on account of the fact that Φ and F_{t} are additive we have

$$
\begin{aligned}
& \left(\sum_{i=0}^{2^{n}-1} 2\left[F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}\right) s} \circ F_{\frac{s}{2^{n+2}}}\right]\right)(\Phi(x)) \\
& \quad=F_{\frac{s}{2^{n+2}}}\left[\left(\sum_{i=0}^{2^{n}-1} 2 F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}\right) s}\right)(\Phi(x))\right]=F_{\frac{s}{2^{n+2}}}\left[\sum_{i=0}^{2^{n}-1} 2 F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}\right) s}(\Phi(x))\right] \\
& \quad=\Phi\left[\sum_{i=0}^{2^{n}-1} 2 F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}\right) s} \circ F_{\frac{s}{2^{n+2}}}(x)\right] .
\end{aligned}
$$

Again using (11) and the commutativity we get

$$
\begin{aligned}
& \Phi\left[\sum_{i=0}^{2^{n}-1} 2 F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}\right) s} \circ F_{\frac{s}{2^{n+2}}}(x)\right] \\
& \quad=\Phi\left[\sum_{i=0}^{2^{n}-1} F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}+\frac{1}{2^{n+2}}\right) s}(x)+F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}-\frac{1}{2^{n+2}}\right) s}(x)\right] \\
& \quad=\sum_{i=0}^{2^{n}-1}\left[F_{\left(\frac{1}{2^{n+2}}+\frac{2 i+1}{\left.2^{n+1}\right) s}\right.}(\Phi(x))+F_{\left(\frac{1}{2^{n+2}}+\frac{2 i}{2^{n+1}}\right) s}(\Phi(x))\right] \\
& \quad=\sum_{i=0}^{2^{n+1}-1} F_{\left(\frac{1}{2^{n+2}}+\frac{i}{2^{n+1}}\right) s}(\Phi(x)) .
\end{aligned}
$$

Hence we have proved equality (13) for all positive integers n. Multiplying both sides of it by $\frac{s}{2^{n}}$ we get

$$
\left(\sum_{i=0}^{2^{n}-1} \frac{s}{2^{n}} F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}\right) s}\right)(\Phi(x))=\sum_{i=0}^{2^{n}-1} \frac{s}{2^{n}} F_{\left(\frac{1}{2^{n+1}}+\frac{i}{2^{n}}\right) s}(\Phi(x))
$$

Since $\left\{F_{t}: t \geq 0\right\}$ is regular, it is continuous (cf. Theorem 2 in [13]) and therefore integrable. Hence letting n tend to infinity in the above equality, by Lemma 5 in [11] we obtain the result.

The following theorem gives the solution of the problem (1) in two special cases.

Theorem 3

Let K be a closed convex cone with nonempty interior in a Banach space. Let $\left\{F_{t}: t \geq 0\right\}$ be a regular cosine family of continuous additive set-valued functions $F_{t}: K \rightarrow c c(K)$ such that $x \in F_{t}(x)$ for all $x \in K, t \geq 0, F_{t} \circ F_{s}=F_{s} \circ F_{t}$ for all $s, t \geq 0$ and $H(x)$ is the second Hukuhara derivative of $F_{t}(x)$ at $t=0$.
(a) Assume that there is $G(x)=\{0\}$ in problem (1). Then $\Phi(t, x)=F \circ F_{t}(x)$, $(t, x) \in[0, \infty) \times K$ is the unique solution of this problem.
(b) Let $\left\{E_{t}: t \geq 0\right\}$ be a regular sine family of continuous additive set-valued functions $E_{t}: K \rightarrow c c(K)$ associated with $\left\{F_{t}: t \geq 0\right\}$. Assume that $F_{t} \circ H=H \circ F_{t}$ for all $t \geq 0$ and there is $F(x)=\{0\}$ in problem (1). Then $\Phi(t, x)=G \circ E_{t}(x),(t, x) \in[0, \infty) \times K$ is the unique solution of this problem.

Proof. (a) From Lemmas 11 and 13 the set-valued function Φ fulfills equality (1). The initial conditions

$$
\Phi(0, x)=F(x),\left.\quad D \Phi(t, x)\right|_{t=0}=\{0\}
$$

are satisfied on account of (10) and (12). By Theorem 2 this solution is unique.
(b) First we shall prove that the set-valued function $(t, x) \mapsto E_{t}(x)$ satisfies (1). From Lemma 10 we have $D E_{t}(x)=F_{t}(x)$ and therefore

$$
D^{2} E_{t}(x)=D F_{t}(x)=: G_{t}(x), \quad H_{t}(x):=D^{2} F_{t}(x)=D G_{t}(x)
$$

Since $G_{0}(x)=\{0\}$ and $H_{t}(x)=F_{t}(H(x))$ (cf. Lemma 11), from Lemma 14 we obtain

$$
\begin{aligned}
D^{2} E_{t}(x) & =G_{t}(x)=\int_{0}^{t} H_{u}(x) d u=\int_{0}^{t} F_{t}(H(x)) d u=\left(\int_{0}^{t} F_{t}(\cdot) d u\right)(H(x)) \\
& =E_{t}(H(x))
\end{aligned}
$$

By Lemma 13

$$
D^{2} \Phi(t, x)=D^{2}\left(G \circ E_{t}(x)\right)=G \circ D^{2} E_{t}(x)=G \circ E_{t}(H(x))=\Phi(t, H(x)) .
$$

Of course

$$
\Phi(0, x)=G \circ E_{0}(x)=\{0\}
$$

and

$$
\left.D \Phi(t, x)\right|_{t=0}=\left.G \circ D E_{t}(x)\right|_{t=0}=G\left(F_{0}(x)\right)=G(x) .
$$

A simple corollary of Theorem 3 is the following

Corollary 1

Under assumptions of Theorem 3, if $F_{t} \circ H=H \circ F_{t}$ for all $t \geq 0$ and the map $H(x)$ is single-valued, then the set-valued function $\Phi(t, x)=F \circ F_{t}(x)+G \circ E_{t}(x)$ is the unique solution of problem (1).

Proof. By Theorem 3 we have

$$
D^{2} \Phi(t, x)=D^{2}\left(F \circ F_{t}(x)\right)+D^{2}\left(G \circ E_{t}(x)\right)=F \circ F_{t}(H(x))+G \circ E_{t}(H(x)) .
$$

Therefore, since H is single-valued, we obtain

$$
D^{2} \Phi(t, x)=\left(F \circ F_{t}+G \circ E_{t}\right)(H(x))=\Phi(t, H(x)) .
$$

It is easy to see that Φ fulfills also the initial conditions.

References

[1] C. Berge, Topological Spaces, Oliver and Boyd, Edinburgh and London, 1963.
[2] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, 580, Springer-Verlag, Berlin-New York, 1977.
[3] A. Dinghas, Zum Minkowskischen Integralbegriff abgeschlossener Mengen, Math. Z. 66 (1956), 173-188.
[4] M. Hukuhara, Intégration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 205-223.
[5] E. Mainka-Niemczyk, Some properties of set-valued sine families, Opuscula Math. 32 (2012), 157-168.
[6] E. Mainka-Niemczyk, Integral representation of set-valued sine families, J. Appl. Anal. (to appear).
[7] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Łódz., Mat. 559, Rozprawy Nauk. 114, 1989.
[8] M. Piszczek, Second Hukuhara derivative and cosine family of linear set-valued functions, Annales Acad. Paed. Crac. Stud. Math. 5 (2006), 87-98.
[9] M. Piszczek, On multivalued cosine families, J. Appl. Anal. 13 (2007), 57-76.
[10] M. Piszczek, On a multivalued second order differential problem with Hukuhara derivative, Opuscula Math. 28 (2008), 151-161.
[11] M. Piszczek, On multivalued iteration semigroups, Aequationes Math. 81 (2011), 97-108.
[12] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
[13] A. Smajdor, On regular multivalued cosine families, Ann. Math. Sil. 13 (1999), 271-280.
[14] A. Smajdor, Hukuhara's derivative and concave iteration semigroups of linear setvalued functions, J. Appl. Anal. 8 (2002), 297-305.
[15] A. Smajdor, On a multivalued differential problem, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 1877-1882.
[16] W. Smajdor, Superadditive set-valued functions and Banach-Steinhaus theorem, Rad. Mat. 3 (1987), 203-214.

Institute of Mathematics
Silesian University of Technology
Kaszubska 23, 44-100 Gliwice,
Poland
E-mail: Ewelina.Mainka@polsl.pl

Received: 24 November 2011; final version: 12 April 2012; available online: 10 May 2012.

