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Roman Wituªa, Edyta Hetmaniok, Damian SªotaMa's identity and its appliationsAbstrat. In the paper we distinguish the, so called, Ma’s polynomials and we

introduce connections of these polynomials with the classic Cauchy polyno-
mials and the Ferrers-Jackson’s polynomials. Presented connections enable
to obtain certain interesting divisibility relations for all these three types
of polynomials and some other symmetric polynomials. Application of the
discussed identities for determining the limits of quotients of the respective
polynomials in two variables are also presented here.1. Introdution

Xinrong Ma in [1], with help of the Riordan’s group, has proved the following
identity

xn + yn + zn =

⌊n/3⌋
∑

k=0

n

n− 2k

(

n− 2k

k

)

(x+ y + z)n−3k(xyz)k (1)

for every x, y, z ∈ R satisfying the condition

xy + yz + zx = 0.

Since we have z = − xy
x+y from the last condition, the relation (1) can take the

equivalent form

Mn(x, y) = (x + y)n(xn + yn) + (−xy)n

=

⌊n/3⌋
∑

k=0

(−1)k
n

n− 2k

(

n− 2k

k

)

(x2 + xy + y2)n−3k(xy(x+ y))2k.
(2)

Polynomials Mn(x, y), for n ∈ N, will be called the Ma’s polynomials.
Identity (2) is, in some sence, an alternating version of two classic identities

formulated for the Cauchy polynomials

pn(x, y) := (x+ y)2n+1 − x2n+1 − y2n+1
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and for the Ferrers-Jackson polynomials

qn(x, y) := (x+ y)2n + x2n + y2n.

In [3] it is inductively proved that

pn(x, y) =

⌊(n−1)/3⌋
∑

k=0

2n+ 1

n− k

(

n− k

2k + 1

)

(xy(x + y))2k+1(x2 + xy + y2)n−1−3k (3)

and

qn(x, y) =

⌊n/3⌋
∑

k=0

2n

n− k

(

n− k

2k

)

(xy(x + y))2k(x2 + xy + y2)n−3k. (4)

Paolo Ribenboim in [2] has presented the other decompositions of these poly-
nomials (see chapter VII in [2]) together with their applications (for solutions of
some special cases of the Fermat’s Last Theorem).

Similarity of identity (2) to identities (3) and (4) seems to be more evident if
we pay more attention to the algebraic connections between polynomials pn, qn
and Mn. Theorem, written below, describes those connections.

Theorem 1

The following identities hold

(A) pn(x, y)qn(x, y) = p2n(x, y) + xy(x+ y)M2n−1(x, y),

(B) q2n(x, y) = q2n(x, y) + 2M2n(x, y),

(C) p2n(x, y) = q2n+1(x, y)− 2M2n−1(x, y),

(D) M2
n(x, y) = M2n(x, y) + 2(xy(x+ y))n[(x + y)n + (−1)n(xn + yn)]

= M2n(x, y) + 2(xy(x+ y))n ×

{

pn−1
2

(x, y) for n ∈ 2N− 1,

qn
2
(x, y) for n ∈ 2N,

(E) M2n+1(x, y) = (x2n+1 + y2n+1)pn(x, y) + x2(2n+1) + (xy)2n+1 + y2(2n+1),

(F) M2n(x, y) = (x2n + y2n)qn(x, y)− x4n − (xy)2n − y4n.

All proofs of the above identities can be obtained with the aid of simple algebra.
Therefore we present only few of them.

Proof. By definitions of pn, qn and Mn we get

pn(x, y)qn(x, y) = (x+ y)4n+1 − (x+ y)2n(x2n+1 + y2n+1)

+ (x+ y)2n+1(x2n + y2n)− (x2n + y2n)(x2n+1 + y2n+1)

= p2n(x, y) + (x+ y)2n(xy2n + yx2n)− x2ny2n+1 − y2nx2n+1

= p2n(x, y) + xy(x+ y)M2n−1(x, y)

which is the (A) identity,
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p2n(x, y) = (x+ y)4n+2 − 2(x2n+1 + y2n+1)(x+ y)2n+1

+ x4n+2 + y4n+2 + 2(xy)2n+1

= q2n+1(x, y)− 2M2n−1(x, y)

which is the (C) identity and

(x2n+1 + y2n+1)pn(x, y)

= (x2n+1 + y2n+1)(x + y)2n+1 − (x2n+1 + y2n+1)2

= (x2n+1 + y2n+1)(x + y)2n+1 − (xy)2n+1 − (x4n+2 + (xy)2n+1 + y4n+2)

= M2n+1(x, y)− x4n+2 − (xy)2n+1 − y4n+2

which implies (E).

Our paper is devoted in principle to the application of the identities (2)–(4)
and (A)–(F) (obviously, not all of them because of the size of paper).

So, in Section 2 there are considered the divisibility relations connected with
the discussed in this paper polynomials in two variables.

In the last section of this paper we present one more important, in our opinion,
application of identities (2)–(4) for calculating the limits of quotients of the re-
spective polynomials in two variables. Let us emphasize the fact that exactly this
analytical nature of identities (2)–(4) was one of the main impulses for preparing
this paper.2. Divisibility relations

Our next three results concern some special divisibility relations. The first one
refers to the polynomials pn, qn and Mn, whereas the two others are formulated
for polynomials of the type x2n + (xy)n + y2n for n ∈ N.

We note that Theorem 2, given below, can be easily deduced from all three
decompositions (2), (3) and (4). The detailed proof will be omitted here.

Theorem 2

From identity (3) we get

(x2 ± xy + y2) | pn(x,±y) ⇐⇒ 3 ∤ (n− 1),

however, from (2) and (4) we receive

(x2 ± xy + y2) | Mn(x,±y) ⇐⇒ 3 ∤ n,

(x2 ± xy + y2) | qn(x,±y) ⇐⇒ 3 ∤ n.

Moreover, if n ≡ 1 (mod3), then

(x2 + xy + y2)4 |
(

Mn(x, y)− (−1)
n−1
3 n(x2 + xy + y2)(xy(x + y))

2(n−1)
3

)

,

(x2 + xy + y2)4 |
(

qn(x, y)− 2n(x2 + xy + y2)(xy(x + y))
2(n−1)

3

)

,

(x2 + xy + y2)3 |
(

pn(x, y)− 3(xy(x+ y))
2n+1

3

)

.
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If n ≡ 2 (mod3), then

(x2 + xy + y2)2 | Mn(x, y), (x2 + xy + y2)2 | qn(x, y), (x2 + xy + y2) | pn(x, y)

and

(x2 + x y + y2)5 |
(

Mn(x, y)− (−1)
n−2
3

n(n+ 1)

6
(x2 + xy + y2)2

×(xy(x+ y))
2(n−2)

3

)

,

(x2 + xy + y2)5 |
(

qn(x, y)−
n(2n− 1)

3
(x2 + xy + y2)2(xy(x+ y))

2(n−2)
3

)

,

(x2 + xy + y2)4 |
(

pn(x, y)− (2n+ 1)(x2 + xy + y2)(xy(x + y))
2n−1

3

)

.

If 3 | n, then

(x2 + xy + y2)2 | pn(x, y)

and

(x2 + xy + y2)5 |
(

pn(x, y)−
1

3
n(2n+ 1)(x2 + xy + y2)2(xy(x + y))

2n−3
3

)

.

Furthermore, by using identities (E) and (F) from Theorem 1 and by applying
Theorem 2 we obtain two following results.

Theorem 3

(1) If 3 | n, then there exists a polynomial θn(x, y) ∈ Q[x, y] such that

x4n + (xy)2n + y4n

= (x2 + xy + y2)3θn(x, y) + 3(xy(x+ y))
2n
3 (x2n + y2n − (xy(x + y))

2n
3 ).

Additionally, if we assume that x2 + xy + y2 = 0, then we have

x4n + (xy)2n + y4n

= 3(xy(x+ y))
2n
3 (x2n + y2n − (xy(x + y))

2n
3 ) = 3x4n = 3y4n.

(5)

(2) If n ≡ 1 (mod 3), then

(x2 + xy + y2) | (x4n + (xy)2n + y4n), (6)

(x2 + xy + y2)2 |
(

x4n + (xy)2n + y4n − 2n(x2n + y2n)

×(x2 + xy + y2)(xy(x + y))
2
3 (n−1)

)

,
(7)

(x2 + xy + y2)4 |
(

x4n + (xy)2n + y4n − 2n(x2 + xy + y2)

×(xy(x+ y))
2
3 (n−1)

(

x2n + y2n −
2n+ 1

6
(x2 + xy + y2)

×(xy(x+ y))
2
3 (n−1)

))

.

(8)
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(3) If n ≡ 2 (mod 3), then

(x2 + xy + y2) | (x4n + (xy)2n + y4n), (9)

(x2 + xy + y2)2 |
(

x4n + (xy)2n + y4n − 2n(x2 + xy + y2)

×(xy(x+ y))
2
3 (2n−1)

)

,
(10)

(x2 + xy + y2)4 |
(

x4n + (xy)2n + y4n − 2n(x2 + xy + y2)

×(xy(x+ y))
2
3 (2n−1)

−
1

3
n(2n− 1)(x2 + xy + y2)2(xy(x + y))

2
3 (n−2)

)

.

(11)

Proof. (1) From (F) we obtain

x4n + (xy)2n + y4n

= (x2n + y2n)qn(x, y)−M2n(x, y)

(2),(4)
= (x2n + y2n)

(

3(xy(x+ y))
2n
3

+ 2
(n

3

)2(2n

3
− 1
)

(xy(x + y))
2n−6

3 (x2 + xy + y2)3 + . . .
)

− 3(xy(x+ y))
4n
3 + 2

(n

3

)2(2n

3
+ 1
)

(xy(x + y))
4n−6

3 (x2 + xy + y2)3 − . . .

= 3(xy(x+ y))
2n
3

(

x2n + y2n − (xy(x + y))
2n
3

)

+ (x2 + xy + y2)3θn(x, y),

where θn(x, y) is a certain polynomial belonging to the family Q[x, y].
For proving relation (5) we will need the following lemma.

Lemma 4

If x2 + xy + y2 = 0, then x2n + y2n = 2(xy)n cos(23πn) for n ∈ N. Moreover, if

y = ei
2
3πx, then x+ y = ei

π
3 x and xy = (ei

π
3 x)2.

Proof. First, let us set x2n + y2n = Gn(xy)
n, where Gn ∈ C for n ∈ N. Thus

we obtain

x2 + y2 = −(xy), x4 + 2(xy)2 + y4 = (xy)2 =⇒ x4 + y4 = −(xy)2,

i.e., G1 = G2 = −1.
Generally, we have

x2(n+1) + y2(n+1) = (x2 + y2)(x2n + y2n)− (xy)2(x2(n−1) + y2(n−1))

= −xyGn(xy)
n − (xy)2Gn−1(xy)

n−1

= −(Gn +Gn−1)(xy)
n+1,

i.e., Gn+1 +Gn +Gn−1 = 0, which easily implies Gn = 2 cos(23πn) for n ∈ N.

Next, if y = ei
2
3πx, then y + x = (1 + ei

2
3π)x = 2 cos π

3 e
iπ3 x = ei

π
3 x and

xy = (ei
π
3 x)2.
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Now, let us present the proof of relation (5). If x2+xy+y2 = 0 and y = ei

2
3πx,

then, by Lemma 4, we get

x2n + y2n = 2(xy)n cos
(2

3
πn
)

= 2(ei
π
3 x)2n = 2x2n

and
(xy(x + y))

2n
3 = (eiπx3)

2n
3 = ei

2nπ
3 x2n = x2n.

Thus we have

(xy(x + y))
2n
3

(

x2n + y2n − (xy(x + y))
2n
3

)

= x2n(2x2n − x2n) = x4n.

(2) Similarly as in the previous case we generate the relation

x4n + (xy)2n + y4n

= (x2n + y2n)qn(x, y)−M2n(x, y)

(2),(4)
= (x2n + y2n)

(

2n(x2 + xy + y2)(xy(x + y))
2
3 (n−1)

+
n

2

(2n+1
3

3

)

(x2 + xy + y2)4(xy(x+ y))
2
3 (n−4) + . . .

)

−
n

3
(2n+ 1)(x2 + xy + y2)2(xy(x + y))

4
3 (n−1)

+
2n

5

( 2n+7
3

4

)

(x2 + xy + y2)5(xy(x + y))
2
3 (2n−5) − . . .

which easily implies all three divisibility relations (6), (7) and (8).

(3) We have

x4n + (xy)2n + y4n

= (x2n + y2n)qn(x, y)−M2n(x, y)

(2),(4)
= (x2n + y2n)

(n

3
(2n− 1)(x2 + xy + y2)2(xy(x+ y))

2
3 (n−2)

+
2n

5

(2
3 (n+ 1)

4

)

(x2 + xy + y2)5(xy(x + y))
2
3 (n−5) + . . .

)

− 2n(x2 + xy + y2)(xy(x + y))
2
3 (2n−1)

+
n

2

(2n+5
3

3

)

(x2 + xy + y2)4(xy(x + y))
2
3 (2n−4) − . . .

which implies the relations (9), (10) and (11).

Theorem 5

(1) If n ≡ 1 (mod 3), then there exists a polynomial Ψn(x, y) ∈ Q[x, y] such that

x2(2n+1) + (xy)2n+1 + y2(2n+1)

= (x2 + xy + y2)3Ψn(x, y)

− 3(xy(x+ y))
2n+1

3

(

(xy(x + y))
2n+1

3 + x2n+1 + y2n+1
)

.
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Additionally, if we assume that x2 + xy + y2 = 0 and y = ei

2
3πx, then

x2(2n+1) + (xy)2n+1 + y2(2n+1)

= −3(xy(x+ y))
2n+1

3

(

(xy(x + y))
2n+1

3 + x2n+1 + y2n+1
)

= 3x4n+2

= 3y4n+2.

(2) If 3 | n, then we have

(x2 + xy + y2) | (x2(2n+1) + (xy)2n+1 + y2(2n+1)),

(x2 + xy + y2)2 |
(

x2(2n+1) + (xy)2n+1 + y2(2n+1) − (2n+ 1)

×(x2 + xy + y2)(xy(x + y))
4
3n
)

,

(x2 + xy + y2)4 |
(

x2(2n+1) + (xy)2n+1 + y2(2n+1)

−(2n+ 1)(x2 + xy + y2)(xy(x + y))
4
3n

+
1

3
n(2n+ 1)(x2n+1 + y2n+1)(x2 + xy + y2)2(xy(x+ y))

2
3n
)

.

(3) If n ≡ 2 (mod 3), then we have

(x2 + xy + y2) | (x2(2n+1) + (xy)2n+1 + y2(2n+1)),

(x2 + xy + y2)2 |
(

x2(2n+1) + (xy)2n+1 + y2(2n+1) + (2n+ 1)

×(x2n+1 + y2n+1)(x2 + xy + y2)(xy(x + y))
2n−1

3

)

,

(x2 + xy + y2)4 |
(

x2(2n+1) + (xy)2n+1 + y2(2n+1)

+(2n+ 1)(x2n+1 + y2n+1)(x2 + xy + y2)(xy(x + y))
2n−1

3

+
1

3
(n+ 1)(2n+ 1)(x2 + xy + y2)2(xy(x + y))

4n−2
3

)

.

Proof of Theorem 5 runs in the similar way as the proof of Theorem 3 and will
be omitted here.

Corollary 6

The following relation holds true

(x2 + xy + y2) | (x2n + (xy)n + y2n) ⇐⇒ 3 ∤ n.

We note that

(x2 − xy + y2) | (x2n − (xy)n + y2n) ⇐⇒ n is odd and 3 ∤ n.3. Limits of quotients of polynomials
The following three sequences of limits hold
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(i)

lim
x,y∈C\{0}, θ:=y/x,

1+θ+θ2 6=0,

(θ+θ2)2

(1+θ+θ2)3
→g

qn(x, y)

(x2 + x y + y2)n
=

⌊n/3⌋
∑

k=0

2n

n− k

(

n− k

2k

)

gk,

lim
−q−

( qn(x, y)

(x2 + x y + y2)n
− 2
)

=

⌊n/3⌋
∑

k=1

2n

n− k

(

n− k

2k

)

gk,

lim
−q−

( qn(x, y)

(x2 + x y + y2)n
− 2− n(n− 2)g

)

=

⌊n/3⌋
∑

k=2

2n

n− k

(

n− k

2k

)

gk,

etc.

Sketch of the proof. From (4) we get

qn(x, y)

(x2 + xy + y2)n
=

⌊n/3⌋
∑

k=0

2n

n− k

(

n− k

2k

)

(

(

y
x

(

1 + y
x

))2

(

1 + y
x +

(

y
x

)2)3

)k

,

which easily implies the final relations.

(ii)

lim
−q−

Mn(x, y)

(x2 + xy + y2)n
=

⌊n/3⌋
∑

k=0

(−1)k
n

n− 2k

(

n− 2k

k

)

gk,

lim
−q−

( Mn(x, y)

(x2 + xy + y2)n
− 1
)

=

⌊n/3⌋
∑

k=1

(−1)k
n

n− 2k

(

n− 2k

k

)

gk,

lim
−q−

( Mn(x, y)

(x2 + xy + y2)n
− 1 + n g

)

=

⌊n/3⌋
∑

k=2

(−1)k
n

n− 2k

(

n− 2k

k

)

gk,

etc.

Sketch of the proof. From (2) we obtain

Mn(x, y)

(x2 + xy + y2)n
=

⌊n/3⌋
∑

k=0

(−1)k
n

n− 2k

(

n− 2k

k

)

(

(

y
x

(

1 + y
x

))2

(

1 + y
x +

(

y
x

)2)3

)k

,

which implies the above relations.

(iii)

lim
x,y∈C\{0}, x+y 6=0,

θ:=y/x, 1+θ+θ2 6=0,

(θ+θ2)2

(1+θ+θ2)3
→g

pn(x, y)

xy(x + y)(x2 + xy + y2)n−1
=

⌊(n−1)/3⌋
∑

k=0

2n+ 1

n− k

(

n− k

2k + 1

)

gk,

lim
−q−

( pn(x, y)

xy(x+ y)(x2 + xy + y2)n−1
− 2n− 1

)

=

⌊(n−1)/3⌋
∑

k=1

2n+ 1

n− k

(

n− k

2k + 1

)

gk,
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lim
−q−

( pn(x, y)

xy(x+ y)(x2 + xy + y2)n−1
− 2n− 1−

1

6
(2n+ 1)(n− 2)(n− 3)g

)

=

⌊(n−1)/3⌋
∑

k=2

2n+ 1

n− k

(

n− k

2k + 1

)

gk,

etc.

Sketch of the proof. Immediately from (3) we obtain

pn(x, y)

xy(x+ y)(x2 + xy + y2)n−1

=

⌊(n−1)/3⌋
∑

k=0

(−1)k
2n+ 1

n− k

(

n− k

2k + 1

)

(

(

y
x

(

1 + y
x

))2

(

1 + y
x +

(

y
x

)2)3

)k

,

which implies our limits.
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