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Ja
ek DziokClasses of multivalent analyti
 fun
tions with Montel'snormalizationAbstra
t. In this paper we define classes of functions with Montel’s normal-

ization. We investigate the coefficients estimates, distortion properties, the
radii of starlikeness and convexity, subordination theorems, partial sums and
integral means inequalities for the defined classes of functions. Some remarks
depicting consequences of the main results are also mentioned.1. Introdu
tion and basi
 notations

Let A denote the class of functions which are analytic in U = U(1), where

U(r) = {z ∈ C : |z| < r}

is an open disc and let A(p, k) (p, k ∈ N = {1, 2, 3, . . .}, p < k) denote the class of
functions f ∈ A of the form

f(z) = apz
p +

∞
∑

n=k

anz
n (z ∈ U ; ap > 0). (1)

For a multivalent function f ∈ A(p, k) the normalization
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is classical. One can obtain interesting results by applying Montel’s normalization
(cf. [11]) of the form
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∣

∣

∣

∣
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= p, (2)

where ρ = |ρ|eiη is a fixed point of the unit disk U .
We denote by Aρ(p, k) the class of functions f ∈ A(p, k) with Montel’s nor-

malization (2) and call it the class of functions with two fixed points.
Also, by T η(p, k) (η ∈ R) we denote the class of functions f ∈ A(p, k) for
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which all of non-vanishing coefficients an satisfy the condition

arg(an) = π + (p− n)η (n = k, k + 1, . . .). (3)

For η = 0 we obtain the class T 0(p, k) of functions with negative coefficients.
Moreover, we define

T (p, k) :=
⋃

η∈R

T η(p, k).

The classes T (p, k) and T η(p, k) are called the classes of functions with varying
argument of coefficients. The class T (1, 2) was introduced by Silverman [16] (see
also [22]).

Let α ∈ 〈0, p), r ∈ (0, 1〉. A function f ∈ A(p, k) is said to be convex of order

α in U(r) if

Re

(

1 +
zf ′′(z)

f ′(z)

)

> α (z ∈ U(r)).

A function f ∈ A(p, k) is said to be starlike of order α in U(r) if

Re

(

zf ′(z)

f(z)

)

> α (z ∈ U(r)). (4)

We denote by Sc
p(α) the class of all functions f ∈ A(p, p + 1), which are convex

of order α in U and by S∗
p (α) we denote the class of all functions f ∈ A(p, p + 1)

which are starlike of order α in U .
It is easy to show that for a function f from the class T (p, k) the condition (4)

is equivalent to the following condition

∣

∣

∣

∣

zf ′(z)

f(z)
− p

∣

∣

∣

∣

< p− α (z ∈ U(r)). (5)

Let B be a subclass of the class A(p, k). We define the radius of starlikeness

of order α and the radius of convexity of order α for the class B by

R∗
α(B) = inf

f∈B
{sup{r ∈ (0, 1] : f is starlike of order α in U(r)}} ,

Rc
α(B) = inf

f∈B
{sup{r ∈ (0, 1] : f is convex of order α in U(r)}} ,

respectively.
We say that a function f ∈ A is a subordinate to a function F ∈ A and write

f(z) ≺ F (z) (or simply f ≺ F ), if and only if there exists a function ω ∈ A
(ω(0) = 0, |ω(z)| < 1, z ∈ U), such that

f(z) = F (ω(z)) (z ∈ U).

In particular, if F is univalent in U , we have the following equivalence

f(z) ≺ F (z) ⇐⇒ [f(0) = F (0) ∧ f(U) ⊂ F (U)].
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For functions f, g ∈ A of the form

f(z) =

∞
∑

n=0

anz
n and g(z) =

∞
∑

n=0

bnz
n,

by f ∗ g we denote the Hadamard product (or convolution) of f and g, defined by

(f ∗ g)(z) =
∞
∑

n=0

anbnz
n (z ∈ U).

Let A,B, δ be real parameters, δ ≥ 0, 0 ≤ B ≤ 1, −1 ≤ A < B, and let
ϕ, φ ∈ A(p, k).

By W(p, k;φ, ϕ;A,B; δ) we denote the class of functions f ∈ A(p, k) such that

(ϕ ∗ f)(z) 6= 0 (z ∈ U \ {0}) (6)

and
(φ ∗ f)(z)

(ϕ ∗ f)(z)
− δ
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∣

∣
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(ϕ ∗ f)(z)
− 1
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∣

∣

∣

≺
1 +Az

1 +Bz
. (7)

If 0 < B < 1, then the condition (7) is equivalent to the following inequality
∣
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∣
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(ϕ ∗ f)(z)
− δ
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∣

∣
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∣

∣

∣

∣

−
1−AB

1−B2

∣

∣

∣

∣

∣

<
B −A

1−B2
(z ∈ U), (8)

and if B = 1, then it is equivalent to the following

δ

∣

∣

∣

∣

(φ ∗ f)(z)

(ϕ ∗ f)(z)
− 1

∣

∣

∣

∣

− Re

{

(φ ∗ f)(z)

(ϕ ∗ f)(z)
− 1

}

<
1−A

2
(z ∈ U). (9)

Now, we define the classes of functions with varying argument of coefficients related
to the class W(p, k;φ, ϕ;A,B; δ). Let us denote

Wρ(p, k;φ, ϕ;A,B; δ) := Aρ(p, k) ∩W(p, k;φ, ϕ;A,B; δ),

T Wη(p, k;φ, ϕ;A,B; δ) := T η(p, k) ∩W(p, k;φ, ϕ;A,B; δ),

T Wη
ρ (p, k;φ, ϕ;A,B; δ) := Aρ(p, k) ∩ T Wη(p, k;φ, ϕ;A,B; δ),

T Wρ(p, k;φ, ϕ;A,B; δ) := T (p, k) ∩Wρ(p, k;φ, ϕ;A,B; δ).

In this article we assume that ϕ, φ are functions of the form

ϕ(z) = zp +

∞
∑

n=k

αnz
n, φ(z) = zp +

∞
∑

n=k

βnz
n (z ∈ U),

where the sequences {αn}, {βn} are real, and

0 ≤ αn < βn (n = k, k + 1, . . .).

Moreover, we define

dn := (δ + 1)(1 +B)βn − (δB +A+ δ + 1)αn (n = k, k + 1, . . .). (10)
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The family W(p, k;φ, ϕ;A,B; δ) unifies various new and also well-known classes

of analytic functions. We list a few of them in the last section.
The objective of the present paper is to study the coefficients estimates, dis-

tortion properties, the radii of starlikeness and convexity, subordination theorems,
partial sums and integral means inequalities for the classes of functions with vary-
ing argument of coefficients. Some remarks depicting consequences of the main
results are also mentioned.2. Coeffi
ients estimates

First we mention a sufficient condition for the function to belong to the class
W(p, k;φ, ϕ;A,B; δ).

Theorem 2.1
Let 0 ≤ B ≤ 1 and −1 ≤ A < B. If f ∈ Aρ(p, k) and

∞
∑

n=k

dn|an| ≤ (B − A)ap, (11)

then f ∈ W(p, k;φ, ϕ;A,B; δ).

Proof. If 0 ≤ B < 1, then we have
∣

∣

∣

∣

(φ ∗ f)(z)

(ϕ ∗ f)(z)
− δ

∣

∣

∣

∣

(φ ∗ f)(z)

(ϕ ∗ f)(z)
− 1

∣

∣

∣

∣

−
1−AB

1−B2

∣

∣

∣

∣

≤ (δ + 1)

∣

∣

∣

∣

(φ ∗ f)(z)

(ϕ ∗ f)(z)
− 1

∣

∣

∣

∣

+
B(B −A)

1−B2

≤ (δ + 1)

∑∞

n=k(βn − αn)|an||z|
n−p

ap −
∑∞

n=k αn|an||z|n−p
+

B(B −A)

1−B2
.

Thus, by (11) we obtain (8) and consequently f ∈ W(p, k;φ, ϕ;A,B; δ). Let now
B = 1. Then simply calculations give

δ

∣

∣

∣

∣

(φ ∗ f)(z)

(ϕ ∗ f)(z)
− 1

∣

∣

∣

∣

− Re

{

(φ ∗ f)(z)

(ϕ ∗ f)(z)
− 1

}

≤ (δ + 1)

∣

∣

∣

∣

(φ ∗ f)(z)

(ϕ ∗ f)(z)
− 1

∣

∣

∣

∣

≤ (δ + 1)

∑∞

n=k(βn − αn)|an||z|
n−p

ap −
∑∞

n=k αn|an||z|n−p
,

and, by (11) we obtain (9). Hence f ∈ W(p, k;φ, ϕ;A,B; δ) and the proof is
complete.

Our next theorem shows that the condition (11) is necessary for functions of
the form (1), with property (3) to belong to the class T Wη(p, k;φ, ϕ;A,B; δ).

Theorem 2.2
Let f ∈ T η(p, k). Then f ∈ T Wη(p, k;φ, ϕ;A,B; δ) if and only if the condition

(11) holds true.
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Proof. In the view of Theorem 2.1 we need only to show that each function f ∈

T Wη(p, k;φ, ϕ;A,B; δ) satisfies the coefficient inequality (11). Let f ∈ T Wη(p, k;
φ, ϕ;A,B; δ). Putting z = reiη in the conditions (8) and (9) we obtain

(δ + 1)

∑∞

n=2(βn − αn)|an|r
n−p

ap −
∑∞

n=2 αn|an|rn−p
<

B −A

1 +B
.

Thus, by (6) we have
∞
∑

n=2

dn|an|r
n−p < (B −A)ap,

which, upon letting r → 1−, readily yields the assertion (11).

From Theorem 2.2 we can deduce the following result.

Theorem 2.3
Let f ∈ T η(p, k). Then f ∈ T Wη

ρ(p, k;φ, ϕ;A,B; δ) if and only if it satisfies (2)
and

∞
∑

n=k

(

pdn − (B −A)
n

p
|ρ|n−p

)

|an| ≤ B −A. (12)

Proof. For a function f ∈ T η(p, k) with the normalization (2) we have

ap = 1 +

∞
∑

n=k

n

p
|an||ρ|

n−p. (13)

Then the conditions (11) and (12) are equivalent.

From Theorem 2.3 we obtain the following lemma.

Lemma 2.4
If there exists an integer n0 ∈ Nk = {k, k + 1, . . .} such that

pdn0
− (B −A)n0|ρ|

n0−p ≤ 0,

then the function

fn0
(z) =

(

1 + a
n0

p
ρn0−p

)

zp − aei(p−n0)ηzn0 (z ∈ U)

belongs to the class T Wη
ρ(p, k;φ, ϕ;A,B; δ) for all positive real numbers a. More-

over, for all n ∈ Nk such that

pdn − (B −A)n|ρ|n−p > 0,

the functions

fn(z) =
(

1 + a
n0

p
ρn0−p + b

n

p
zn−p

)

zp − aei(p−n0)ηzn0 − bei(p−n)ηzn (z ∈ U),
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where

b =
p(B −A) + ((B −A)n0|ρ|

n0−p − pdn0
)a

pdn − (B −A)n|ρ|n−p
,

belong to the class T Wη
ρ(p, k;φ, ϕ;A,B; δ).

By Lemma 2.4 and Theorem 2.3, we have the following two corollaries.

Corollary 2.5
Let

pdn − (B −A)n|ρ|n−p ≥ 0 (n = k, k + 1, . . .).

If pdn − (B −A)n|ρ|n−p > 0, then the n-th coefficient of the class T Wη
ρ(p, k;φ, ϕ;

A,B; δ) satisfies the following inequality

|an| ≤
B −A

pdn − (B −A)n|ρ|n−p
.

The result is sharp, the function fn,η of the form

fn,η(z) =
pdnz

p − p(B −A)ei(p−n)ηzn

pdn − (B −A)n|ρ|n−p
(z ∈ U) (14)

is an extremal function.

Corollary 2.6
Let {dn} be defined as in (10). If

pdn − (B −A)n|ρ|n−p = 0,

then the n-th coefficient of the class T Wη
ρ(p, k;φ, ϕ;A,B; δ) is unbounded. More-

over, if there exists n0 ∈ Nk = {k, k + 1, . . .} such that

pdn0
− (B −A)n0|ρ|

n0−p < 0,

then all of the coefficients of the class T Wη
ρ(p, k;φ, ϕ;A,B; δ) are unbounded.

Putting ρ = 0 in Theorem 2.3 and Corollary 2.5 we have the corollaries listed
below.

Corollary 2.7
Let f ∈ T η(p, k). Then f ∈ T Wη

0(p, k;φ, ϕ;A,B; δ) if and only if

∞
∑

n=k

dn|an| ≤ B −A.

Corollary 2.8
If f ∈ T Wη

0(p, k;φ, ϕ;A,B; δ), then

|an| ≤
B −A

dn
.
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The result is sharp. The functions fn,η of the form

fn,η(z) = zp −
B −A

dn
ei(p−n)ηzn (z ∈ U) (15)

are extremal.3. Distortion theorems
From Theorem 2.2 we have the following lemma.

Lemma 3.1
Let f ∈ T Wη

ρ(p, k;φ, ϕ;A,B; δ). If

0 < dk − (B −A)
k

p
|ρ|k−p ≤ dn − (B −A)

n

p
|ρ|n−p, (16)

then
∞
∑

n=k

|an| ≤
B −A

dk − (B −A)k
p
|ρ|k−p

.

Moreover, if

0 <
dk − (B −A)k

p
|ρ|k−p

k
≤

dn − (B −A)n
p
|ρ|n−p

n
, (17)

then
∞
∑

n=k

n|an| ≤
k(B −A)

dk − (B −A)k
p
|ρ|k−p

.

Remark 3.2
The second part of Lemma 3.1 may be formulated in terms of σ-neighborhood Nσ

defined by

Nσ =

{

f(z) = apz
p +

∞
∑

n=k

anz
n ∈ T η(p, k) :

∞
∑

n=k

n|an| ≤ σ

}

as the following corollary.

Corollary 3.3
If the sequence {dn} defined by (10) satisfies (17), then

T Wη
ρ (p, k;φ, ϕ;A,B; δ) ⊂ Nσ,

where

δ =
k(B − A)

dk − (B −A)k
p
|ρ|k−p

.
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Theorem 3.4
Let f ∈ T Wη

ρ(p, k;φ, ϕ;A,B; δ) and let |z| = r < 1. If the sequence {dn} satisfies

(16), then

papr
p −

B −A

dk − (B −A)k
p
|ρ|k−p

rk ≤ |f(z)| ≤
dkr

p + (B −A)rk

dk − (B −A)k
p
|ρ|k−p

. (18)

Moreover, if (17) holds, then

φ′(r) ≤ |f ′(z)| ≤
dkr

p + k(B −A)rk−1

dk − (B −A)k
p
|ρ|k−p

, (19)

where

φ(r) :=











rp (r ≤ ρ),

dkr
p − (B −A)rk

dk − (B −A)k
p
|ρ|k−p

(r > ρ).

The result is sharp, with the extremal functions fk,η of the form (14) and f(z) = z

(z ∈ U).

Proof. Suppose that f ∈ T Wη
ρ(p, k;φ, ϕ;A,B; δ). By Lemma 3.1 we have

|f ′(z)| =

∣

∣

∣

∣

papz
p−1 +

∞
∑

n=k

nanz
n−1

∣

∣

∣

∣

≤ rp−1

(

pap +

∞
∑

n=k

n|an|r
n−p

)

≤ rp−1

(

p+

∞
∑

n=k

n|an||ρ|
n−p +

∞
∑

n=k

n|an|r
n−p

)

≤ rp−1

(

p+ (|ρ|k−p + rk−p)

∞
∑

n=k

n|an|

)

≤
dkr

p−1 + k(B −A)rk

dk − (B −A)k
p
|ρ|k−p

,

and

|f ′(z)| ≥ rp−1

(

pap−

∞
∑

n=k

n|an|r
n−p

)

= rp−1

(

p+

∞
∑

n=k

(|ρ|n−p−rn−p)n|an|

)

. (20)

If r ≤ ρ, then we obtain |f ′(z)| ≥ rp−1. If r > ρ, then the sequence {(ρn−p−rn−p)}
is decreasing and negative. Thus, by (20), we obtain

|f ′(z)| ≥ rp−1

(

p− (rk−p − |ρ|k−p)
∞
∑

n=2

an

)

≥
pdkr

p − k(B −A)rk

dk − (B −A)k
p
|ρ|k−p

,

and we have the assertion (19). Making use of Lemma 3.1, in conjunction with
(13), we readily obtain the assertion (18) of Theorem 3.4.
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Corollary 3.5
Let f ∈ T Wη

0(p, k;φ, ϕ;A,B; δ). If dk ≤ dn (n = k, k + 1, . . .), then

rp −
B −A

dk
rk ≤ |f(z)| ≤ rp +

B −A

dk
rk (|z| = r < 1).

Moreover, if ndk ≤ kdn, then

prp−1 −
k(B −A)

dk
rk−1 ≤ |f ′(z)| ≤ prp−1 +

k(B −A)

dk
rk−1 (|z| = r < 1).

The result is sharp, with the extremal function fk,η of the form (15).4. The radii of 
onvexity and starlikeness
Theorem 4.1
The radius of starlikeness of order α for the class T Wη(p, k;φ, ϕ;A,B; δ) is given

by

R∗
α(T Wη(p, k;φ, ϕ;A,B; δ)) = inf

n≥k

( (p− α)dn
(n− α)(B −A)

)
1

n−p

. (21)

The functions

fn,η(z) = ap

(

zp −
B −A

dn
ei(p−n)ηzn

)

(z ∈ U ; n = k, k + 1, . . . ; ap > 0) (22)

are extremal.

Proof. A function f ∈ T η(p, k) of the form (1) is starlike of order α in the
disk U(r) if and only if it satisfies the condition (5). Let |z| = r < 1. Since

∣

∣

∣

∣

zf ′(z)

f(z)
− p

∣

∣

∣

∣

=

∣

∣

∣

∣

∑∞

n=k(n− p)anz
n

apzp +
∑∞

n=k anz
n

∣

∣

∣

∣

≤

∑∞

n=k(n− p)|an||z|
n−p

ap −
∑∞

n=k |an||z|
n−p

,

the condition (5) is true if

∞
∑

n=k

n− α

p− α
|an|r

n−p ≤ ap. (23)

By Theorem 2.2, we have
∞
∑

n=k

dn

B −A
|an| ≤ ap. (24)

Thus, the condition (23) is true if

n− α

p− α
rn−p ≤

dn

B −A
(n = k, k + 1, . . .),

that is, if

r ≤
( (p− α)dn
(n− α)(B −A)

)
1

n−p

.
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It follows that each function f ∈ T Wη(p, k;φ, ϕ;A,B; δ) is starlike of order α in
the disk U(r), where

r = inf
n≥k

( (p− α)dn
(n− α)(B −A)

)
1

n−p

.

The functions fn,η of the form (22) realize equality in (24), and the radius r cannot
be larger. Thus we have (21).

The following result may be proved in much the same way as Theorem 4.1.

Theorem 4.2
The radius of convexity of order α for the class T Wη(p, k;φ, ϕ;A,B; δ) is given

by

Rc
α(T Wη(p, k;φ, ϕ;A,B; δ)) = inf

n≥k

( (p− α)dn
n(n− α)(B −A)

)
1

n−p

.

The functions fn,η of the form (22) are the extremal functions.

It is clear that for

ap =
dn

dn − (B −A)k
p
|ρ|n−p

> 0

the extremal functions fn,η of the form (22) belong to the class T Wη
ρ(p, k;φ, ϕ;

A,B; δ). Moreover, we have

T Wη
ρ (p, k;φ, ϕ;A,B; δ) ⊂ T Wη(p, k;φ, ϕ;A,B; δ).

Thus, by Theorems 4.1 and 4.2 we have the following results.

Corollary 4.3
Let the sequence {dn − (B −A)n

p
|ρ|n−p} be positive. The radius of starlikeness of

order α for the class T Wη
ρ (p, k;φ, ϕ;A,B; δ) is given by

R∗
α(T Wη

ρ (p, k;φ, ϕ;A,B; δ)) = inf
n≥k

( (p− α)dn
(n− α)(B −A)

)
1

n−p

.

The functions fn,η of the form (22) are the extremal functions.

Corollary 4.4
Let the sequence {dn − (B − A)n

p
|ρ|n−p} be positive. The radius of convexity of

order α for the class T Wη
ρ(p, k;φ, ϕ;A,B; δ) is given by

Rc
α(T Wη

ρ (p, k;φ, ϕ;A,B; δ)) = inf
n≥k

( (p− α)dn
n(n− α)(B −A)

)
1

n−p

.
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Before stating and proving our subordination theorems for the classes T Wη(p,

k;φ, ϕ;A,B; δ) and T W(p, k;φ, ϕ;A,B; δ) we need the following definition and
lemma.

Definition 5.1
A sequence {bn} of complex numbers is said to be a subordinating factor sequence
if for each function f ∈ Sc we have

∞
∑

n=1

bnanz
n ≺ f(z) (a1 = 1).

Lemma 5.2 ([23])
The sequence {bn} is a subordinating factor sequence if and only if

Re

{

1 + 2

∞
∑

n=1

bnz
n

}

> 0 (z ∈ U). (25)

Theorem 5.3
Suppose that the sequence {dn} satisfies the inequality (16). If g ∈ Sc and f ∈
T Wη(p, k;φ, ϕ;A,B; δ), then

ε
f(z)

zp−1
∗ g(z) ≺ g(z) (26)

and

Re
f(z)

zp−1
> −

1

2ε
(z ∈ U), (27)

where

ε =
dk

2ap(B −A+ dk)
. (28)

If p and (k − p) are odd, and η = 0, then the constant factor ε cannot be replaced

by a larger number.

Proof. Let f ∈ T Wη(p, k;φ, ϕ;A,B; δ) and suppose that a function g of the
form

g(z) =

∞
∑

n=1

cnz
n (c1 = 1; z ∈ U)

belongs to the class Sc. Then

ε
f(z)

zp−1
∗ g(z) =

∞
∑

n=1

bncnz
n (z ∈ U),

where

bn =











εap if n = 1,

0 if 2 ≤ n ≤ k − p,

εan+p−1 if n > k − p.
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Thus, by Definition 5.1 the subordination result (26) holds true if {bn} is the
subordinating factor sequence. By (16) we have

Re

{

1 + 2

∞
∑

n=1

bnz
n

}

= Re

{

1 + 2εapz +

∞
∑

n=k

dk

B −A+ dk
anz

n−p

}

≥ 1− 2εr −
r

(B −A+ dk)ap

∞
∑

n=k

dn|an| (|z| = r < 1).

Thus, by Theorem 2.2 we obtain

Re

{

1 + 2

∞
∑

n=1

bnz
n

}

≥ 1−
dk

B −A+ dk
r −

B −A

B −A+ dk
r > 0.

This evidently proves the inequality (25) and hence (26). The inequality (27)
follows from (26) by taking

g(z) =
z

1− z
=

∞
∑

n=1

zn (z ∈ U).

Next, we observe that the function fk,η of the form (22) belongs to the class
T Wη(p, k;φ, ϕ;A,B; δ). If p and (k − p) are odd, and η = 0, then

fk,η(z)

zp−1

∣

∣

∣

∣

z=−1

= −
1

2ε
,

and the constant (28) cannot be replaced by any larger one.

Remark 5.4
If we use (13) in Theorem 5.3, then we obtain the result related to the class Wη

ρ (p, k;
φ, ϕ;A,B; δ). Moreover, putting ρ = 0 we have the following corollary.

Corollary 5.5
Let the sequence {dn} satisfy the inequality (16). If g ∈ Sc and f ∈ T Wη

0(p, k;φ, ϕ;
A,B; δ), then conditions (26) and (27), with

ε =
dk

2(B −A+ dk)
(29)

hold true. If p and (k − p) are odd, and η = 0, then the constant factor ε in (29)
cannot be replaced by a larger number.6. Integral means inequalities

Following Littlewood [9] we obtain integral means inequalities for the functions
from the class T Wη(p, k;φ, ϕ;A,B; δ).
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Lemma 6.1 ([9])
Let f, g ∈ A. If f ≺ g, then

2π
∫

0

|f(reiθ)|η dθ ≤

2π
∫

0

|g(reiθ)|η dθ (0 < r < 1, η > 0).

Theorem 6.2
Let the sequence {dn} satisfy the inequality (16). If f ∈ T Wη(p, p+1;φ, ϕ;A,B; δ),
then

2π
∫

0

|f(reiθ)|λ dθ ≤

2π
∫

0

|fp+1,η(re
iθ)|λ dθ (0 < r < 1, λ > 0; z = reiθ), (30)

where fp+1,η is defined by (22).

Proof. For a function f ∈ T Wη(p, p + 1;φ, ϕ;A,B; δ) the inequality (30) is
equivalent to the following inequality

2π
∫

0

∣

∣

∣

∣

ap +

∞
∑

n=p+1

anz
n−p

∣

∣

∣

∣

λ

dθ ≤

2π
∫

0

∣

∣

∣

∣

ap −
B −A

dp+1
e−iηz

∣

∣

∣

∣

λ

dθ (z = reiθ).

By Lemma 6.1, it suffices to show that

∞
∑

n=p+1

anz
n−p ≺ −

B −A

dp+1
e−iηz. (31)

If we put

w(z) = −

∞
∑

n=p+1

dp+1e
iη

B −A
an zn−p (z ∈ U),

then by (16) and Theorem 2.2 we obtain

|w(z)| =

∣

∣

∣

∣

∞
∑

n=p+1

dp+1

B −A
anz

n−p

∣

∣

∣

∣

≤ |z|

∞
∑

n=p+1

dn

B −A
|an| ≤ |z| (z ∈ U).

Since
∞
∑

n=p+1

anz
n−p = −

B −A

dp+1
e−iηw(z) (z ∈ U),

by definition of subordination we have (31), and this completes the proof.

Using (13) in Theorem 6.2 we have the following corollary.
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Corollary 6.3
Assume that the sequence {dn} satisfies the inequality (16). If f ∈ T Wη

ρ(p, p+ 1;
φ, ϕ;A,B; δ), then

2π
∫

0

|f(reiθ)|λ dθ ≤

2π
∫

0

|fp+1,η(re
iθ)|λ dθ (0 < r < 1, λ > 0; z = reiθ),

where fp+1,η(z) is defined by (5).7. Partial sums
Following Silverman [15] and Silvia [17] in turn, we investigate partial sums

fm of the function f defined by

fk−1(z) = apz
p and fm(z) = apz

p +

m
∑

n=k

anz
n (m = k, k + 1, . . .).

In this section we consider partial sums of functions in the class T Wη(p, k;φ, ϕ;
A,B; δ) and obtain sharp lower bounds for the ratios of the real part of f to fm
and of f ′ to f ′

m.

Theorem 7.1
Assume that the sequence {dn} is increasing and satisfies

dk ≥ B −A.

If f ∈ T Wη(p, k;φ, ϕ;A,B; δ), then

Re

{

f(z)

fm(z)

}

≥ 1−
B −A

dm+1
(z ∈ U , m = k − 1, k, . . .) (32)

and

Re

{

fm(z)

f(z)

}

≥
dm+1

B −A+ dm+1
(z ∈ U , m = k − 1, k, . . .). (33)

The bounds are sharp, with extremal functions fm+1,η defined by (22).

Proof. Since

dn+1

B −A
>

dn

B −A
> 1 (n = k, k + 1, . . .),

by Theorem 2.1 we have that

m
∑

n=k

|an|+
dm+1

B −A

∞
∑

n=m+1

|an| ≤

∞
∑

n=k

dn

B −A
|an| ≤ ap. (34)
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Let

g(z) =
dm+1

B −A

{ f(z)

fm(z)
−

(

1−
B −A

dm+1

)}

= 1 +

dm+1

B−A

∑∞

n=m+1 anz
n−p

ap +
∑m

n=k anz
n−p

(z ∈ U).

(35)

Then by (34), we find that

∣

∣

∣

∣

g(z)− 1

g(z) + 1

∣

∣

∣

∣

≤

dm+1

B−A

∑∞

n=m+1 |an|

2ap − 2
∑n

n=2 |an| −
dm+1

B−A

∑∞

n=m+1 |an|
≤ 1 (z ∈ U).

Thus, we have
Re g(z) ≥ 0 (z ∈ U),

which by (35) readily yields the assertion (32) of Theorem 7.1. Similarly, if we
take

h(z) =
(

1 +
dm+1

B − A

){fm(z)

f(z)
−

dm+1

B −A+ dm+1

}

(z ∈ U),

then by (34), we can deduce that

∣

∣

∣

∣

h(z)− 1

h(z) + 1

∣

∣

∣

∣

≤
(1 + dm+1

B−A
)
∑∞

n=m+1 |an|

2ap − 2
∑m

n=k |an| − (dm+1

B−A
− 1)

∑∞

n=m+1 |an|
≤ 1 (z ∈ U),

which leads us immediately to the assertion (33) of Theorem 7.1. In order to see
that the function fm+1,η of the form (15) is extremal, we observe that

fm+1,η(z)

(fm+1,η)m(z)
= 1−

B −A

dm+1
(z = eiη),

(fm+1,η)m(z)

fm+1,η(z)
=

dm+1

B −A+ dm+1
(z = ei(η+

π

m−p+1
)).

This completes the proof.

Theorem 7.2
Assume that the sequence {dn} is increasing and

dk > (m+ 1)(B −A).

If f ∈ T Wη(p, k;φ, ϕ;A,B; δ), then

Re

{

f(z)

fm(z)

}

≥ 1−
(m+ 1)(B −A)

dm+1
(z ∈ U , m = k − 1, k, . . .),

Re

{

fm(z)

f(z)

}

≥
dm+1

(m+ 1)(B −A) + dm+1
(z ∈ U , m = k − 1, k, . . .).

The bounds are sharp, with extremal functions fm+1,η defined by (22).
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Proof. If we define

g(z) =
dm+1

B −A

{ f ′(z)

f ′
m(z)

−
(

1−
(m+ 1)(B −A)

dm+1

)}

(z ∈ U),

and

h(z) =
(

m+ 1 +
dm+1

B −A

){f ′
m(z)

f ′(z)
−

dm+1

(m+ 1)(B −A) + dm+1

}

(z ∈ U),

then the proof is analogous to that of Theorem 7.1, and we omit the details.

Remark 7.3
By using (13) in Theorems 7.1 and 7.2 we obtain the results related to the class

T Wη
ρ(p, k;φ, ϕ;A,B; δ).

Remark 7.4
We observe that the results obtained for the class T Wη

ρ(p, k;φ, ϕ;A,B; δ) are true

for the class T Wρ(p, k;φ, ϕ;A,B; δ).8. Con
luding remarks
We conclude this paper by observing that the family W(p, k;φ, ϕ;A,B; δ) uni-

fies several new and also well-known classes of analytic functions. Let

Wn
ρ (p, k;ϕ;A,B; δ) := Wρ

(

p, k;
zϕ′(z)

p
,

n−1
∑

l=0

ϕ(xlz);A,B; δ

)

,

where n ∈ N, xn = 1, x 6= 1. The class Wn
ρ (p, k;ϕ;A,B; δ) generalizes well-known

classes, which were investigated in earlier works, see for example [1, 3, 7, 10, 12, 18,
20, 21]. In particular, the class Wn

ρ (p, k;ϕ;A,B; 0) contains functions f ∈ A(p, k),
which satisfy the condition

z(ϕ ∗ f)′(z)
∑n−1

l=0 (ϕ ∗ f)(xlz)
≺ p

1 +Az

1 +Bz
.

It is related to the class of starlike functions with respect to n symmetric points.
Moreover, putting n = 1, we obtain the class W1

ρ(p, k;ϕ;A,B; 0) defined by the
following condition

z(ϕ ∗ f)′(z)

(ϕ ∗ f)(z)
≺ p

1 +Az

1 +Bz
.

The class is related to the class of starlike functions. In particular, we have

S∗
p(α) := W1

ρ

(

p, p+ 1;
zp

1− z
; 2α− p, 1; 0

)

.

Analogously, the class

Wn
ρ (p, k;ϕ; 2γ − p, 1; δ) (0 ≤ γ < 1)
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contains functions f ∈ A(p, k), which satisfy the condition

Re

{

z(ϕ ∗ f)′(z)
∑n−1

l=0 (ϕ ∗ f)(xlz)
− γ

}

> δ

∣

∣

∣

∣

z(ϕ ∗ f)′(z)
∑n−1

l=0 (ϕ ∗ f)(xlz)
− p

∣

∣

∣

∣

(z ∈ U).

It is related to the class of δ-uniformly convex functions of order γ with respect
to n symmetric points. Moreover, putting n = 1, we obtain the class Wn(p, k;ϕ;
2γ − 1, 1; δ) defined by the following condition:

Re

{

z(ϕ ∗ f)′(z)

(ϕ ∗ f)(z)
− γ

}

> δ

∣

∣

∣

∣

z(ϕ ∗ f)′(z)

(ϕ ∗ f)(z)
− p

∣

∣

∣

∣

(z ∈ U).

The class is related to the class of δ-uniformly convex functions of order γ. The
classes

UST (A,B; δ) := W0

(

1, 2;
z

1− z
; 2γ − 1, 1; δ

)

,

UCV (A,B; δ) := W0

(

1, 2;
z

(1− z)2
; 2γ − 1, 1; δ

)

,

are the well-known classes of δ-starlike functions of order γ and δ-uniformly convex
functions of order γ, respectively. In particular, the classes UCV := UCV (1, 0),
δ − UCV := UCV (δ, 0) were introduced by Goodman [6], and Wiśniowska et al.

([19] and [8]), respectively.
We note that the class

HT (ϕ;A,B; δ) := T 0(1, 2) ∩Wn(1, 2;ϕ; 2γ − 1, 1; δ)

was introduced and studied by Raina and Bansal [13].
If we set

h(α1, z) := zqFs(α1, . . . , αq;β1, . . . , βs; z),

where qFs is the generalized hypergeometric function, then we obtain the class

UH(q, s, λ, A,B; δ) := HT (λh(α1 +1, z)+ (1−λ)h(α1, z);A,B; δ) (0 ≤ λ ≤ 1)

defined by Srivastava et al. [14].
Let λ be a convex parameter. A function f ∈ A(p, k) belongs to the class

Vλ(ϕ;A,B) := W
(

λ
ϕ(z)

z
+ (1− λ)ϕ′(z), z;A,B; 0

)

if it satisfies the following condition:

λ
(ϕ ∗ f)(z)

z
+ (1− λ)(ϕ ∗ f)′(z) ≺

1 +Az

1 +Bz
.

Moreover, a function f ∈ A(p, k) belongs to the class

Uλ(ϕ;A,B) := W
(

λ
ϕ(z)

z
+ (1− λ)ϕ′(z);A,B; 0

)

if it satisfies the following condition:
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z(ϕ ∗ f)′(z) + (1− λ)z2(ϕ ∗ f)′′(z)

λ(ϕ ∗ f)(z) + (1− λ)z(ϕ ∗ f)′(z)
≺

1 +Az

1 +Bz
.

The considered classes are defined by using the convolution ϕ∗f or equivalently
by the linear operator

Jϕ:A(p, k) → A(p, k), Jϕ(f) = ϕ ∗ f.

By changing the function ϕ, we can obtain a lot of important linear operators, and
in consequence new and also well-known classes of functions. We list here some
of these linear operators such as the Salagean operator, the Cho-Kim-Srivastava
operator, the Dziok-Raina operator, the Hohlov operator, the Dziok-Srivastava
operator, the Carlson-Shaffer operator, the Ruscheweyh derivative operator, the
generalized Bernardi-Libera-Livingston operator, the fractional derivative opera-
tor, and so on (for the precise relationships see [4]).

If we apply the results presented in this paper to the classes discussed above,
we can achieve further results. Some of these were obtained in earlier works, see
for example [2, 4, 5, 13, 14].A
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