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Dedicated to Professor Andrzej Zajtz on his seventieth birthday
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We consider the problem, proposed by the second author (cf. [1])

of solving functional equations stemming from the Steffensen integral
inequality (S), which is applicable in actuarial problems, cf. [4]. Impos-
ing some regularity conditions we find solutions of two equations in two
variables, one with two and another with three unknown functions.

jlknm oapeq]r0s0t0u]pev r0o

J.F. Steffensen proved in his paper [4] from 1918 entitled On certain in-
equalities between mean values and their applications to actuarial problems the
following

Proposition

If f : [a, b] → R is a decreasing function and g: [a, b] → [0, 1] is an integrable
function, then

∫ b

b−c

f(t) dt ≤

∫ b

a

f(t)g(t) dt ≤

∫ a+c

a

f(t) dt, c :=

∫ b

a

g(t) dt. (S)

[Cf. also J. Dieudonné [2], p. 50, and, for this and for several related inequali-
ties, D.S. Mitrinović [3], Section 2.16, pp. 105-116.]

The second author proposed in [1] to look for f and g such that the medial
term in inequalities (S) is the arithmetic mean of the two others. Let x and y

vary in [a, b] and let us write the relevant functional equation with the unknown
functions f and g:
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∫ x+γ(x,y)

x

f(t) dt +

∫ y

y−γ(x,y)

f(t) dt = 2

∫ y

x

f(t)g(t) dt,

γ(x, y) :=

∫ y

x

g(t) dt,

(E)

where (x, y) ∈ [a, b]2.
In this paper we deal with equation (E) for differentiable f and continuous g.

We also consider a functional equation related to (E), with three, sufficiently
regular, unknown functions: f , g and h, the latter replacing those limits of
integration in (E) which contain γ(x, y), cf. [1].
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Let us first note that if f in (E) is a constant function then the equation is
satisfied by an arbitrary (integrable) function g. In the theorem that follows
we determine functions f , corresponding to a wide variety of functions g, such
that (f, g) be the solution to (E). It turns out that in most cases f is a constant
function.

Theorem 1

Assume that g: [a, b] → [0, 1] is a continuous function and either:

(i) g(x) = K for x ∈ [a, b], and K 6∈ {0, 1, 1
2}

or

(ii) 0 < g(x) < 1, x ∈ (a, b) and either g(a) = 0, g(b) = 1 or g(a) = 1,
g(b) = 0.

Then the function f : [a, b] → R, differentiable in [a, b], satisfies equation (E)
if and only if it is of the form:

in case (i)

f(x) = αx + β, x ∈ [a, b],

in case (ii)

f(x) = A, x ∈ [a, b],

where α, β, A are arbitrary real numbers.

Proof. Assume (i). Since now γ(x, y) = K(y − x), equation (E) becomes:

∫ x+K(y−x)

x

f(t) dt +

∫ y

y−K(y−x)

f(t) dt = 2K

∫ y

x

f(t) dt,

(x, y) ∈ [a, b]2.

(1)

We take the derivatives, with respect to x of both sides of (1):
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f(x + K(y − x))(1 − K) − f(x) − f(y − K(y − x))K = −2Kf(x).

as f is continuous in [a, b]. We differentiate again, but with respect to y, and
divide the formula obtained by K(1 − K):

f ′(x + K(y − x)) − f ′(y − K(y − x)) = 0, (x, y) ∈ [a, b]2.

The transformation

T : R2 → R
2; (x, y) 7→ (X, Y ) := ((1 − K)x + Ky, Kx + (1 − K)y)

maps bijectively [a, b]2 onto itself. Indeed, K 6= 1
2 implies injectivity of T

and K ∈ (0, 1) says that both X and Y are convex combinations of x and y.
Therefore we have the relation

f ′(t) = f ′(s), (s, t) ∈ [a, b]2.

Consequently, the function f ′ is constant and f is affine, on [a, b], as claimed.
It is the matter of a straightforward calculation to verify that the functions

given by f(x) = αx+β, g(x) = K, x ∈ [a, b], satisfy equation (1) for every real
α and β.

Assume (ii). We differentiate equation (E) twice, first with respect to x,
then with respect to y. Since γ(x, y) :=

∫ y

x
g(t) dt and g is continuous, ∂γ

∂x
=

−g(x), ∂γ
∂y

= g(y). We get, consecutively,

f(x + γ(x, y))(1 − g(x)) − f(x) − f(y − γ(x, y))(−g(x)) = −2f(x)g(x),

f ′(x + γ(x, y))(1 − g(x))g(y) − f ′(y − γ(x, y))g(x)(1 − g(y)) = 0. (E′)

Both equalities hold for (x, y) ∈ [a, b]2.
Let now g(a) = 0 and g(b) = 1. We put x = a in (E′):

f ′(a + γ(a, y))g(y) = 0, y ∈ (a, b].

Since the function u: (a, b] → R, u(y) = a + γ(a, y), is strictly increasing in
(a, b) (u′(y) = g(y) > 0), it maps (a, b] onto (u(a), u(b)] = (a, a + c] (where

c =
∫ b

a
g(t) dt, cf. (S)). Thus

f ′(t) = 0 (2)

for t ∈ (a, a + c]. Now we put y = b in (E′):

f ′(x + γ(x, b))(1 − g(x)) = 0, x ∈ [a, b).

The function v: [a, b) → R, v(x) = x + γ(x, b), is a strictly increasing bijection
(v′(x) = 1− g(x) > 0) of [a, b) onto [a+ c, b), whence (2) holds for t ∈ (a+ c, b].
Finally, (2) is valid in (a, b), f is a constant function, f(x) = A in (a, b). By
the continuity, f is constant in [a, b], as claimed.

Similarly, g(a) = 1 implies (2) in (a, b − c], whereas g(b) = 0 yields (2) in
[b − c, b). It follows that f ′(t) vanishes in (a, b) also in the other case listed in
(ii), whence f is a constant function on [a, b].
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To complete the proof let us remind that if f in (E) is a constant function
then the equation is satisfied for every integrable function g.

Remark 1

If in case (i) we have K ∈ {0, 1, 1
2}, then equation (E) is an identity and f may

be an arbitrary function.

Remark 2

If the inequalities of (ii) hold but g(a) = g(b) = 0, or g(a) = g(b) = 1. then
f ′(t) = 0 in (a, a + c] ∪ [b − c, b). In the case where both intervals are disjoint,
we get only the information that the restrictions of f to each of the intervals
is a constant function.

Remark 3

For [a, b] replaced by R and g(x) = K, x ∈ R, |K| > 1, the formula f(x) =
αx + β, x ∈ R also presents all differentiable in R solution of (E). Indeed,
we may repeat the proof of (i) of Theorem 1, because the transformation T

exploited there maps bijectively the plane onto itself.
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We pass to examining the equation related to (E) in which the limits of
integration x + γ(x, y), resp. y − γ(x, y), are replaced by h(xy + x + y), resp.
h(xy − x − y), where h is also an unknown function. Moreover, a “correcting
term” has been added. The equation to be solved, with the unknown functions
f , g, h, reads

∫ h(xy+x+y)

x

f(t) dt +

∫ y

h(xy−x−y)

f(t) dt +

∫ h(y2
−2y)

h(y2+2y)

f(t) dt

= 2

∫ y

x

f(t)g(t) dt,

(H)

First of all, assuming the necessary regularity of the functions involved,
on differentiating both sides of equation (H) with respect to x we obtain the
equation

(y + 1)h′(xy + x + y)f(h(xy + x + y))

− (y − 1)h′(xy − x − y)f(h(xy − x − y))

= f(x)[1 − 2g(x)].

(H
′

)

The subsequent lemma establishes the equivalence of equations (H) and (H′).

Lemma 1

The functions: h, f, g: R → R; h differentiable on R; f and g continuous on R,

satisfy equation (H) on R
2 if and only if they satisfy equation (H′) on R

2.
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Proof. Clearly (H) ⇒ (H ′). To get the converse implication let us rewrite
equation (H′) as follows (cf. (4)):

− (y + 1)h′(sy + s + y)f(h(sy + s + y)

+ (y − 1)h′(sy − s − y)f(h(sy − s − y)) + f(s)

= 2f(s)g(s).

(3)

and integrate with respect to s their sides, LHS and RHS, over the interval
[x, y]. After executing the substitutions: t = h(sy + s + y) in the first integral
of the LHS of (3) and t = h(sy − s − y) in the second one we obtain

∫ h(xy+x+y)

h(y2+2y)

f(t) dt +

∫ h(xy−x−y)

h(y2−2y)

f(t) dt +

∫ y

x

f(t) dt.

After adding and subtracting integrals with suitable limits of integration we
find that this sum of integrals equals to the LHS of (H). The integral over [x, y]
of the RHS of (3) and RHS of (H) are the same expressions. Hence (H ′) ⇒ (H).

In the sequel J will stand for an interval contained either in (−∞,−1) or
in (−1, 1), or in (1, +∞). We are in position to prove the following

Theorem 2

If the function h: R → J is three times differentiable on R; the function f : J →
R is twice differentiable on J ; and g: J → R is continuous in J , then equation
(H) when postulated for (x, y) ∈ J2, is equivalent to the system of the equalities
(both valid for x ∈ J)

{

(x + 1)h′(x)f(h(x)) = αx + β;

(x2 − 1)f(x)(1 − 2g(x)) = 2(αx2 − β),
(C)

where α and β are arbitrary real numbers, but α2 + β2 > 0.

Proof. According to the Lemma it is enough to solve equation (H′). We
denote, for short, by A and B the factors of the first product of functions
occurring on the LHS of (H′):

A(x, y) := (y + 1)h′(xy + x + y); B(x, y) := f(h(xy + x + y)).

Then the factors of the other product in LHS of (3) are equal

(y − 1)h′(xy − x − y) = − A(−x,−y); f(h(xy − x − y)) = B(−x,−y).

Applying to A and B Maclaurin’s formula (with the Peano reminder) in a
neighbourhood of y = 0 yields:
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A(x, y) = h′(x) + y[h′(x) + (x + 1)h′′(x)]

+
1

2
y2[2(x + 1)h′′(x) + (x + 1)2h′′′(x)]

+ o(y2),

B(x, y) = f(h(x)) + y[(x + 1)h′(x)f ′(h(x))]

+
1

2
y2[(x + 1)2h′′(x)f ′(h(x)) + (x + 1)2(h′(x))2f ′′(h(x))]

+o(y2),

where the Landau symbol o refers to y → 0.
Now we calculate the LHS(H′) = A(x, y)B(x, y) + A(−x,−y)B(−x,−y),

insert the formula obtained to (H′) and compare the free terms and the coeffi-
cients of y and y2 of the resulting equation. This yields the following equalities:

h′(x)f(h(x)) + h′(−x)f(h(−x)) = f(x)[1 − 2g(x)], (4)

F (x) = F (−x), (5)

where

F (x) := [(x + 1)h′(x)f(h(x))]′ (6)

and

(x + 1)F ′(x) = (x − 1)F ′(−x). (7)

From (5) we have F ′(x) = −F ′(−x). Eliminating F ′(−x) from this equation
and from (7) we get xF ′(x) = 0, x ∈ J , whence F (x) = α for x ∈ J . Integrating
(6) we get the first equation of system (C). Inserting the resulting formula to
(4) we arrive at the other equation of (C).

On the other hand, given some functions f , g, h satisfying (C) and regular
as required in the theorem one checks by a direct calculation that they satisfy
equation (H′) and, by Lemma, also equation (H). This completes the proof of
the theorem.

Remark 4

The three unknown functions f , g, h, are linked by two conditions (C) only.
Thus given arbitrarily one of the functions one may determine the others. For
instance, if one of the functions h or f is the identity, we get the following
triplets of solutions to (H):























f(x) =
αx + β

x + 1
,

g(x) =
(β − α)x

2(x − 1)(αx + β)
,

h(x) = x, x ∈ J, α = 0 or − β
α
6∈ J ;
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

















f(x) = x,

g(x) =
1

2
+

αx2 − β

x(1 − x2)
,

[h(x)]2 = 2αx + 2(β − α) log |x + 1| + C, |x| > 1,

provided that the constants are so chosen that h(x) ∈ J . Among solutions of
(H) when g is the identity there are those corresponding to α = β 6= 0 in (C):























f(x) =
2α

1 − 2x
,

g(x) = x,

h(x) = C e−x +
1

2
, |x| > 1,

since in this case h is a solution of the equation 2h′(x) + 2h(x) = 1.
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