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Abstra
t. The topic is the hat problem in which each of n players is randomly
fitted with a blue or red hat. Then everybody can try to guess simultaneously
his own hat color by looking at the hat colors of the other players. The team
wins if at least one player guesses his hat color correctly, and no one guesses
his hat color wrong; otherwise the team loses. The aim is to maximize the
probability of winning. We consider a generalized hat problem with q ≥ 2

colors. We solve the problem with three players and three colors. Next we
prove some upper bounds on the chance of success of any strategy for the
generalized hat problem with n players and q colors. We also consider the
numbers of strategies that suffice to be examined to solve the hat problem,
or the generalized hat problem.1. Introdu
tion

In the hat problem, a team of n players enters a room and a blue or red hat
is randomly placed on the head of each player. Each player can see the hats of all
of the other players but not his own. No communication of any sort is allowed,
except for an initial strategy session before the game begins. Once they have had
a chance to look at the other hats, each player must simultaneously guess the color
of his own hat or pass. The team wins if at least one player guesses his hat color
correctly and no one guesses his hat color wrong; otherwise the team loses. The
aim is to maximize the probability of winning.

The hat problem with seven players, called the “seven prisoners puzzle”, was
formulated by T. Ebert in his Ph.D. Thesis [13]. The hat problem was also the
subject of articles in The New York Times [22], Die Zeit [7], and abcNews [21]. It
is also one of the Berkeley Riddles [5].

The hat problem with 2k − 1 players was solved in [15], and for 2k players
in [12]. The problem with n players was investigated in [8]. The hat problem
and Hamming codes were the subject of [9]. The generalized hat problem with n

people and q colors was investigated in [20].
There are known many variations of the hat problem. For example in the papers

[1, 11, 19] there was considered a variation in which passing is not allowed, thus
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everybody has to guess his hat color. The aim is to maximize the number of correct
guesses. The authors of [17] investigated several variations of the hat problem in
which the aim is to design a strategy guaranteeing a desired number of correct
guesses. In [18] there was considered a variation in which the probabilities of
getting hats of each colors do not have to be equal. The authors of [3] investigated
a problem similar to the hat problem, in that paper there are n players which have
random bits on foreheads, and they have to vote on the parity of the n bits.

The hat problem and its variations have many applications and connections to
different areas of science, for example: information technology [6], linear program-
ming [17], genetic programming [10], economics [1, 19], biology [18], approximating
Boolean functions [3], and autoreducibility of random sequences [4, 13–16].

In this paper we consider a generalized hat problem with q ≥ 2 colors which
was first investigated in [20]. Every player has got a hat of one from q possible
colors, and the probabilities of getting hats of all colors are equal. We solve the
problem with three players and three colors. Next we prove some upper bounds
on the chance of success of any strategy for the generalized hat problem with n

players and q colors. We also consider the numbers of strategies that suffice to be
examined to solve the hat problem, or the generalized hat problem.2. Preliminaries

First, let us observe that we can confine to deterministic strategies (that is,
strategies such that the decision of each player is determined uniquely by the hat
colors of the other players). We can do this since for any randomized (not deter-
ministic) strategy there exists a not worse deterministic one. It is true, because
every randomized strategy is a convex combination of some deterministic strate-
gies. The probability of winning is a linear function on the convex polyhedron
corresponding to the set of all randomized strategies which can be achieved com-
bining those deterministic strategies. It is well known that this function achieves
its maximum on a vertex of the polyhedron which corresponds to a deterministic
strategy.

Let {v1, v2, . . . , vn} mean a set of players. By Sc = {1, 2, . . . , q} we denote the
set of colors.

By a case for the hat problem with n players and q colors we mean a function
c: {v1, v2, . . . , vn} → {1, 2, . . . , q}, where c(vi) means the hat color of player vi.
The set of all cases for the hat problem with n players and q colors we denote by
C(n, q), of course |C(n, q)| = qn. If c ∈ C(n, q), then to simplify notation, we write
c = c(v1)c(v2) . . . c(vn) instead of c = {(v1, c(v1)), (v2, c(v2)), . . . , (vn, c(vn))}. For
example, if a case c ∈ C(4, 3) is such that c(v1) = 2, c(v2) = 3, c(v3) = 1, and
c(v4) = 2, then we write c = 2312.

By a situation of a player vi we mean a function si: {v1, v2, . . . , vn} → Sc∪{0},
where si(vj) ∈ Sc if i 6= j, while si(vi) = 0. The set of all possible situations of vi
in the hat problem with n players and q colors we denote by Sti(n, q), of course
|Sti(n, q)| = qn−1. If si ∈ Sti(n, q), then for simplicity of notation, we write si
= si(v1)si(v2) . . . si(vn) instead of si = {(v1, si(v1)), (v2, si(v2)), . . . , (vn, si(vn))}.
For example, if s2 ∈ St2(4, 3) is such that s2(v1) = 3, s2(v3) = 4, and s2(v4) = 2,
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then we write s2 = 3042.

We say that a case c corresponds to a situation si of player vi if c(vj) = si(vj),
for every j 6= i. This implies that a case corresponds to a situation of vi if every
player excluding vi in the case has a hat of the same color as in the situation. Of
course, to every situation correspond exactly q cases.

By a guessing instruction of a player vi we mean a function gi:Sti(n, q) →
Sc∪{∗}, which for a given situation gives the color vi guesses his hat is if gi(si) 6= ∗,
otherwise vi passes. Thus a guessing instruction is a rule determining the behavior
of a player in every situation.

Let c be a case, and let si be the situation (of player vi) corresponding to this
case. The guess of vi in the case c is correct (wrong, respectively) if gi(si) = c(vi)
(∗ 6= gi(si) 6= c(vi), respectively). By result of the case c we mean a win if at least
one player guesses his hat color correctly, and no player guesses his hat color wrong,
that is, gi(si) = c(vi) (for some i) and there is no j such that ∗ 6= gj(sj) 6= c(vj).
Otherwise the result of the case c is a loss.

By a strategy we mean a sequence (g1, g2, . . . , gn), where gi is the guessing
instruction of player vi. The family of all strategies for the hat problem with n

players and q colors we denote by F(n, q).
If S ∈ F(n, q), then the set of cases for which the team wins using the strategy

S we denote by W (S). Consequently, by the chance of success of the strategy S we

mean the number p(S) = |W (S)|
|C(n,q)| . We define h(n, q) = max{p(S) : S ∈ F(n, q)}.

We say that a strategy S is optimal for the hat problem with n players and q

colors if p(S) = h(n, q).
By solving the hat problem with n players and q colors we mean finding the

number h(n, q).3. Hat problem with three players and three 
olors
In this section we solve the hat problem with three players and three colors.
We say that a strategy is symmetric if every player makes his decision on the

basis of only numbers of hats of each color seen by him, and all players behave in
the same way. A strategy is nonsymmetric if it is not symmetric.

The authors of [18] solved the hat problem with three players and three colors
by giving a symmetric strategy found by computer, and proving that it is optimal.
We solve this problem by proving the optimality of a nonsymmetric strategy found
without using computer.

Let us consider the following strategy for the hat problem with three players
and three colors.

Strategy 1
Let S = (g1, g2, g3) ∈ F(3, 3) be the strategy as follows:

g1(s1) =

{

s1(v3), if s1(v2) 6= s1(v3),
∗, otherwise;

g2(s2) =

{

s2(v3), if s2(v1) 6= s2(v3),
∗, otherwise;
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g3(s3) =

{

s3(v1), if s3(v1) = s3(v2),
∗, otherwise.

It means that players proceed as follows.

• The player v1. If v2 and v3 have hats of different colors, then he guesses
he has a hat of the color v3 has, otherwise he passes.

• The player v2. If v1 and v3 have hats of different colors, then he guesses
he has a hat of the color v3 has, otherwise he passes.

• The player v3. If v1 and v2 have hats of the same color, then he guesses
he has a hat of the color they have, otherwise he passes.

All cases we present in table, where the symbol + means correct guess (success),
− means wrong guess (loss), and blank square means passing.

No The color of the hat of The guess of Result
v1 v2 v3 v1 v2 v3

1 1 1 1 + +
2 1 1 2 − − − −
3 1 1 3 − − − −
4 1 2 1 + +
5 1 2 2 + +
6 1 2 3 − − −
7 1 3 1 + +
8 1 3 2 − − −
9 1 3 3 + +
10 2 1 1 + +
11 2 1 2 + +
12 2 1 3 − − −
13 2 2 1 − − − −
14 2 2 2 + +
15 2 2 3 − − − −
16 2 3 1 − − −
17 2 3 2 + +
18 2 3 3 + +
19 3 1 1 + +
20 3 1 2 − − −
21 3 1 3 + +
22 3 2 1 − − −
23 3 2 2 + +
24 3 2 3 + +
25 3 3 1 − − − −
26 3 3 2 − − − −
27 3 3 3 + +



A more 
olorful hat problem [71℄
For example, in the first case the player v1 sees two hats of the same color, so

he passes. By the same reason the player v2 also passes. The player v3 sees two
hats of the first color, so he guesses he has a hat of the first color. Since v3 has
a hat of the first color, the guess is correct, and the result of the case is a win.

In the second case the player v1 sees two hats of different colors, so he guesses
he has a hat of the color v3 has. Since v1 and v3 have hats of different colors,
the guess is wrong, and the result of the case is a loss. Additionally, the player v2
guesses his hat color wrong by the same reason as v1. Moreover, the guess of v3
is also wrong. The player v3 sees two hats of the first color, so he guesses he has
a hat of the first color. The guess is wrong, as v3 has a hat of the second color.

In the fourth case the player v1 sees two hats of different colors, so he guesses
he has a hat of the color v3 has. Since v1 and v3 have hats of the same color,
the guess is correct. The player v2 sees two hats of the same color, so he passes.
The player v3 sees two hats of different colors, so he passes. This implies that the
result of the case is a win.

In the sixth case the player v1 sees two hats of different colors, so he guesses
he has a hat of the color v3 has. Since v1 and v3 have hats of different colors,
the guess is wrong, and the result of the case is a loss. Additionally, the player v2
guesses his hat color wrong by reasons similar as v1. The player v3 passes, as he
sees two hats of different colors.

Counting the plusses in the last column, we get the following observation.

Observation 2
Using Strategy 1 the team wins for 15 of 27 cases.

Now, we solve the hat problem with three players and three colors.

Fact 3
h(3, 3) = 5

9 .

Proof. Since using Strategy 1 the team wins for 15 of 27 cases, we have h(3, 3)
≥ 15

27 = 5
9 . Suppose that h(3, 3) > 5

9 , that is, there exists a strategy such that the
team wins for more than 15 cases. Let S be any strategy for the hat problem with
three players and three colors. Any guess made by any player in any situation
is wrong in exactly two cases, because to any situation of any player correspond
three cases, and in exactly two of them this player has a hat of a color different
than the one he guesses. In the strategy S every player guesses his hat color
in at most 5 situations, because if some player guesses his hat color in at least
6 situations, then the team loses for at least 12 cases, and wins for at most 15
cases, a contradiction. Any guess made by any player in any situation is correct
in exactly one case, because to any situation of any player correspond three cases,
and in exactly one of them this player has a hat of the color he guesses. There are
three players, every one of them guesses his hat color in at most five cases, and
every guess is correct in exactly one case. Therefore using the strategy S the team
wins for at most 15 cases, a contradiction.



[72℄ Mar
in Krzywkowski4. Hat problem with n players and q 
olors
Now we consider the generalized hat problem with n players and q colors.

Noga Alon [2] has proven that for this problem there exists a strategy such that
the chance of success is greater than or equal to

1−
1 + (q − 1) logn

n
−

(

1−
1

q

)n

.

First we prove an upper bound on the number of cases for which the team wins
using any strategy for the problem.

Theorem 4
If S is a strategy for the hat problem with n players and q colors, then

|W (S)| ≤ n

⌊

qn − |W (S)|

q − 1

⌋

.

Proof. Any guess made by any player in any situation is wrong in exactly q−1
cases, because to any situation of any player correspond q cases, and in exactly
q − 1 of them this player has a hat of a color different than the one he guesses.
Let us consider any player. The number of situations in which he guesses his hat
color in the strategy S cannot be neither greater than nor equal to

⌊

qn − |W (S)|

q − 1

⌋

+ 1,

otherwise the number of cases in which he guesses his hat color wrong is greater
than or equal to

(q − 1)

(⌊

qn − |W (S)|

q − 1

⌋

+ 1

)

.

It is more than

(q − 1)

(

qn − |W (S)|

q − 1

)

= qn − |W (S)|.

This implies that the team loses for more than qn − |W (S)| cases, and therefore
the number of cases for which the team wins is less than

|C(n, q)| − (qn − |W (S)|) = qn − qn + |W (S)| = |W (S)|.

This is a contradiction, as |W (S)| is the number of cases for which the team wins.
Any guess made by any player in any situation is correct in exactly one case,
because to any situation of any player correspond q cases, and in exactly one of
them this player has a hat of the color he guesses. This implies that the number
of cases for which the team wins using the strategy S is at most

n

⌊

qn − |W (S)|

q − 1

⌋

.
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Now we give an equivalent upper bound on the chance of success of any strategy

for the hat problem with n players and q colors, which is easy to prove.

Theorem 5
Let S be any strategy for the hat problem with n players and q colors. Then

p(S) ≤
n

qn

⌊

qn − qn · p(S)

q − 1

⌋

.

Now we see that Fact 3 follows from Theorem 4, as well as from Theorem 5.
We show that it follows from Theorem 4.

Proof of Fact 3. Since using Strategy 1 the team wins for 15 of 27 cases, by
definition we get h(3, 3) ≥ p(S) = 15

27 = 5
9 . Now we prove that h(3, 3) ≤ 5

9 . Let
S be an optimal strategy for the hat problem with three players and three colors.
By Theorem 4 we have

|W (S)| ≤ 3

⌊

27− |W (S)|

2

⌋

.

This implies that

|W (S)| ≤ 3 ·
27− |W (S)|

2
= 40.5−

3|W (S)|

2
.

Now we easily get |W (S)| ≤ 81
5 = 16.2. Since |W (S)| is an integer, we have

|W (S)| ≤ 16. If |W (S)| = 16, then 16 ≤ 3⌊ 27−16
2 ⌋ = 3 · 5 = 15, a contradiction.

This implies that |W (S)| ≤ 15. Since |C(3, 3)| = 27, we get p(S) ≤ 15
27 = 5

9 . Since
S is an optimal strategy for the hat problem with three players and three colors,
by definition we get h(3, 3) = p(S) ≤ 5

9 .

The next result proven in [20, Proposition 3] is a corollary from Theorem 4
or 5.

Corollary 6 ([20, Proposition 3])
If S is a strategy for the hat problem with n players and q colors, then

p(S) ≤
n

n+ q − 1
.

Proof. By Theorem 4 we have

|W (S)| ≤ n

⌊

qn − |W (S)|

q − 1

⌋

.

This implies that

|W (S)| ≤ n ·
qn − |W (S)|

q − 1
=

nqn

q − 1
− |W (S)|

( n

q − 1

)

.
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Consequently,

|W (S)|
(

1 +
n

q − 1

)

≤
nqn

q − 1
⇐⇒ |W (S)| ≤

q − 1

n+ q − 1
·
nqn

q − 1

⇐⇒ p(S) =
|W (S)|

qn
≤

n

n+ q − 1
.

Now we show that the previous corollary is weaker than Theorem 4, that is,
Theorem 4 does not follow from Corollary 6. Let S be any strategy for the hat
problem with three players and three colors. By Theorem 4 we have |W (S)| ≤ 15
(it is shown in the proof of Fact 3 using Theorem 4). Thus

p(S) =
|W (S)|

|C(3, 3)|
≤

15

33
=

5

9
.

By Corollary 6 we get

p(S) ≤
n

n+ q − 1
=

3

5
.

Since 3
5 > 5

9 , Corollary 6 is weaker than Theorem 4.
Now let us consider the hat problem with two colors (q = 2), and any strategy

S for this problem. By Corollary 6 we get the upper bound

p(S) ≤
n

n+ 1

previously given in [15], which is sharp for n = 2k−1, where k is a positive integer.5. Number of strategies that suffi
e to be examined
In this section we consider the number of strategies the examination of which

suffices to solve the hat problem, and the generalized hat problem with q colors.
First, we count all possible strategies for the hat problem. We have n players,

there are 2n−1 possible situations of each one of them, and in each situation there
are three possibilities of behavior (to guess the first color, to guess the second
color, or to pass). This implies that the number of possible strategies is equal to

(

32
n−1)n

.

Now we prove that it is not necessary to examine every strategy to solve the
problem.

Fact 7
To solve the hat problem with n players, it suffices to examine

(

32
n−1−2

)n
=

(

32
n−1)n

·
1

9n

strategies.
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Proof. Let S be an optimal strategy for the hat problem with n players. If

in this strategy no player guesses his hat color, then obviously p(S) = 0. This is
a contradiction to the optimality of S. Thus in the strategy S some player guesses
his hat color. Without loss of generality we assume that this player is v1, and
he guesses his hat color in the situation 011 . . .1. Additionally, without loss of
generality we assume that in this situation he guesses he has a hat of the second
color. This guess is wrong in the case 11 . . . 1, causing the loss of the team. Thus
the result of this case cannot be made worse. If some player other than v1, say
vi, guesses he has the second color when he sees only hats of the first color, then
his guess is wrong in the case 11 . . .1, and is correct in the case when vi has the
second color and all the remaining vertices have the first color. Since it cannot
make worse the chance of success, we may assume that every player excluding vi
guesses he has a hat of the second color when he sees hats only of the first color.
Assume that some player, say vi, guesses his hat color when he sees one hat of the
second color and n − 2 hats of the first color. If in this situation he guesses he
has a hat of the first color, then in the case corresponding to that situation, and
in which he has a hat of the first color, his guess is correct, as well as the guess of
the player who has a hat of the second color. Since it cannot improve the chance
of success, we may assume that in this situation vi does not guess he has a hat
of the first color. If in that situation he guesses he has a hat of the second color,
then in the case corresponding to that situation, and in which he has a hat of the
first color, his guess is wrong, while at the same time the guess of the player who
has a hat of the second color is correct. Since it makes the guess of this player
pointless, we may assume that in that situation vi does not guess he has a hat of
the second color. This implies that we may assume that every player who sees one
hat of the second color and n− 2 hats of the first color, passes. Now we conclude
that for each player we can assume his behavior in two situations. This implies
that for each player there are two situations less to consider. In this way we get
the desired number.

Now, we count all possible strategies for the generalized hat problem with q

colors. We have n players, there are qn−1 possible situations of each one of them,
and in each situation there are q+1 possibilities of behavior (to guess one of the q

colors, or to pass). This implies that the number of possible strategies is equal to

(

(q + 1)q
n−1)n

.

Now we prove that it is not necessary to examine every strategy to solve the
problem.

Fact 8
To solve the hat problem with n players and q colors, it suffices to examine

(

(q + 1)q
n−1−1

)n
=

(

(q + 1)q
n−1)n

·
1

(q + 1)n

strategies.
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Proof. Let S be an optimal strategy for the hat problem with n players and q

colors. If in this strategy no player guesses his hat color, then obviously p(S) = 0.
This is a contradiction to the optimality of S. Thus in the strategy S some player
guesses his hat color. Without loss of generality we assume that this player is v1,
and he guesses his hat color in the situation 011 . . .1. Additionally, without loss of
generality we assume that in this situation he guesses he has a hat of the second
color. Let vi be any player other than v1. If in this situation vi guesses he has a hat
of the first color, then in the case corresponding to that situation, and in which
he has a hat of the first color, his guess is correct, as well as the guess of v1. Since
it cannot improve the chance of success, we may assume that in this situation vi
does not guess he has a hat of the first color. If in that situation vi guesses he
has a hat of any color other than the first, then in the case corresponding to that
situation, and in which he has a hat of the first color, his guess is wrong, while at
the same time the guess of v1 is correct. Since it makes the guess of v1 pointless,
we may assume that in that situation vi does not guess any color other that the
first. This implies that we may assume that every player other than v1 in the
situation in which v1 has a hat of the second color, and all the remaining players
have hats of the first color, passes. Now we conclude that for each player we can
assume his behavior in one situation. This implies that for each player there is
one situation less to consider. In this way we get the desired number.Referen
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