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Abstra
t. Let X(t, ω)
△

= {xt(ω); t ≥ 0} be a Markov process defined on
a probability space (Ω,F , P ) and valued in a measurable space (E,E). In
this paper, we give the definitions of σ-algebras prior to α and post-α and
discuss their properties. At the same time, we prove that the strong Markov
property holds for an arbitrary Markov process, that is, we prove that the
Markov property is equivalent to the strong Markov property.1. Introdu
tion

Let X(t, ω)
△
= {xt(ω); t ≥ 0} be a stochastic process defined on a probability

space (Ω,F , P ) and valued in a measurable space (E, E). So for every A ∈ E ,
{ω : xt(ω) ∈ A} ∈ F , where (E, E) is an abstract space and t is the time pa-
rameter. The points of E are denoted as x, y, . . . . The sets of E are denoted as
A,B, . . . . For convenience, suppose that E contains all sets of simple points of E,
that is, {x} ∈ E for every x ∈ E.

Throughout this paper, suppose that X(t, ω) is non-interruptive Markov pro-
cess unless mentioned. Otherwise, we may enlarge the state space E to Ẽ = E∪{d}
by joining a single point d with d 6∈ E into E, and change X(t, ω) into non-
interruptive process X̃(t, ω) on Ẽ. It does not affect all conclusions in this paper.

Let α(ω) be a random variable which might be ∞. In order to show that xα

is well defined when α = ∞, choose a random variable β(ω) valued in (E, E), and

define x∞(ω)
△
= β(ω). Then xα(ω)(ω) is well defined for all ω ∈ Ω. Now, define

F(xα) as

F(xα)
△
= {{ω : (xα(ω)(ω), α(ω)) ∈ A} : A ∈ E × B([0,∞])}, (1.1)

where B([0,∞]) is a Borel σ-algebra generated by [0,∞]. {(x, s)} is an atom of
E × B([0,∞]) for every x ∈ E, s ∈ [0,∞], namely, {(x, s)} ∈ E × B([0,∞]), and
does not contain any proper subsets of E × B([0,∞]). It follows that {xα(ω)(ω) =

x} ∩ {α(ω) = s} is an atom of F(xα). Since α(ω): Ω → R̄
+ △
= [0,∞] is a mapping

from Ω to R̄
+
, and xt(ω): Ω → E is also a mapping from Ω to E for every fixed
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t ≥ 0, it follows that xα(ω)(ω) is a mapping from Ω to E × R̄

+
. Note that

E ×B([0,∞]) is a σ-algebra, therefore F(xα) is a σ-algebra by [2, Property 2.2.2].

Definition 1.1
F(xα) is called the σ-algebra generated by xα(ω)(ω).

The core of the Markov process is the Markov property which is the base of
theoretic and applied research on Markov process. But we often need a stronger
property: “the strong Markov property”. We know that “present” in the explana-
tion of the Markov property is a fixed time t which has nothing to do with ω. But
in many problems, “present” is required to be a random time α(ω) which may take
different values according to different ω, such as hitting time. Let ηA(ω) be the
hitting time of A ∈ E . Whether X(t, ω) satisfies Markov property at time ηA(ω).
Note that ηA(ω) depends on ω. So the strong Markov property is distinct from
the Markov property.

More precisely, this problem is explained as follows: Let X(t, ω)
△
= {xt(ω); t ≥

0} be a Markov process defined on a probability space (Ω,F , P ) and valued in
a measurable space (E, E), f(x) be a E-measurable bounded real-valued function
defined on (E, E), that is, for any Borel subset B of (−∞,∞), we have

{x : f(x) ∈ B} ∈ E . (1.2)

Let α(ω) be a random variable. Does the following equality

E[f(xt+α)|N
+
α ] = E[f(xt+α)|F(xα)], PΩα

–a.e.

hold? Here N+
α is a σ-algebra prior to α generated by X(t, ω), which is defined

in Section 2.1; Ωα = {ω : α(ω) < ∞}; F(·) denotes the smallest σ-algebra on Ω
generated by all sets of bracket.

In order to prove (1.2), many scholars made great efforts, and obtained many
fine results. The first one who thought (1.2) should be seriously proven is Doob
(1945). To make (1.2) hold, what should we do?

(1) What restricted conditions should α(ω) have?

(2) How to define the σ-algebra prior to α(ω) so that it includes the special case
α(ω) ≡ constant?

(3) How to define the function f(x) so that f(xt) is a random variable and
E[f(xt)|F(xα)] is N+

α -measurable?

The questions above were mentioned in [1, P106].
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Recall the σ-algebras NT
△
= F(xs(ω); s < T ) and N+

T

△
= F(xs(ω); s ≤ T ),

generated by the trajectory of X(t, ω) prior to T , are defined by

NT
△
= F(xs(ω); s < T )

△
= F

(

⋃

s<T

x−1
s (E)

)

(2.1)

and

N+
T

△
= F(xs(ω); s ≤ T )

△
= F

(

⋃

s≤T

x−1
s (E)

)

, (2.2)

respectively. In particular, taking T = ∞, we have

N∞ = F

(

⋃

s<∞

x−1
s (E)

)

and N+
∞ = F

(

⋃

s≤∞

x−1
s (E)

)

.

Here x−1
s (E)

△
= {{xs(ω) ∈ B} : B ∈ E}. Intuitively, F(xs(ω); s < T ) or

F(xs(ω); s ≤ T ) is the σ-algebra generated by the stochastic process prior to
T of X(t, ω), that is, generated by the two stochastic precesses (xs(ω); s < T )
and (xs(ω); s ≤ T ), respectively. Of course, here T is a constant that has nothing
to do with ω. How to define the Nα(ω) and N+

α(ω) if α is a random variable?

Similarly to the way of defining NT and N+
T , they are defined as follows: Let

yt(ω) = xt(ω) if t < α(ω); ȳt(ω) = xt(ω) if t ≤ α(ω). Put Y (t, ω) = {yt(ω); t ≥ 0}

and Ȳ (t, ω)
△
= {ȳt(ω); t ≥ 0}. Then they satisfy:

Y (t, ω) = (X(t, ω); t < α(ω))

and

Ȳ (t, ω) = (X(t, ω); t ≤ α(ω)).

That is, {yt(ω) ∈ B} = {xt(ω) ∈ B, t < α(ω)} and {ȳt(ω) ∈ B} = {xt(ω) ∈
B, t ≤ α(ω)} for any t ≥ 0 and B ∈ E , where when t = ∞, {xt(ω) ∈ B, t <

α(ω)} = ∅ and {xt(ω) ∈ B, t ≤ α(ω)} = {β(ω) ∈ B, α(ω) = ∞}, respectively.
By the definition of a stochastic process, Y (t, ω) and Ȳ (t, ω) are two stochastic
processes prior to α(ω) of x(t, ω), that is, the two processes end at time t < α(ω)
and t ≤ α(ω), respectively.

From (2.1), (2.2) it follows that the σ-algebras prior to α of X(t, ω) are defined
by

Nα
△
= F(yt(ω); t < ∞)

△
= F

(

⋃

t<∞

y−1
t (E)

)

(2.3)

and

N+
α

△
= F(ȳt(ω); t ≤ ∞)

△
= F

(

⋃

t≤∞

ȳ−1
t (E)

)

, (2.4)

respectively. When t = ∞, ȳ−1
t (E) is defined by ȳ−1

t (E)
△
= {{ω : β(ω) ∈ B, α(ω) =

∞} : B ∈ E}. Obviously, if α(ω) ≡ T (constant), Nα = NT and N+
α = N+

T .
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Definition 2.1
Nα and N+

α defined by (2.3) and (2.4), respectively, are called σ-algebras prior to
α of X(t, ω).2.2. The properties of σ-algebra prior to α(ω)

We now discuss the properties of Nα and N+
α , which are the foundations of

studying the strong Markov property.

Theorem 2.2

F(α) ⊆ Nα; F(α) ⊆ N+
α .

Proof. The proofs of both statements are similar, we only prove the first re-
lation. Since {xs(ω) ∈ E} = Ω, we have

{α(ω) > s} = {xs(ω) ∈ E, α(ω) > s} = {ys(ω) ∈ E} ∈ Nα.

It is well known that F(α) = F(α(ω) > s; s ≥ 0). Hence, the theorem is valid.

Theorem 2.3
Let

Π = {{xt1 ∈ A1, . . . , xtn ∈ An, α > s} :

n ≥ 1; t1 ≤ . . . ≤ tn ≤ s; A1, . . . , An ∈ E};

Π+ = {{xt1 ∈ A1, . . . , xtn ∈ An, α ≥ s} :

n ≥ 1; t1 ≤ . . . ≤ tn ≤ s ≤ ∞; A1, . . . , An ∈ E},

where for s = ∞, {xt1 ∈ A1, . . . , xtn ∈ An, α > s} = ∅ and {xt1 ∈ A1, . . . , xtn ∈
An, α ≥ s} = {xt1 ∈ A1, . . . , xtn ∈ An, α = ∞}. Then

F(Π) = Nα and F(Π+) = N+
α .

Proof. {xt1 ∈ A1, . . . , xtn ∈ An, α > s} = {yt1 ∈ A1, . . . , ytn ∈ An, ys ∈
E} ∈ Nα, hence, F(Π) ⊆ Nα. Again, for every t ≥ 0 and A ∈ E , obviously,
{yt ∈ A} = {xt ∈ A, α > t} ∈ Π. Therefore, Nα = F(

⋃

t<∞ y−1
t (E)) ⊆ F(Π),

from which and above it follows that F(Π) = Nα. Similarly as above we obtain
F(Π+) = N+

α .

Theorem 2.4
Let α(ω) be a nonnegative random variable. Then

Nα ⊆ N+
α .

Proof. For any t1 ≤ t2 ≤ . . . ≤ tm ≤ s < t, from {xt1 ∈ A1, . . . , xtm ∈
Am, α ≥ t} ∈ N+

α we get

{xt1 ∈ A1, . . . , xtm ∈ Am, α > s} = lim
t↓s

{xt1 ∈ A1, . . . , xtm ∈ Am}∩{α ≥ t} ∈ N+
α .

Here limt↓s{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α ≥ t} is defined by
⋃∞

n=1{xt1 ∈
A1, . . . , xtm ∈ Am} ∩ {α ≥ an} for an arbitrary sequence of number {an}n≥1,
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an ↓ s as n ↑ ∞. We easily verify that limt↓s{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α ≥ t}
has nothing to do with the chosen {an}n≥1. Hence, by Theorem 2.3, the theorem
is proven.

Theorem 2.5
Let α(ω) be a stopping time with respect to N+

t , that is, {α ≤ t} ∈ N+
t for every

t ≥ 0. Then A ∩ {α ≤ t} ∈ N+
t and A ∩ {α < t} ∈ N+

t for every A ∈ N+
α .

Proof. Suppose that A has the following shape

A = {xt1 ∈ A1, . . . , xtn ∈ An, α ≥ s}

for any n ≥ 1 and t1 ≤ . . . ≤ tn ≤ s and A1, . . . , An ∈ E . Obviously, A∩{α ≤ t} =
{xt1 ∈ A1, . . . , xtn ∈ An} ∩ {s ≤ α ≤ t} ∈ N+

t . So, by λ-π-system method and
Theorem 2.3, the first assertion is obtained. Again, A∩{α < t} = limu↑t A∩{α ≤
u} ∈ N+

t , which is the other assertion.3. σ-algebra post-α(ω) and its properties3.1. The definition of the σ-algebra post-α(ω)

Let wt(ω) = xt(ω) if α(ω) < t and w̄t(ω) = xt(ω) if α(ω) ≤ t. Set W (t, ω)
△
=

{wt(ω); t ≥ 0} = (X(t, ω); α(ω) < t). W̄ (t, ω)
△
= {w̄t(ω); t ≥ 0} = (X(t, ω);

α(ω) ≤ t). That is, {wt(ω) ∈ B} = {xt(ω) ∈ B, α(ω) < t} and {w̄t(ω) ∈
B} = {xt(ω) ∈ B, α(ω) ≤ t} for any t ≥ 0 and B ∈ E . Here for t = ∞,
{xt(ω) ∈ B, α(ω) < t} = {β(ω) ∈ B, α(ω) < ∞} and {xt(ω) ∈ B, α(ω) ≤ t} =
{β(ω) ∈ B}, respectively. We adjoin a point ∆ with ∆ 6∈ E to E to expand E into

Ê = E ∪ {∆}, and set Ê
△
= F(E , {∆}). Let

w̃t(ω)
△
=

{

wt(ω), t > α(ω),
∆, t ≤ α(ω)

=

{

xt(ω), t > α(ω),
∆, t ≤ α(ω);

˜̄wt(ω)
△
=

{

w̄t(ω), t ≥ α(ω),
∆, t < α(ω)

=

{

xt(ω), t ≥ α(ω),
∆, t < α(ω).

Then W̃ (t, ω)
△
= {w̃t(ω); t ≥ 0} and ˜̄W (t, ω)

△
= { ˜̄wt(ω); t ≥ 0} are changed into

non-interruptive processes on (Ê, Ê), respectively. The state ∆ is the starting point

of W̃ (t, ω) and ˜̄W (t, ω), that is, for all ω ∈ Ω, W̃ (t, ω) and ˜̄W (t, ω) start from state
∆, and stay time at ∆ is α(ω), then the ω enter into E to move according to the
primary trajectory. The σ-algebras post-α αN and αN+ are defined by

αN
△
= F(w̃t(ω); t ≤ ∞)

△
= F

(

⋃

t≤∞

w̃−1
t (E)

)

(3.1)

and

αN
+ △
= F( ˜̄wt(ω); t ≤ ∞)

△
= F

(

⋃

t≤∞

˜̄w
−1
t (E)

)

, (3.2)

respectively. Here when t = ∞, w̃−1
t (E) and ˜̄w

−1
t (E) are defined by w̃−1

t (E)
△
=
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{{β ∈ B, α < ∞} : B ∈ E} and ˜̄w

−1
t (E)

△
= {{β ∈ B} : B ∈ E}, respectively. By

the definition of F(·) on Ω, obviously,

αN = F

(

⋃

t≤∞

w−1
t (Ê)

)

; αN
+ = F

(

⋃

t≤∞

w̄−1
t (Ê)

)

.

Definition 3.1

αN and αN+ defined by (3.1) and (3.2) are called σ-algebras post-α of X(t, ω),
respectively.

Intuitively, αN or αN+ is the σ-algebra generated by the stochastic process
post-α of X(t, ω).3.2. The properties of the σ-algebra post-α(ω)

Similarly to the proof of Theorem 2.2 we obtain the following theorem.

Theorem 3.2

F(α) ⊆ αN ; F(α) ⊆ αN
+.

Theorem 3.3

F(α) ⊆ F(xα).

Proof. Since {xα(ω)(ω) ∈ E} = Ω, from (1.1), it follows that {α ∈ B} ∈
F(xα).

Theorem 3.4
Let

Γ = {{α < s, xt1 ∈ A1, . . . , xtn ∈ An} : n ≥ 1, s ≤ t1 ≤ . . . ≤ tn, A1, . . . , An ∈ E}

and

Γ+ = {{α ≤ s, xt1 ∈ A1, . . . , xtn ∈ An} : n ≥ 1, s ≤ t1 ≤ . . . ≤ tn,

A1, . . . , An ∈ E},

where when s = ∞, {α < s, xt1 ∈ A1, . . . , xtn ∈ An} = {α < ∞, β ∈ A1, . . . , β ∈
An} and {α ≤ s, xt1 ∈ A1, . . . , xtn ∈ An} = {β ∈ A1, . . . , β ∈ An}. Then

F(Γ) = αN and F(Γ+) = αN
+.

Proof. The proof is analogous to the proof of Theorem 2.3.

Theorem 3.5

αN ⊆ αN
+.

Proof. By Theorem 3.4, {α ≤ u, xt1 ∈ A1, . . . , xtn ∈ An} ∈ αN+. So
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{α < s, xt1 ∈ A1, . . . , xtn ∈ An} = lim

u↑s
{α ≤ u, xt1 ∈ A1, . . . , xtn ∈ An} ∈ αN

+,

where limu↑s{α ≤ u, xt1 ∈ A1, . . . , xtn ∈ An} is defined by
⋃∞

i=1{α ≤ ai, xt1 ∈
A1, . . . , xtn ∈ An} for any sequence of number {an}n≥1, an ↑ s as n ↑ ∞. When
s = ∞, {α < s, xt1 ∈ A1, . . . , xtn ∈ An} = {α < ∞, β ∈ A1, . . . , β ∈ An} ∈ αN+

from the definition of αN
+ and Theorem 3.2. So {α < s, xt1 ∈ A1, . . . , xtn ∈

An} ∈ αN+ for every s ≤ ∞. By Theorem 3.4 the proof is accomplished.

Theorem 3.6
Let X(t, ω) be an arbitrary stochastic process defined on a probability space
(Ω,F , P ) and valued in measurable space (E, E). Then

F(xα) ⊆ N+
α ; F(xα) ⊆ αN

+.

Proof. For any A ∈ E , obviously,

{ω : xα(ω)(ω) ∈ A} = {ω : xα(ω)(ω) ∈ A} ∩ {ω : α(ω) ≤ ∞}

=
⋃

s<∞

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s}) (3.3)

+ {ω : β(ω) ∈ A} ∩ {ω : α(ω) = ∞}.

By Theorem 2.3 and Theorem 2.4, for every s ≥ 0,

{ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s}

= {ω : xs(ω) ∈ A} ∩ {ω : α(ω) ≥ s} (3.4)

− {ω : xs(ω) ∈ A} ∩ {ω : α(ω) > s} ∈ N+
α .

Now we prove
⋃

s<∞

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s}) ∈ N+
α (3.5)

by virtue of transfinite induction. Suppose that � is well ordering on [0,∞) with
the first element a0. By (3.4),

⋃

s�a0

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s})

= {ω : xa0(ω) ∈ A} ∩ {ω : α(ω) = a0} ∈ N+
α .

Suppose that
⋃

s�a

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s}) ∈ N+
α

for any a with a ≺ T . Chosen an increasing sequence {ai : i ≥ 1, ai ≺ T }
satisfying that for any given number t ≺ T , there exists ai such that t � ai. So

⋃

s≺T

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s})

=
∞
⋃

i=1

[

⋃

s�ai

({ω : xs ∈ A} ∩ {ω : α = s})

]

∈ N+
α .
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Hence,

⋃

s�T

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s})

=
⋃

s≺T

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s}) (3.6)

+ {ω : xT (ω) ∈ A} ∩ {ω : α(ω) = T } ∈ N+
α .

Transfinite induction implies that (3.6) holds for any T ∈ [0,∞). Again, take an
increasing sequence {Ti : i ≥ 1} satisfying that for any given number s ∈ [0,∞),
there exists a Ti such that s � Ti. So

⋃

s<∞

({ω : xs(ω) ∈ A} ∩ {ω : α(ω) = s})

=

∞
⋃

i=1

[

⋃

s�Ti

({ω : xs ∈ A} ∩ {ω : α = s})

]

∈ N+
α .

Again, {ω : β(ω) ∈ A}∩{ω : α(ω) = ∞} ∈ N+
α from the definition of N+

α . Hence,
by (3.3), {ω : xα(ω)(ω) ∈ A} ∈ N+

α . By Theorem 2.2,

{ω : (xα(ω), α(ω)) ∈ A×B} = {xα(ω)(ω) ∈ A} ∩ {α(ω) ∈ B} ∈ N+
α

for every B ∈ B([0,∞]). Note that E×B([0,∞]) = F(A×B; A ∈ E , B ∈ B([0,∞]),
and {A × B; A ∈ E , B ∈ B([0,∞])} is a π-system. So, by λ-π-system method,
it follows that F(xα) ⊆ N+

α . Again, {ω : β(ω) ∈ A} ∩ {ω : α(ω) = ∞} ∈ αN+

from the definition of αN+ and Theorem 3.2. Similarly to the proof of the fact
F(xα) ⊆ N+

α , we get F(xα) ⊆ αN
+.4. The strong Markov property

Suppose that Θs denotes the shift operator, that is

Θs(f(t1 + s, . . . , tn + s)) = f(t1, . . . , tn)

for any natural number n and function f(t1, . . . , tn) of n-variables defined on n-
dimensional real number space R

n. Generally, if s = s(ω) is a function of ω, then,
for |s(ω)| < ∞, Θs(ω) denotes the shift as follows:

Θs(ω)(f(t1, . . . , tn)) = f(t1 − s(ω), . . . , tn − s(ω))

=
∑

−∞<u<∞

f(t1 − u, . . . , tn − u)X{s(ω)=u}.

More generally, if f = f(t1, . . . , tn, xs(ω)(ω)) is also a function of xs(ω)(ω), then,
for |s(ω)| < ∞, Θs(ω) denotes the shift as follows:

Θs(ω)(f(t1, . . . , tn, xs(ω)(ω)))

= f(t1 − s(ω), . . . , tn − s(ω), xs(ω)(ω))

=
∑

−∞<u<∞

∑

x∈E

f(t1 − u, . . . , tn − u, x)X{s(ω)=u,xs(ω)(ω)=x}(ω),
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where X{s(ω)=u,xs(ω)(ω)=x}(ω) is an indicator relative to {s(ω) = u, xs(ω)(ω) =
x}, that is, X{s(ω)=u, xs(ω)(ω)=x}(ω) = 1 if ω ∈ {s(ω) = u, xs(ω)(ω) = x} and
X{s(ω)=u, xs(ω)(ω)=x}(ω) = 0 otherwise.

Definition 4.1
X(t, ω) is called a homogeneous Markov process if

p(s, t+ s;x,A) = p(0, t;x,A),

where p(s, t;x,A) is the transition probability function of X(t, ω).

Let ω0 ∈ {xs = x}. For an arbitrary E-measurable bounded real-valued

function f(x), by [2, Theorem 5.2.5], E[f(xt+s)|xs](ω0)(
△
= E[f(xt+s)|F(xs)](ω0))

may be denoted by K(s, t + s;x, f(xt+s)). So E[f(xt+s)|xs](ω) may be denoted
as
∑

x∈E K(s, t+ s;x, f(xt+s))X{xs=x}(ω) = K(s, t+ s;xs(ω), f(xt+s)).

Definition 4.1’
X(t, ω) is called a homogeneous Markov process if for an arbitrary E-measurable
bounded real-valued function f(x), such that

E[f(xt+s)|xs] = ΘsE[f(xt+s)|xs] = K(0, t;xs(ω), f(xt))
△
= Exs

[f(xt)]. (4.1)

Let f = XA(x), A ∈ F . By Markov property, (4.1) holds if and only if

E[XA(xt+s)|xs](ω) = p(s, t+ s;xs(ω), A) =
∑

x∈E

p(s, t+ s;x,A)X{xs=x}(ω)

=
∑

x∈E

p(0, t;x,A)X{xs=x}(ω)

= p(0, t;xs(ω), A), PF(xs)–a.e..

So, by L-system method (Appendix B, Theorem B.5), it follows that the two
definitions are equivalent.

Lemma 4.2
f(xt) is x−1

t (E)-measurable real-valued function if and only if f(x) is a E-measu-
rable real-valued function defined on a measurable space (E, E). So f(xt) is a
random variable if f(x) is a E-measurable real-valued function defined on a mea-
surable space (E, E).

Proof. Let g(ω)
△
= xt(ω). Then g(ω) is a measurable mapping from (Ω,F)

to (E, E) for any fixed t ≥ 0. If we rewrite f(xt(ω))(ω)
△
= f ◦ g(ω), from [2,

Theorem 2.2.13] f(xt(ω)) is a x−1
t (E)-measurable (so it is also F -measurable)

mapping from Ω to R̄(
△
= R ∪ {∞}) if and only if there exists a E-measurable

real-valued function f(x) such that f(xt(ω)) = f ◦ g(ω).
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Lemma 4.3
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), f be a E-measurable bounded real-valued

function defined on a measurable space (E, E). Put zs(ω)
△
= E[f(xt+s)|xs] =

K(s, t+ s;xs(ω), f(xt+s)). Set

Hs = {zs(ω)}, H =
⋃

s≤∞

Hs.

Let B(H) denote the σ-algebra generated by all Borel subsets in H. Then:

(1) Z(s, ω)
△
= {zs(ω) : s ≥ 0} is a stochastic process defined on a probability

space (Ω,F , P ) and valued in a measurable space (H,B(H)).

(2) Z(s, ω) is a martingale relative to σ-algebra filtration {N+
s ; 0 ≤ s ≤ t}.

Proof. (1) First, we prove zs(ω) is a random variable for any fixed s.

zs(ω): Ω → R̄
△
= {∞} ∪ R is a F(xs)-measurable real-valued function (here as-

sume without loss of generality that the mathematical expectation may only value
+∞) by the definition of conditional mathematical expectation, namely, for every
Borel subset A of R̄,

{ω : zs(ω) ∈ A} ∈ x−1
s (E) ⊆ F . (4.2)

Let B(R̄) be the Borel σ-algebra generated by R∪{∞}. Then B(H) ⊆ B(R̄), from
which and (4.2) it follows that

{ω : zs(ω) ∈ A} ∈ F (4.3)

for every A ∈ B(H). From (4.3) it follows zs(ω) is a random variable valued
in a measurable space (H,B(H)) for every fixed s ≥ 0. Therefore, Z(s, ω) is a
stochastic process valued in a measurable space (H,B(H)) from the definition of
stochastic process.

(2) Since Z(s, ω) = E[f(xt)|N+
s ](ω) by Markov property, for any s ≤ u,

E[Z(u, ω)|N+
s ] = E{E[f(xt)|N

+
u ]|N+

s } = E[f(xt)|N
+
s ] = Z(s, ω), PN+

s
–a.e.,

from which it follows (2) is valid.

Note. zs(ω) is also regarded as a composite mapping with xs(ω) as interme-
diate variable and ω as independent variable.

Lemma 4.4
Let α(ω) be an arbitrary nonnegative random variable. Set

α(n)(ω) =

n2n
∑

k=1

k

2n
X{ k−1

2n <α≤ k

2n }(ω) + (n+ 1)X{α>n}(ω);

α
(n)
− (ω) =

n2n
∑

k=1

k − 1

2n
X{ k−1

2n <α≤ k

2n }(ω) + nX{α>n}(ω).

Then
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(1) α(n)(ω) ↓ α(ω), α

(n)
− (ω) ↑ α(ω) as n ↑ ∞,

(2) F(α(n)) ⊆ F(α(n+1)), F(α
(n)
− ) ⊆ F(α

(n+1)
− ) for every n ≥ 1,

(3) F(α) = F(α(∞)) = F(α
(∞)
− ).

Here F(α(∞))
△
= F(

⋃∞
n=1 F(α(n))); F(α

(∞)
− )

△
= F(

⋃∞
n=1 F(α

(n)
− )).

For the convenience of representation, [0, 1
2n ] and X{ 0

2n ≤α≤ 1
2n } are marked by

(0, 1
2n ] and X{ 0

2n <α≤ 1
2n }, respectively throughout this paper.

Proof. (1) By the property of construction of measurable function it fol-
lows (1).

(2) Set A
(n)
k = {k−1

2n < α ≤ k
2n } for every k = 1, 2, . . . , n2n, A

(n)
n2n+1 = {α > n}.

Obviously,

F(α(n)) = F
(

A
(n)
k ; 1 ≤ k ≤ n2n + 1

)

. (4.4)

For 1 ≤ k ≤ n2n,

A
(n)
k =

{2(k − 1)

2n+1
< α ≤

2k − 1

2n+1

}

+
{2k − 1

2n+1
< α ≤

2k

2n+1

}

∈ F(α(n+1)),(4.5)

{α > n} =

(n+1)2n+1+1
∑

k=n2n+1+1

A
(n+1)
k ∈ F(α(n+1)). (4.6)

The first assertion of (2) follows from (4.4)–(4.6). Similarly we get the second
assertion of (2).

(3) Obviously, F(α(n)) ⊆ F(α) for every n ≥ 1, hence, F(α(∞)) ⊆ F(α). Next
we prove F(α) ⊆ F(α(∞)). It is well known that F(α) = F({α ≥ s}; s ≥ 0).
Hence, it is sufficient to prove {α ≥ s} ∈ F(α(∞)) for any s ≥ 0. Set an =
min(s− k

2n ; s−
k
2n ≥ 0, 1 ≤ k ≤ n2n) and Kn = s−an, Obviously, (Kn,∞) ↓ [s,∞)

as n ↑ ∞, where (Kn,∞) ↓ [s,∞) is defined by
⋂∞

n=1(Kn,∞) = [s,∞). Hence
{α ≥ s} =

⋂∞
n=1{α > Kn} ∈ F(α(∞)) since {α > Kn} ∈ F(α(n)) ⊆ F(α(∞)). In

the same manner as above it follows the rest part of (3).

The intuitive idea of Lemma 4.4 is that: the interval [0,∞) is partitioned
into n2n + 1 many pairwise disjoint little intervals [0, 1

2n ], (
1
2n ,

2
2n ], . . . , (

n2n−1
2n , n],

(n,∞). We then construct two simple function α(n)(ω) and α
(n)
− (ω), whose val-

ues in every little interval are taken the maximum and the infimum values of
α(ω) in the corresponding little interval. (But α(n)(ω) take value n + 1 in lit-
tle interval (n,∞)), respectively. We have the same conclusion as Lemma 4.4 if

[0, n] =
⋃n2n

k=1(a
(n)
k−1, a

(n)
k ] is an arbitrary partition of [0, n] into a sequence of pair-

wise disjoint little intervals. This partition method is given a token “B(2(n))”,

called it partition method “B(2(n))”. Let d(n) = max1≤k≤n2n (a
(n)
k − a

(n)
k−1). d(n)

is called the distance of B(2(n)).
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Lemma 4.4’
Let α(ω) be a nonnegative random variable. For every n ≥ 1, [0, n] is partitioned

into n2n many pairwise disjoint little intervals [0, a
(n)
1 ], (a

(n)
1 , a

(n)
2 ], . . . , (a

(n)
n2n−1, n]

△
= (a

(n)
n2n−1, a

(n)
n2n ], and these partitions satisfy the following conditions:

(a) For every n ≥ 1, every such a little interval of partition method “B(2(n))”
is equal to the sum of such two disjoint little intervals of partition method
B(2(n+1)).

(b) limn→∞ d(n) = 0.

Let

ᾱ(n)(ω) =

n2n
∑

k=1

a
(n)
k X

{a
(n)
k−1<α≤a

(n)
k

}
(ω) + (n+ 1)X{α>n}(ω);

ᾱ
(n)
− (ω) =

n2n
∑

k=1

a
(n)
k−1X{a

(n)
k−1<α≤a

(n)
k

}
(ω) + nX{α>n}(ω).

Then

(1) ᾱ(n)(ω) ↓ α(ω), ᾱ
(n)
− (ω) ↑ α(ω) as n ↑ ∞,

(2) F(ᾱ(n)) ⊆ F(ᾱ(n+1)), F(ᾱ
(n)
− ) ⊆ F(ᾱ

(n+1)
− ) for every n ≥ 1,

(3) F(α) = F(ᾱ(∞)) = F(ᾱ
(∞)
− ).

Here F(ᾱ(∞))
△
= F(

⋃∞
n=1 F(ᾱ(n))); F(ᾱ

(∞)
− )

△
= F(

⋃∞
n=1 F(ᾱ

(n)
− )).

Lemma 4.5
Let α(ω) be a nonnegative random variable. Then

(1) N
α

(n)
−

⊆ N
α

(n+1)
−

for every n ≥ 1,

(2) N
ᾱ

(n)
−

⊆ N
ᾱ

(n+1)
−

for every n ≥ 1,

(3) Nα = N
α

(∞)
−

= N
ᾱ

(∞)
−

.

Proof. (1) Let Πn = {{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α
(n)
− > s} : m ≥ 1;

t1 ≤ . . . ≤ tm ≤ s; A1, . . . , Am ∈ E} for every n = 1, 2, . . . . By Theorem 2.3
it follows that N

α
(n)
−

= F(Πn) for every n = 1, 2, . . . . Suppose, without loss of

generality, that s ∈ (k−1
2n , k

2n ]. Then s must lie in either the interval (2(k−1)
2n+1 , 2k−1

2n+1 )

or the interval [ 2k−1
2n+1 ,

2k
2n+1 ].

If s ∈ (2(k−1)
2n+1 , 2k−1

2n+1 ), then

{α
(n)
− > s} =

{

α
(n)
− ≥

k

2n

}

=
{

α >
k

2n

}

,

{α
(n+1)
− > s} =

{

α
(n+1)
− ≥

2k − 1

2n+1

}

=
{

α >
2k − 1

2n+1

}

.
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Hence,

{α
(n+1)
− > s} = {α

(n)
− > s}+

{

α
(n+1)
− =

2k − 1

2n+1

}

,

from which it follows that

{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α
(n)
− > s}

= {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α
(n+1)
− > s}

− {xt1 ∈ A1, . . . , xtm ∈ Am} ∩
{

α
(n+1)
− =

2k − 1

2n+1

}

(4.7)

= {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α
(n+1)
− > s}

− {xt1 ∈ A1, . . . , xtm ∈ Am} ∩
{

s < α
(n+1)
− ≤

2k − 1

2n+1

}

.

By Theorem 2.2 and Theorem 2.3 as tm ≤ s < 2k−1
2n+1 it follows

{xt1 ∈ A1, . . . , xtm ∈ Am} ∩
{

s < α
(n+1)
− ≤

2k − 1

2n+1

}

= {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α
(n+1)
− > s} ∩

{

α
(n+1)
− ≤

2k − 1

2n+1

}

∈ N
α

(n+1)
−

,

this and (4.7) yield

{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α
(n)
− > s} ∈ N

α
(n+1)
−

(4.8)

for every s ∈ (2(k−1)
2n+1 , 2k−1

2n+1 ).

If s ∈ [ 2k−1
2n+1 ,

2k
2n+1 ), obviously,

{α
(n+1)
− > s} =

{

α
(n+1)
− ≥

2k

2n+1

}

=
{

α >
k

2n

}

=
{

α
(n)
− ≥

k

2n

}

= {α
(n)
− > s},

from which it follows that

{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α
(n)
− > s} ∈ N

α
(n+1)
−

(4.9)

for every s ∈ [ 2k−1
2n+1 ,

2k
2n+1 ).

If s = k
2n , an analogous treatment of (4.8) implies

{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α
(n)
− > s} ∈ N

α
(n+1)
−

, (4.10)

from (4.8)–(4.10) it follows that Πn ⊆ N
α

(n+1)
−

. Hence, by Theorem 2.3, we get

N
α

(n)
−

= F(Πn) ⊆ N
α

(n+1)
−

for every n ≥ 1.

(2) By an analogous treatment of (1) we complete the proof of (2).
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(3) Obviously, N

α
(∞)
−

⊆ Nα by N
α

(n)
−

⊆ Nα for every n. Next we prove Nα ⊆

N
α

(∞)
−

. Set an = min( k
2n − s : k

2n − s ≥ 0, 1 ≤ k ≤ n2n); Kn = s + an, from

which it follows (Kn,∞) ↑ (s,∞) as n ↑ ∞, where (Kn,∞) ↑ (s,∞) is defined by
⋃∞

n=1(Kn,∞) = (s,∞). Therefore, by {xt1 ∈ A1, . . . , xtm ∈ Am}∩{α
(n)
− > Kn} ∈

N
α

(n)
−

⊆ N
α

(∞)
−

and {α
(n)
− > Kn} ↑ as n ↑, it follows that

{xt1 ∈ A1, . . . , xtm ∈ Am, α > s}

= lim
n↑∞

{xt1 ∈ A1, . . . , xtm ∈ Am, α
(n)
− > Kn} ∈ N

α
(∞)
−

,

this and Theorem 2.3 gives Nα ⊆ N
α

(∞)
−

. Finally, Nα = N
α

(∞)
−

. In the same

manner one can prove Nα = N
α

(∞)
−

, Nα = N
ᾱ

(∞)
−

.

Lemma 4.6
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), f be a E-measurable bounded real-valued
function defined on a measurable space (E, E), α(ω) be a stopping time, that is,
{α ≤ t} ∈ N+

t for every t ≥ 0. Put

Z(s, ω)
△
= E[f(xt)|xs](ω).

Suppose that Z̄(s, ω) is a N+
s+(

△
=
⋂

u>s N
+
u )-adaptive process which is uniquely

determined by Z(s, ω) according to [7, Theorem 3.5]. Then

E[f(xt)|xα] = Z̄(α(ω), ω), P{α≤t}–a.e.

that is,

X{α≤t}E[f(xt)|xα] = X{α≤t}Z̄(α(ω), ω), PF(xα)–a.e..

Proof. Take

ᾱ(n)(ω) =

n2n
∑

k=1

a
(n)
k X

{a
(n)
k−1<α≤a

(n)
k

}
(ω) + (n+ 1)X{α(ω)>n}(ω),

and the corresponding to partition of [0, n] =
∑n2n

k=1(a
(n)
k−1, a

(n)
k ] satisfies that t is

a partition point when n > t. So there exists Kn with 1 ≤ Kn ≤ n2n such that

{α ≤ t} =
∑Kn

k=1{a
(n)
k−1 < α ≤ a

(n)
k }. Take {a

(n)
k : n ≥ 1, 1 ≤ k ≤ n2n} ⊆ D,

where D is defined as that in [7, Theorem 3.5], for every A ∈ E ,

∫

x
−1
α (A){α≤t}

E[f(xt)|xα]P (dω)

=

∫

x
−1
α (A){α≤t}

f(xt)P (dω)
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=

Kn
∑

k=1

∫

x
−1
α (A){a

(n)
k−1<α≤a

(n)
k

}

E
[

f(xt)|N
+

a
(n)
k

]

P (dω)

=

Kn
∑

k=1

∫

x
−1
α (A){a

(n)
k−1<α≤a

(n)
k

}

E
[

f(xt)|xa
(n)
k

]

P (dω)

=

∫

x
−1
α (A){α≤t}

Kn
∑

k=1

Z
(

a
(n)
k , ω

)

X
{a

(n)
k−1<α≤a

(n)
k

}
(ω)P (dω)

=

∫

x
−1
α (A){α≤t}

Kn
∑

k=1

Z
(

a
(n)
k , ω

)

X
{ᾱ(n)=a

(n)
k

}
(ω)P (dω)

=

∫

x
−1
α (A){α≤t}

Z(ᾱ(n), ω)P (dω)

=

∫

x
−1
α (A){α≤t}

lim
n↑∞

Z(ᾱ(n), ω)P (dω)

=

∫

x
−1
α (A){α≤t}

Z̄(α(ω), ω)P (dω),

where x−1
α (A) = {ω : xα ∈ A}. The first equality follows from the definition of

conditional expectation; the second equality follows from x−1
α (A) ∩ {a

(n)
k−1 < α ≤

a
(n)
k } ∈ F(xα) ⊆ N+

α and Theorem 2.5; the third equality follows from Markov
property; the seventh equality follows from dominated convergence theorem; the
last equality follows from [7, Theorem 3.5]. Similarly to the above proof we obtain

∫

x
−1
α (A){α≤u}

X{α≤t}E[f(xt)|xα]P (dω)

=

∫

x
−1
α (A){α≤u}

X{α≤t}Z̄(α(ω), ω)P (dω)

for every u ≥ 0, from which and λ-π-system method it follows
∫

x
−1
α (A){α∈B}

X{α≤t}E[f(xt)|xα]P (dω) =

∫

x
−1
α (A){α∈B}

X{α≤t}Z̄(α(ω), ω)P (dω)

for every B ∈ B([0,∞]), Note that F(xα) = F(x−1
α (A){α ∈ B}; A ∈ E , B ∈

B([0,∞])). From which and λ-π-system method it follows, for every C ∈ F(xα),
∫

C

X{α≤t}E[f(xt)|xα]P (dω) =

∫

C

X{α≤t}Z̄(α(ω), ω)P (dω). (4.11)
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Since E[f(xt)|xa

(n)
k

] is a measurable function with x
a
(n)
k

(ω) as intermediate variable

and ω as independent variable, that is, there exists a function K(a
(n)
k , t;x, f(xt))

on (E, E) such that E[f(xt)|xa
(n)
k

] = K(a
(n)
k , t;x

a
(n)
k

, f(xt)). So, by [2, The-

orem 2.2.13], we have that E[f(xt)|xa
(n)
k

] is both E-measurable (in this case,

E[f(xt)|xa
(n)
k

] is regarded as defined on space (E, E)) and F(x
a
(n)
k

)-measurable (in

this case, E[f(xt)|xa
(n)
k

] is regarded as defined on space (Ω,F(x
a
(n)
k

))). Rewrite

Z(x, a
(n)
k )

△
= K(a

(n)
k , t;x, f(xt)). Let Z(n)(x, s) =

∑Kn

k=1 Z(x, a
(n)
k )X

{a
(n)
k−1<s≤a

(n)
k

}
.

Hence Z(n)(x, s) is E × B([0,∞])-measurable (see [9, Section 2.6, Problem 8]). So

limn↑∞ Z(n)(x, s) is also E × B([0,∞])-measurable. Since {a
(n)
k : n ≥ 1, 1 ≤ k ≤

n2n} ⊆ D, and Z̄(s, ω) is right continuous and Z̄(ᾱ(n)(ω), ω) =
∑Kn

k=1 Z(x, a
(n)
k )X

{a
(n)
k−1<α(ω)≤a

(n)
k

}
by [7, Theorem 3.5], then

Z̄(α(ω), ω) = lim
n↑∞

Z̄(ᾱ(n)(ω), ω) = lim
n↑∞

Z(n)(x, α(ω)).

Thus Z̄(α(ω), ω) is F(xα)-measurable by [2, Theorem 2.2.13]. By Radon–Nikodym
Theorem and (4.11) the proof of theorem is comleted.

Remark 4.7
We easily verify α(n)(ω) and ᾱ(n)(ω) are stopping times if α(ω) is a stopping time.

In fact, for any t ≥ 0, if 1
2n ≤ t < n+ 1, letting an = max(a

(n)
k : t ≥ k

2n , 1 ≤ k ≤

n2n), then {α(n) ≤ t} = {α(n) ≤ an} = {α ≤ an} ∈ N+
t ; if t ≥ n+ 1, obviously,

{α(n) ≤ t} = Ω ∈ N+
t ; if t < 1

2n , obviously, {α(n) ≤ t} = ∅ ∈ N+
t . So α(n)(ω) is a

stopping time. Similarly as above we obtain that ᾱ(n)(ω) is also a stopping time.

Lemma 4.8
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), let f(x) be a E-measurable bounded real-
valued function defined on (E, E), α(ω) be a stopping time. Then

E
[

f(xt)|Nᾱ
(n)
−

]

= E
[

Z(ᾱ(n)(ω), ω)|N
ᾱ

(n)
−

]

, P{α≤T̄n}–a.e..

Namely,

X{α≤T̄n}E
[

f(xt)|Nᾱ
(n)
−

]

= X{α≤T̄n}E
[

Z(ᾱ(n)(ω), ω)|N
ᾱ

(n)
−

]

, PN
ᾱ
(n)
−

–a.e.. (4.12)

In particular, if X(t, ω) is a homogeneous Markov process,

E
[

f(xt)|Nᾱ
(n)
−

]

= E
{

Θᾱ(n)Z(ᾱ(n)(ω), ω)|N
ᾱ

(n)
−

}

, P{α≤T̄n}–a.e..

Namely,

X{α≤T̄n}E
[

f(xt)|Nᾱ
(n)
−

]

= X{α≤T̄n}E
{

Θᾱ(n)Z(ᾱ(n)(ω), ω)|N
ᾱ

(n)
−

}

, PN
ᾱ
(n)
−

–a.e..

Here T̄n = max(a
(n)
k : t ≥ a

(n)
k , 1 ≤ k ≤ n2n); Θᾱ(n)Z(ᾱ(n)(ω), ω) =

∑

x∈E K(0,

t− ᾱ(n)(ω);x, f(xt−ᾱ(n)(ω))X{x
ᾱ
(n)=x}(ω) = K(0, t− ᾱ(n)(ω);xᾱ(n) , f(xt−ᾱ(n)(ω)).
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Remark 4.9
If ᾱ(n)(ω) > t for some ω, then Θᾱ(n)(ω)Z(ᾱ(n)(ω), ω) might not be well defined.

In this case, we may give Θᾱ(n)(ω)Z(ᾱ(n)(ω), ω) an arbitrary value. Obviously, it
does not affect our conclusion. So we plight it in this way throughout this paper.

Proof. For every n ≥ 1, set

B
(n)
(t1,A1)(t2,A2)...(tm,Am)s = {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {ᾱ

(n)
− > s},

Πn = {B
(n)
(t1,A1)(t2,A2)...(tm,Am)s : m ≥ 1, t1 ≤ . . . ≤ tm ≤ s,

A1, . . . , Am ∈ E},

N = max
(

k : t ≥ a
(n)
k , 1 ≤ k ≤ n2n

)

.

Using the abbreviation B
△
= {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {ᾱ

(n)
− > s} we have

∫

B{ᾱ
(n)
−

<T̄n}

f(xt)P (dω) =
N
∑

k=1

∫

B{a
(n)
k−1<α≤a

(n)
k

}

f(xt)P (dω). (4.13)

Since α(ω) is a stopping time,
{

a
(n)
k−1 < α ≤ a

(n)
k

}

=
{

α ≤ a
(n)
k

}

−
{

α ≤ a
(n)
k−1

}

∈ N+

a
(n)
k

. (4.14)

Let Kn = min(k : 1 ≤ k ≤ n2n, a
(n)
k ≥ s). When k ≥ Kn, by t1 ≤ t2 ≤ . . . tm ≤

s ≤ a
(n)
k , it follows that {xt1 ∈ A1, . . . , xtm ∈ Am} ∈ N+

a
(n)
k

. This and (4.14) give

{xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {a
(n)
k−1 < α ≤ a

(n)
k } ∈ N+

a
(n)
k

for every k ≥ Kn. Again,

for k < Kn, we obviously have B{a
(n)
k−1 < α ≤ a

(n)
k } = ∅ ∈ N+

a
(n)
k

. Therefore, using

Markov property, (4.13) is changed into
∫

B{ᾱ
(n)
−

<T̄n}

f(xt)P (dω)

=

N
∑

k=1

∫

B{a
(n)
k−1<α≤a

(n)
k

}

E
[

f(xt)|N
+

a
(n)
k

]

P (dω)

=

N
∑

k=1

∫

B{a
(n)
k−1<α≤a

(n)
k

}

E
[

f(xt)|xa
(n)
k

]

P (dω) (4.15)

=
N
∑

k=1

∫

B{a
(n)
k−1<α≤a

(n)
k

}

Z(ᾱ(n)(ω), ω)P (dω)

=

∫

B{ᾱ
(n)
−

<T̄n}

Z(ᾱ(n)(ω), ω)P (dω).
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Let

Λ =

{

B :

∫

B{ᾱ
(n)
−

<T̄n}

f(xt)P (dω) =

∫

B{ᾱ
(n)
−

<T̄n}

Z(ᾱ(n)(ω), ω)P (dω), B ∈ N
ᾱ

(n)
−

}

.

If B = Ω,

∫

{ᾱ
(n)
−

<T̄n}

f(xt)P (dω) =
N
∑

k=1

∫

{a
(n)
k−1<α≤a

(n)
k

}

E
[

f(xt)|xa
(n)
k

]

P (dω)

=

∫

{ᾱ
(n)
−

<T̄n}

Z(ᾱ(n)(ω), ω)P (dω),

where the first equality follows from the Markov property and the definition of
conditional expectation and (4.14). Again it could be easily verified that Λ satisfies
the other conditions of λ-system. Therefore, Λ is a λ-system. Hence, by λ-π-system
method, it follows that Λ ⊇ F(Πn) = N

ᾱ
(n)
−

, namely,

∫

B{ᾱ
(n)
−

<T̄n}

f(xt)P (dω) =

∫

B{ᾱ
(n)
−

<T̄n}

Z(ᾱ(n)(ω), ω)P (dω)

for any B ∈ N
ᾱ

(n)
−

. From which and definition of conditional expectation we get

∫

B{ᾱ
(n)
−

<T̄n}

E
[

f(xt)|Nᾱ
(n)
−

]

P (dω)

=

∫

B{ᾱ
(n)
−

<T̄n}

E
[

Z(ᾱ(n)(ω), ω)|N
ᾱ

(n)
−

]

P (dω).
(4.16)

If X(t, ω) satisfies homogeneity, the last integrand of (4.15) is Θᾱ(n)Z(ᾱ(n)(ω), ω).
So the last integrand of (4.16) is changed into E{Θᾱ(n)Z(ᾱ(n)(ω), ω)|N

ᾱ
(n)
−

}. By

Radon–Nikodym Theorem we obtain the lemma.

Lemma 4.10
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), f be a E-measurable bounded real-valued
function defined on a measurable space (E, E) and let α(ω) be a stopping time.
Then, for any t1 ≤ . . . ≤ tm ≤ s and A1, . . . , Am ∈ E,

∫

{xt1∈A1,...,xtm
∈Am,α=s}

E[f(xt)|xs]P (dω)

=

∫

{xt1∈A1,...,xtm
∈Am,α=s}

E[f(xt)|xα]P (dω).
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Proof. Since E[f(xt)|xs](ω) = Z(s, ω) is a martingale relative to σ-algebra

filtration {N+
s ; s ≤ t}, by [7, Theorem 3.5], E[f(xt)|xs] = E[Z̄(s, ω)|N+

s ]. Again,
{xt1 ∈ A1, . . . , xtm ∈ Am, α = s} ∈ N+

s , so
∫

{xt1∈A1,...,xtm
∈Am,α=s}

E[f(xt)|xs]P (dω)

=

∫

{xt1∈A1,...,xtm
∈Am,α=s}

E[Z̄(s, ω)|N+
s ]P (dω)

=

∫

{xt1∈A1,...,xtm
∈Am,α=s}

Z̄(s, ω)P (dω)

=

∫

{xt1∈A1,...,xtm
∈Am,α=s}

E[f(xt)|xα]P (dω),

where the last equality follows from Lemma 4.6.

Lemma 4.11
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), f be a E-measurable bounded real-valued
function defined on a measurable space (E, E) and let α(ω) be a stopping time.
Then

E[f(xt)|Nα] = E[Z̄(α(ω), ω)|Nα], P{α≤t}–a.e.. (4.17)

Namely,

X{α≤t}E[f(xt)|Nα] = X{α≤t}E[Z̄(α(ω), ω)|Nα], PNα
–a.e.. (4.18)

In particular, if X(t, ω) is a homogeneous Markov process, then

E[f(xt)|Nα] = E{Θα(ω)Z̄(α(ω), ω)|Nα}, P{α≤t}–a.e..

Namely,

X{α≤t}E[f(xt)|Nα] = X{α≤t}E{Θα(ω)Z̄(α(ω), ω)|Nα}, PNα
–a.e..

Proof. N
ᾱ

(n)
−

⊆ N
ᾱ

(n+1)
−

for every n ≥ 1 by Lemma 4.5. Set

Zn = X{α≤T̄N}E
[

f(xt)|Nᾱ
(n)
−

]

; Xn = X{α≤T̄N}E
[

Z(ᾱ(n)(ω), ω)|N
ᾱ

(n)
−

]

.

Then {Zn; n ≥ N} is a martingale with respect to σ-algebra family {N
ᾱ

(n)
−

; n ≥

N}. From above and (4.12) it follows that {Xn; n ≥ N} is also a martingale with
respect to σ-algebra family {N

ᾱ
(n)
−

; n ≥ N}. So, by the property of conditional

expectation we get, for any n ≥ m ≥ N ,

Xm = E
[

Xn|Nᾱ
(m)
−

]

= E
{

X{α≤T̄N}E
[

Z(ᾱ(n)(ω), ω)|N
ᾱ

(n)
−

]

|N
ᾱ

(m)
−

}

= X{α≤T̄N}E
[

Z(ᾱ(n)(ω), ω)|N
ᾱ

(m)
−

]

.
(4.19)
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Here the third equality is a consequence of the fact that X{α≤T̄N} is N

ᾱ
(m)
−

-

measurable if m ≥ N . Next, take {a
(n)
k : n ≥ 1, 1 ≤ k ≤ n2n} ⊆ D, where

D is given by [7, Theorem 3.5], then

lim
n→∞

X{α≤T̄N}Z(ᾱ(n)(ω), ω) = X{α≤T̄N}Z̄(α(ω), ω), P–a.e.. (4.20)

By the convergence theorem of a martingale (see [3, Corollary 2.13]) and Lem-
ma 4.5,

lim
N→∞

lim
n→∞

Zn = X{α≤t}E[f(xt)|Nα], P–a.e.. (4.21)

Again, from (4.19), (4.20) and the convergence theorem of a martingale it follows
that

lim
N→∞

lim
m→∞

Xm

= lim
N→∞

lim
m→∞

lim
n→∞

X{α≤T̄N}E
[

Z(ᾱ(n)(ω), ω)|N
ᾱ

(m)
−

]

(4.22)

= X{α≤t}E[Z̄(α(ω), ω)|Nα].

By (4.12), (4.21), (4.22) we obtain (4.17). By (4.17), for any B ∈ Nα,
∫

B

X{α≤t}E[f(xt)|Nα]P (dω) =

∫

B

X{α≤t}E[Z̄(α(ω), ω)|Nα]P (dω),

this yields (4.18). If X(t, ω) is a homogeneous Markov process, then the right-hand
side of (4.19) is changed into

X{α≤T̄N}E
{

Θᾱ(n) Z̄(ᾱ(n)(ω), ω)|N
ᾱ

(m)
−

}

.

Note that Z̄(s, ω) is right continuous, so (4.22) is changed into

lim
N→∞

lim
m→∞

Xm = X{α≤t}E{Θα(ω)Z̄(α(ω), ω)|Nα}.

Theorem 4.12 (the strong Markov property)
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), f be a E-measurable bounded real-valued
function defined on a measurable space (E, E) and let α(ω) be a stopping time.
Then

E[f(xt)|N
+
α ] = E[f(xt)|xα], P{α≤t}–a.e..

Further,

X{α≤t}E[f(xt)|N
+
α ] = X{α≤t}E[f(xt)|xα], PN+

α
–a.e.. (4.23)

In particular, if X(t, ω) is a homogeneous Markov process, then

E[f(xt)|N
+
α ] = [Exα

(f(xt−α))], P{α≤t}–a.e.. (4.24)

Further,

X{α≤t}E[f(xt)|N
+
α ] = X{α≤t}[Exα

(f(xt−α))], PN+
α

–a.e., (4.25)

where Exα(ω)
(f(xt−α(ω))) =

∑

x∈E K(0, t − α(ω);x, f(xt−α(ω)))X{xα(ω)=x}(ω) =
K(0, t− α(ω);xα(ω), f(xt−α(ω))) for every ω ∈ Ω with α(ω) ≤ t.
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Proof. For any t1 ≤ t2 ≤ . . . ≤ tm ≤ s ≤ t set

B+ = {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α ≥ s};

C = {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α = s};

B = {xt1 ∈ A1, . . . , xtm ∈ Am} ∩ {α > s}.

Then B+ = B +C. From Theorem 2.3 and Theorem 2.2 it follows that B ∩ {α ≤
t} ∈ Nα. Again, C ∩ {α ≤ t} = C ∈ N+

s , from above we have
∫

B+{α≤t}

E[f(xt)|N
+
α ]P (dω)

=

∫

B{α≤t}

f(xt)P (dω) +

∫

C{α≤t}

f(xt)P (dω)

=

∫

B{α≤t}

E[f(xt)|Nα]P (dω) +

∫

C{α≤t}

E[f(xt)|N
+
s ]P (dω)

=

∫

B{α≤t}

E[Z̄(α(ω), ω)|Nα]P (dω) +

∫

C{α≤t}

E[f(xt)|xs]P (dω)

=

∫

B{α≤t}

Z̄(α(ω), ω)P (dω) +

∫

{xt1∈A1,...,xtm
∈Am}∩{α(ω)=s}

E[f(xt)|xs]P (dω)

=

∫

B{α≤t}

E[f(xt)|xα]P (dω) +

∫

C{α≤t}

E[f(xt)|xα]P (dω)

=

∫

B+{α≤t}

E[f(xt)|xα]P (dω),

where the third equality follows from Lemma 4.11 and Markov property; the fifth
equality follows from Lemma 4.6 and Lemma 4.10. By the λ-π-system method,

∫

B{α≤t}

E[f(xt)|N
+
α ]P (dω) =

∫

B{α≤t}

E[f(xt)|xα]P (dω)

for any B ∈ N+
α . Next, it is required to verify that E[f(xt)|xα] is N+

α -measurable
by the definition of conditional expectation. Since E[f(xt)|xα] is F(xα)-measu-
rable by the definition of conditional expectation, E[f(xt)|xα] is N+

α -measurable
from F(xα) ⊆ N+

α according to Theorem 3.6. Again, if X(t, ω) is a homogeneous
Markov process, similarly to the above proof we obtain (4.24) and (4.25).

Note that if α(ω) ≡ s (constant), then F(xα) = F(xs) and N+
α = N+

s . The
following corollary is a consequence of Theorem 4.12.

Corollary (Markov property)
Let X(t, ω) be an arbitrary stochastic process defined on a probability space
(Ω,F , P ) and valued in a measurable space (E, E), f be a E-measurable bounded
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real-valued function defined on a measurable space (E, E). If X(t, ω) satisfies
(4.23), then X(t, ω) is a Markov process, that is, X(t, ω) satisfies

E[f(xt)|N
+
s ] = E[f(xt)|xs], PN+

s
–a.e.

for any 0 ≤ s ≤ t.
In particular, if X(t, ω) satisfies (4.25), then X(t, ω) is a homogeneous Markov

process, that is, X(t, ω) has property:

E[f(xt)|N
+
s ] = Exs

[f(xt−s)], PN+
s

–a.e.

for any 0 ≤ s ≤ t.

By the same method used in the proof of Theorem 4.12, Theorem 4.12 is
extended as follows:

Theorem 4.12’ (the strong Markov property)
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in measurable space (E, E), f(x1, . . . , xn) be a n-dimensional En-measu-
rable bounded real-valued function defined on a measurable space (En, En) and let
α(ω) be a stopping time. Then

E[f(xt1 , . . . , xtn)|N
+
α ] = E[f(xt1 , . . . , xtn)|xα], P{α≤min(t1,...,tn)}–a.e..

Further,

X{α≤min(t1,...,tn)}E[f(xt1 , . . . , xtn)|N
+
α ]

= X{α≤min(t1,...,tn)}E[f(xt1 , . . . , xtn)|xα], PN+
α

–a.e..

In particular, if X(t, ω) is a homogeneous Markov process, then

E[f(xt1 , . . . , xtn)|N
+
α ] = [Exα

(f(xt1−α, . . . , xtn−α))], P{α≤min(t1,...,tn)}–a.e..

Further,

X{α≤min(t1,...,tn)}E[f(xt1 , . . . , xtn)|N
+
α ]

= X{α≤min(t1,...,tn)}[Exα
(f(xt1−α, . . . , xtn−α))], PN+

α
–a.e..

Theorem 4.13 (the strong Markov property)
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), ξ(ω) be αN+-measurable, and E|ξ| < ∞.
Then

E[ξ|N+
α ] = E[ξ|xα], PΩα

–a.e.. (4.26)

Proof. If ξ(ω) = X{α≤s}X{xt1∈A1}...{xtn
∈An}, where s ≤ t1 ≤ . . . ≤ tn, taking

f(xt1 , . . ., xtn) = X{xt1∈A1}...{xtn
∈An} in Theorem 4.12’ yields

X{α≤s}E[X{xt1∈A1}...{xtn
∈An}|N

+
α ]

= X{α≤s}E[X{xt1∈A1}...{xtn
∈An}|xα], PΩα

–a.e..
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By Theorem 2.2 and Theorem 3.3,

E[X{α≤s,xt1∈A1,...,xtn
∈An}|N

+
α ]

= E[X{α≤s,xt1∈A1,...,xtn
∈An}|xα], PΩα

–a.e..
(4.27)

Set

L = {all integrable functions};

H = {all ξ(ω) which satisfy (4.26)}.

Then H is L-system. Since X{α≤s, xt1∈A1,...,xtn
∈An} ∈ H for any n ≥ 1 and

0 ≤ s ≤ t1 ≤ . . . ≤ tn and A1, . . . , An ∈ E from (4.27), again, αN
+ = F({α ≤

s, xt1 ∈ A1, . . . , xtn ∈ An} : n ≥ 1, 0 ≤ s ≤ t1 ≤ . . . ≤ tn, A1, . . . , An ∈ E) from
Theorem 3.4, by L-system method it follows that H includes all αN+-measurable
functions in L.

Theorem 4.14 (the strong Markov property)
Let X(t, ω) be an arbitrary Markov process defined on a probability space (Ω,F , P )
and valued in a measurable space (E, E), f(x) be a E-measurable bounded real-
valued function defined on a measurable space (E, E) and let α(ω) be a stopping
time. Then

E[f(xt+α)|N
+
α ] = E[f(xt+α)|xα], PΩα

–a.e.. (4.28)

In particular, if X(t, ω) is a homogeneous Markov process, then

E[f(xt+α)|N
+
α ] = Exα

[f(xt)], PΩα
–a.e.. (4.29)

Proof. By Theorem 3.2 and Theorem 3.4, similarly to the proof of (3.5), it
follows that

{xt+α ∈ A} = {α ≤ t+ α, xt+α ∈ A}

=
⋃

s<∞

({α ≤ t+ s, xt+s ∈ A} ∩ {α = s}) + {β ∈ A, α = ∞}

∈ αN
+

for every A ∈ E and t ≥ 0, that is, xt+α is αN+-measurable. Therefore, f(xt+α)
is αN

+-measurable from [2, Theorem 2.2.13]. So f(xt+α) is also F -measurable.
Hence f(xt+α) is a random variable, that is, for every B ∈ B((−∞,∞)),

{ω : f(xt+α) ∈ B} ∈ F . (4.30)

Again, E|f(xt+α)| < ∞, which follows from f(x) is bounded. Hence, from The-
orem 4.13 we get (4.28). Next, if X(t, ω) is a homogeneous Markov process, we
shall prove (4.29). Set

f (n)(x) =

n2n
∑

k=−n2n+1

k

2n
X{ k−1

2n <f(x)≤ k

2n } + (n+ 1)X{f(x)>n} − nX{f(x)≤−n};
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A

(n)
k =

{

x :
k − 1

2n
< f(x) ≤

k

2n

}

(−n2n + 1 ≤ k ≤ n2n);

A
(n)
n2n+1 = {x : f(x) > n};

A
(n)
−n2n = {x : f(x) ≤ −n}.

Since f(x) is E-measurable, then A
(n)
k ∈ E for every −n2n ≤ k ≤ n2n + 1. Again,

because xt(ω) values in a measurable space (E, E), if f(x) is replaced by X
A

(n)
k

(x)

in (4.30), it follows that X
{xt+α(ω)∈A

(n)
k

}
is F -measurable. Again, by (4.28), for

every n and −n2n ≤ k ≤ n2n + 1,

E
[

X
{xt+α∈A

(n)
k

}
|N+

α

]

= E
[

X
{xt+α∈A

(n)
k

}
|xα

]

for every ω ∈ Ωα − Nnk, where Nnk is a P -null measurable set and satisfies
Nnk ⊆ Ωα, from which it follows that

X{α=s}E
[

X
{xt+α∈A

(n)
k

}
|N+

α

]

= E
[

X{α=s}X{xt+α∈A
(n)
k

}
|xα

]

= E
[

X{α=s}X{xt+s∈A
(n)
k

}
|xα

]

= X{α=s}E
[

X
{xt+s∈A

(n)
k

}
|xα

]

= X{α=s}Exα

[

X
{xt∈A

(n)
k

}

]

for every ω 6∈ Nnk, where the first equality follows from (4.28) and X{α=s} is
F(xα)-measurable according to Theorem 3.3; the last equality follows from (4.25).
Note that Nnk does not depend on s. Then

X{α<∞}E
[

X
{xt+α∈A

(n)
k

}
|N+

α

]

= X{α<∞}Exα

[

X
{xt∈A

(n)
k

}

]

for every ω ∈ Ωα −Nnk. Hence,

X{α<∞}E[f (n)(xt+α)|N
+
α ] = X{α<∞}Exα

[f (n)(xt)]

for every ω ∈ Ωα − N (n), where N (n) is defined by
⋃n2n+1

k=−n2n Nnk. Further, by
monotone convergence theorem we obtain

X{α<∞}E[f(xt+α)|N
+
α ] = X{α<∞}Exα

[f(xt)]

for every ω ∈ Ωα −N , where N =
⋃∞

n=1 N
(n), thus yields (4.29).

By the above theorem and corollary we have the following statements.

Theorem 4.15
Let X(t, ω) be an arbitrary stochastic process defined on a probability space
(Ω,F , P ) and valued in a measurable space (E, E), f be a E-measurable bounded
real-valued function defined on a measurable space (E, E) and let α(ω) be a stopping
time. Then the following statements are equivalent:
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(1) (Markov property) For any t ≥ 0,

E[f(xt)|N
+
s ] = E[f(xt)|xs], PN+

s
–a.e.

for any 0 ≤ s ≤ t.

(2) (the strong Markov property) For any t ≥ 0,

E[f(xt)|N
+
α ] = E[f(xt)|xα], P{α≤t}–a.e..

Further, we have

X{α≤t}E[f(xt)|N
+
α ] = X{α≤t}E[f(xt)|xα], PN+

α
–a.e.,

(3) (the strong Markov property) Let ξ(ω) be αN
+-measurable, and E|ξ| < ∞.

Then

E[ξ|N+
α ] = E[ξ|xα], PΩα

–a.e..

(4) (the strong Markov property) For any t ≥ 0,

E[f(xt+α)|N
+
α ] = E[f(xt+α)|xα], PΩα

–a.e..Appendix A. Theorems and 
on
epts 
ited in this paper
For convenience of the reader, we list all theorems used in this paper.

Theorem A.1 ([2] Property 2.2.2)
Let f be a mapping from Ω to E, H be a σ-algebra of E. Then f−1(H) is a
σ-algebra of Ω.

Theorem A.2 ([2] Theorem 2.2.13)
Let Ω be a set, (E, E) be a measurable space, f be a mapping from Ω to E. Then

ϕ is a f−1(E)-measurable function from Ω to R̄
△
= R ∪ {∞} if and only if there

exists a E-measurable real-valued function g on (E, E) such that ϕ = g ◦ f . And if
ϕ is bounded or finite, then g is bounded or finite.

Theorem A.3 ([2] Theorem 5.2.5)
Let ξ be a random variable defined on a probability space (Ω,F , P ), C be a σ-
subalgebra of F , B be an arbitrary atom of C. Then, for any ω ∈ B,

E(ξ|C)(ω) ≡ constant.

Further, if P (B) > 0, then

E(ξ|C)(ω) =
1

P (B)

∫

B

ξ dP

for every ω ∈ B.
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Theorem A.4 ([2] Theorem 5.3.1)
Let ξ be a random variable defined on a probability space (Ω,F , P ), Eξ exist, f be
a measurable mapping from (Ω,F) to (E, E). Then, there exists a E-measurable
function g, which is Pf -almost everywhere uniquely determined by E(ξ|F(f)), de-
fined on (E, E) such that

E(ξ|F(f)) = g ◦ f, PF(f)–a.e.,

where g satisfies
∫

A

g Pf (dx) =

∫

f−1(A)

ξ P (dω)

for every A ∈ E, where Pf is a probability measure derived by f , that is, Pf satisfies
Pf (A) = P (f−1(A)) for every A ∈ E.

Theorem A.5 (Integrable Transform Theorem; [2] Theorem 3.4.1)
Let f be a measurable transformation from the a measurable space (Ω,F) to
the measurable space (E, E); g be a measurable function defined on (E, E); µ be

a measure on (Ω,F); µf be a derived measure on (E, E) by f , that is, µf (B)
△
=

µ(f−1(B)) for every B ∈ E. Then

∫

f−1(B)

g ◦ f dµ =

∫

B

g dµf ,

which means: if one of the two integrals exists, then the other also exists, and the
two integrals are equal.

Theorem A.6 (Extended Föllmer Lemma; [7] Theorem 3.5)
Let X(t, ω) be a martingale with respect to σ-algebra filtration {Ft; t ≥ 0}, D be
a countable dense subset of R+. Then there exists a Ft+-adaptive process X̄(t, ω),
which satisfies the following properties:

(1) The every trajectory of X̄(t, ω) is right continuous, and there exists a null
measurable ω-set N such that

X̄(t, ω) = lim
s∈D,s↓t

X(s, ω)

for every t ≥ 0 and ω ∈ Ω−N .

(2) There exists a null measurable ω-set N1 such that, for every t > 0 and
ω ∈ Ω−N1,

X̄(t−, ω) = lim
s∈R+,s↑t

X̄(s, ω)

exists and is finite, and

X̄(t−, ω) = lim
s∈D,s↑t

X(s, ω).
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(3) For every t ≥ 0, X(t, ω) = E[X̄(t, ω)|Ft], P–a.e..

(4) X̄(t, ω) is a martingale with respect to σ-algebra filtration Ft+.

Here R+ = [0,∞); {Ft; t ≥ 0} is a σ-algebra filtration, that is, if s ≤ t, then
Fs ⊆ Ft; Ft+ =

⋂

s>t Fs.

Theorem A.7 ([3] Corollary 2.13)
Let {Fn; n ≥ 0} be a monotone increasing σ-subalgebra family of F , Y be an

integrable random variable, F∞
△
= F(

⋃∞
n=0 Fn). Set

Xn = E[Y |Fn]

for every n ≥ 0. Then we have

(1) {Xn, n ≥ 0} is uniformly integrable.

(2) Xn → E(Y |F∞), P–a.e., and E|Xn − E(Y |F∞)| → 0 as n → ∞.

Theorem A.8 (Radon–Nikodym Theorem; [2] Theorem 3.7.6)
Let µ be a σ-finite measure on σ-algebra A of Ω. If the set function ϕ defined on
A is σ-finite and σ-additive and µ-continuous, then there exists a A-measurable
finite function f defined on (Ω,A) such that ϕ is the indefinite integral of f on
a measurable space (Ω,A, µ), and f is µA-almost surly uniquely determined by ϕ.

Theorem A.9 (Tulcea Theorem; [2] theorem 5.4.5)
Let (Ωn,An), n = 1, 2, . . . be sequence of measurable spaces. Set Ω(n) =

∏n

k=1 Ωk,

A(n) =
∏n

k=1 Ak, Ω
(∞) =

∏∞
k=1 Ωk, A

(∞) =
∏∞

k=1 Ak. Let Pn(ω1, . . . , ωn−1, An),
(ω1, . . . , ωn−1, An) ∈ Ω(n−1) × An, n = 2, 3, . . . be the transition probabilities;
P1(A), A ∈ A1 be the probability on A1. Then there exists only one probability
measure P (∞) on A(∞) such that

P (∞)(C(B(n))) = P (n)(B(n))

and

P (n)(B(n)) =

∫

Ω1

. . .

∫

Ωn

XB(n)(ω1, . . . , ωn)Pn(ω1, . . . , ωn−1, dωn) . . . P1(dω1).

Here C(B(n)) indicates the cylinder set based on B(n); B(n) ∈ A(n).

Theorem A.10 (Fubini Theorem; [2] Theorem 4.2.1)
Let (Ωi,Ai, µi), i = 1, 2 be two σ-finite measurable spaces, f be nonnegative A1 ×
A2-measurable function. Then

∫

Ω1×Ω2

f dµ1 × µ2 =

∫

Ω1

(

∫

Ω2

f(ω1, ω2) dµ2(ω2)

)

dµ1(ω1)

=

∫

Ω2

(

∫

Ω1

f(ω1, ω2) dµ1(ω1)

)

dµ2(ω2).
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Dfinition A.11 ([2] Definition 5.1.3)
Let (Ω,A, P ) be a probability space, {Bn} ⊆ A be a countable subdivision of Ω,
that is, Ω =

∑∞
n=1 Bn and Bi ∩ Bj = ∅, i 6= j. Put G = F(Bn; n = 1, 2, . . .).

Suppose Eξ exists. The following G-measurable function in the sense of equivalence
(that is, we may give an arbitrary value on null measurable set of G, such as. If
P (Bn) = 0, then E(ξ|Bn) may be given arbitrarily.)

E(ξ|G) =
∞
∑

n=1

E(ξ|Bn)XBn
(ω)

is called the conditional expectation of ξ given G.Appendix B. The 
on
epts of λ-system andL-system
Here we will introduce the concepts of λ-system and L-system, the λ-π-system

method and L-system method mentioned in this paper, which are taken from [1,
Appendix].

Dfinition B.1
A system Π of subsets of a set Ω is called a π-system, if A1 ∈ Π, A2 ∈ Π =⇒
A1A2 ∈ Π.

Dfinition B.2
A system Λ of subsets of a set Ω is called a λ-system, if it has the following
properties:

(1) Ω ∈ Λ;

(2) A1 ∈ Λ, A2 ∈ Λ, A1 ∩ A2 = ∅ =⇒ A1 ∪ A2 ∈ Λ;

(3) A1 ∈ Λ, A2 ∈ Λ, A1 ⊃ A2 =⇒ A1 −A2 ∈ Λ;

(4) An ∈ Λ, An ↑ A, n = 1, 2, . . . =⇒ A ∈ Λ.

Theorem B.3
(1) If the system M of subsets of a set Ω is a π-system, and is also a λ-system,

then M is a σ-algebra.

(2) If λ-system Λ contains π-system Π, then Λ ⊇ F(Π).

When we make use of Theorem B.3, we call this method λ-π-system method.
Let L be a family of functions defined on Ω, and satisfies:
if ξ(ω) ∈ L, set

η(ω) =

{

ξ(ω) if ξ(ω) ≥ 0,

0 if ξ(ω) < 0,

then η(ω) and η(ω)− ξ(ω) lie in L.

Dfinition B.4
A set L of functions is called L-system, if it satisfies the following conditions:
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(1) 1I ∈ L, where the 1I is the function whose functional value is equal to 1;

(2) For two arbitrary functions in L, their linear combination lies in L;

(3) If ξn(ω) ∈ L, 0 ≤ ξn(ω) ↑ ξ(ω), and ξ(ω) is bounded or lies in L, then
ξ(ω) ∈ L.

Theorem B.5
If a L-system L contains the indicator function XA(ω) of every set A of π-system
Π, then L contains all F(Π)-measurable function in L.

When we make use of Theorem B.5, we call this method L-system method.Appendix C. The 
on
epts of partial ordering
We recall the concepts of partial ordering and three important theorems from

real analysis (such as [8]).

Dfinition C.1
Let S be an arbitrary set. S is said to be a partially ordered set, if there is a binary
relation “�” called a partial ordering, defined on S with the following properties:

(1) x � x for all x ∈ S (reflexive),

(2) x � y, y � z =⇒ x � z for all x, y, z ∈ S (transitive),

(3) x � y, y � x =⇒ x = y for all x, y ∈ S (antisymmetric).

Dfinition C.2
A partially ordered set S is called a totally ordered set if it follows x � y or x � y

for any x, y ∈ S.

Dfinition C.3
Let S be a partially ordered set, x0 lies in S. x0 is said to be the maximal element
of S if it follows x = x0 for every x ∈ S with x0 � x; x0 is said to be the minimal
element of S if it follows x = x0 for every x ∈ S with x � x0.

Dfinition C.4
Let S be a partially ordered set, M be a subset of S, α lies in S. α is said to be
an upper bound of M in S if it follows x � α for all x ∈ M; α is said to be a lower
bound of M in S if it follows α � x for all x ∈ M.

Dfinition C.5
Let S be a partially ordered set, A be a subset of S. α is called a minimum element
of A if α is a lower bound of A and α lies in A; α is called a maximum element of
A if α is an upper bound of A and α lies in A.

Dfinition C.6
A partial ordering “�” on S is said to be a well ordering if for every nonempty
subset of S has the minimum element. S is called well-ordered set if there is a well
ordering defined on S.
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Theorem C.7 (Zorn Lemma)
Let S be a partially ordered set. If every totally ordered subset A of S has an upper
bound in S, then S has a maximal element.

Theorem C.8 (Well Order Theorem)
Every set can be well ordered.

Theorem C.9 (Principle of Transfinite Induction)
Let (W,�) be a well-ordered set. For any a ∈ W , let

I(a) = {x ∈ W : x ≺ a}.

If A is a subset of W such that a ∈ A whenever I(a) ⊂ A, then A = W .Referen
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